

The main AT	LAS	triggers	in 2012	
	— •			-

	Offine coloction	Trigger Selection		L1 Peak Rate	EF Avg. Rate	
Signature	Omme selection	L1	EF	(kHz)	(Hz)	
				$L_{\rm peak} = 7e33/cm^2s$	$L_{\rm avg.} = 5e33/\rm cm^2 s$	
Single leptons	Isolated μ , $p_T > 25 \text{ GeV}$	$15 \mathrm{GeV}$	$24 \mathrm{GeV}$	8	45	
	Isolated $e, p_T > 25 \text{ GeV}$	18 GeV	$25 \mathrm{GeV}$	17	70	
Two leptons	Two μ 's, each $p_T > 15 \text{ GeV}$	$2 \times 10 \text{ GeV}$	$2 \times 13 \text{ GeV}$	1	5	
	Two μ 's, $p_T > 20$, 10 GeV	$15 \mathrm{GeV}$	18, 8 GeV	8	8	
	Two <i>e</i> 's, each $p_T > 15$ GeV	$2 \times 10 \text{ GeV}$	$2 \times 12 {\rm GeV}$	6	8	
	Two e's, $p_T > 25$, 10 GeV	$18 \mathrm{GeV}$	25, 7 GeV	17	5	
	Two τ 's, $p_T > 45$, 30 GeV	15, 11 GeV	29, 20 GeV	12	12	
Two photons	Two γ 's, each $p_T > 25 \text{ GeV}$	$2 \times 10 \text{ GeV}$	$2 \times 20 \text{ GeV}$	6	10	
	Two γ 's, $p_T > 40$, 30 GeV	16, 12 GeV	$35,25~{\rm GeV}$	6	7	
Single jet $\begin{array}{c} \text{Jet } (R=0.4), \ p_T > 370 \ \text{GeV} \\ \text{Jet } (R=1.0), \ p_T > 470 \ \text{GeV} \end{array}$	Jet $(R = 0.4), p_T > 370 \text{ GeV}$	$75 C_{\rm eV}$	$360 \mathrm{GeV}$	9	5	
	75 Gev	$460 \mathrm{GeV}$		2		
E_T^{miss}	$E_T^{miss} > 150 \text{ GeV}$	$40 \mathrm{GeV}$	$80 \mathrm{GeV}$	2	17	
Multi-jets	4 jets, each $p_T > 85 \text{ GeV}$		$4 \times 80 \text{ GeV}$		8	
	5 jets, each $p_T > 60 \text{ GeV}$	$4 \times 15 \text{ GeV}$	$5 \times 55 \text{ GeV}$	1 1	2	
	6 jets, each $p_T > 50 \text{ GeV}$		$6 \times 45 \text{ GeV}$		4	
h ista	4 jets, each $p_T > 50 \text{ GeV}$		$4 \times 45 \text{ GeV}$	1	4	

• Result: a huge number of theoretical models. E.g. consider all possible mass hierarchies between all SUSY particles \Rightarrow 9! models.

• SUSY searches have a very large phase-space to scan. The trigger needs to be inclusive enough to provide a good coverage of predicted physics,

 \Rightarrow and make sure our data will contain the unexpected!

Dedicated SUSY triggers in 2012						
Selection	EF trigger election	EF Avg. Rate (Hz) $L_{\rm avg.}=5e33/{\rm cm}^2{\rm s}$				
$\begin{array}{c} \text{Single jet} \\ \& \ E_{\mathrm{T}}^{\mathrm{miss}} \end{array}$	$\begin{array}{c c} & \text{Jet } E_{\mathrm{T}} > 145 \text{ GeV} \\ \& \text{ EF-only } E_{\mathrm{T}}^{\mathrm{miss}} > 70 \text{ GeV} \end{array}$	8				
Single jet & $E_{\rm T}^{\rm miss} \& \Delta \phi({\rm jet}, E_{\rm T}^{\rm miss})$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8				
H _T	>700 GeV	8				
Single electron & $E_{\rm T}^{\rm miss}$	Electron $p_{\rm T} > 25 \text{ GeV}$ & EF-only $E_{\rm T}^{\rm miss} > 35 \text{ GeV}$	26				
$ \begin{array}{c} \text{Single muon} \\ & \text{single jet & } E_{\mathrm{T}}^{\mathrm{miss}} \end{array} $	$\frac{1}{\text{Muon } p_{\rm T} > 24 \text{ GeV}}$ & jet $E_{\rm T} > 65 \text{ GeV}$ & EF-only $E_{\rm T}^{\rm miss} > 40 \text{ GeV}$	15				
$\begin{array}{c c} \text{Single photon} \\ \& E_{\mathrm{T}}^{\mathrm{miss}} \end{array}$	Photon $p_{\rm T} > 40 {\rm ~GeV}$ & EF-only $E_{\rm T}^{\rm miss} > 60 {\rm ~GeV}$	5				
3 electrons	$p_{\rm T} > 18, 2 \times 7 {\rm ~GeV}$	<1				
3 muons	$p_{\rm T} > 18, 2 \times 4 \text{ GeV}$	<1				
3 electrons & muons	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<1 <1				

• The $\Delta \phi$ selection is applied at EF, between the $E_{\rm T}^{\rm miss}$ and the two leading jets with $p_{\rm T} > 45$ GeV.

<i>0</i> -jets	out of which one is b -tagged 4×15 G	ev plus b -tag	1	4		• H_T is the s
Total			< 75	400		satisfied the
					J	

um of jet $p_{\rm T}$ for jets with $p_{\rm T} > 45$ GeV, and is calculated in events that already requirement of a leading jet $p_{\rm T} > 145$ GeV.

The improvements made to jet and E_{T}^{miss} triggers for 2012 together with new trigger selections and the addition of a delayed processing stream have allowed ATLAS to meet the challenges of increased luminosity and pile-up and maintain excellent efficiency for SUSY signals in 2012 data taking.

HCP - November 12-16 - Kyoto, Japan