
# RAPPEL MATHÉMATIQUE





#### **DÉRIVÉE**

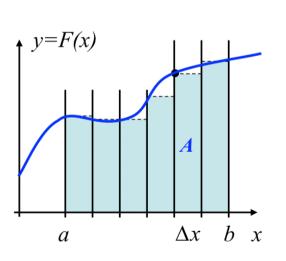
$$\frac{dF(x)}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$



$$f(x) = 0$$

$$\frac{df(x)}{dx} = 0$$

$$f(x) = ax + p$$


$$F = \frac{df}{dx} = a$$

$$F = X \Rightarrow \int F dx = \frac{1}{2}x^2 + B$$

Conditions initiale!

#### **INTEGRAL**

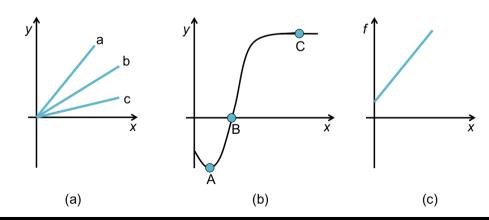
$$F(x) = \frac{df(x)}{dx} = \int F(x)dx$$
Surface



$$\int_{a}^{b} F(x) dx = \lim_{\Delta x \to 0} \sum_{\alpha} F(x) \Delta x$$

#### **A SAVOIR!**

| Fonction $f(t)$       | Dérivée $df/dt$                              | Primitive $F = \int f(t)dt$ |
|-----------------------|----------------------------------------------|-----------------------------|
| $f_1+f_2$             | $df_1/dt + df_2/dt$                          | $F_1 + F_2$                 |
| $a f_1 + b f_2$       | $a df_1/dt + b df_2/dt$                      | $a F_1 + b F_2$             |
| $f_1\cdot f_2$        | $\int f_1 \cdot df_2/dt + f_2 \cdot df_1/dt$ |                             |
| f(g(t))               | $dg/dt \cdot df(g)/dg$                       |                             |
| a, a = const.         | 0                                            | at + b                      |
| at, a = const.        | a                                            | $at^2/2+b$                  |
| at + b, a, b = const. | a                                            | $at^2/2 + bt + c$           |
| $at^2$ , $a = const.$ | 2at                                          | $at^3/3+b$                  |
| $Ae^{at+b}$           | $Aae^{at+b} = a \ f(t)$                      | $(A/a) e^{at+b} = f(t)/a$   |
| $x^n$                 | $n x^{n-1}$                                  | $x^{n+1}/(n+1) + const$     |


#### **EXEMPLE**

Considérons une quantité qui est définie comme:

$$f(x) = \frac{dy(x)}{dx}$$

Trois situations différentes sont montrées à la figure dessous.

- (a) Dans lequel des trois cas f(x) est plus grande?
- (b) Dans quel point du diagramme f(x) se minimise? Dessiner approximativement le diagramme de f(x).
- (c) Vous connaissez que  $f(x) = \frac{dy}{dx}$  et vous voyez au dessin f(x). Exprimer mathématiquement et graphiquement y(x).



# LA CINÉMATIQUE - MRU



**VITESSE** 

U= Al At

UT DET

Vitesse scalaire

Vitesse moyenne

Vecteur vitesse

Vitesse instantanée

## VITESSE SCALAIRE MOYENNE.

Independ
- forme
- details
mouvent.

#### **VITESSE SCALAIRE**

Un objet bouge à une vitesse de 6 m/s. Ça veut dire que l'objet:

- (a) Augmente sa vitesse de 6 m/s chaque seconde;
- (b) Diminue sa vitesse de 6 m/s chaque seconde;
- (c) Bouge 6 metres chaque seconde.

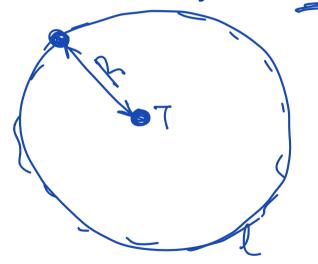
#### **VITESSE SCALAIRE**

$$U = \frac{8 \, \text{m}}{4S} = 2 \, \frac{\text{m}}{S}$$

Une voiture bouge 8 m en 4 s avec une vitesse constante. Quelle est la vitesse de la voiture?

Un bateau bouge avec une vitesse constante de 8 km/h. Combien de temps met-it pour traverser 24 km?

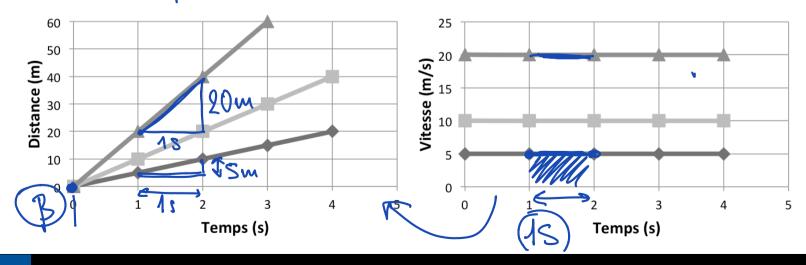
$$U = \frac{1}{t} \Rightarrow t = \frac{1}{0}$$

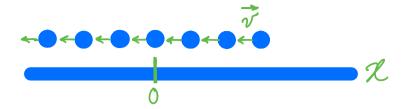

#### **CONVERTIONS D'UNITÉS**

Transformer la vitesse de 0.2 cm/s en unités de km/h et km/année.

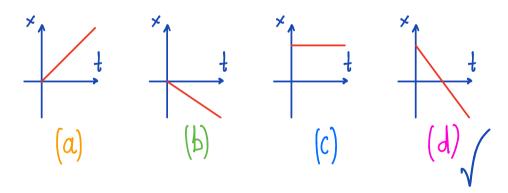
$$0.2 \, \frac{\text{cm}}{\text{S}} = 0.2 \, \frac{\text{cm}}{\text{S}} \cdot \frac{\text{lm}}{\text{100 cm}} \cdot \frac{608}{\text{1000 m}} \cdot \frac{608}{\text{1min}} \cdot \frac{608}{\text{1mi$$

#### **EXEMPLE**


La Lune décris une orbite approximativement circulaire de rayon moyen  $R = 3.84 \times 10^8$  m autour de la Terre. Elle met 27.3 jours pour effectuer une révolution. Déterminez sa vitesse moyenne en m/s.

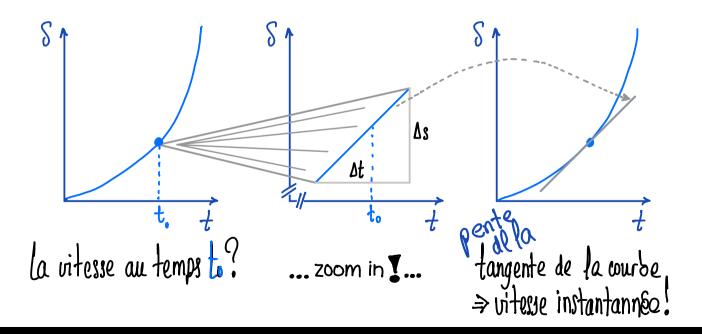


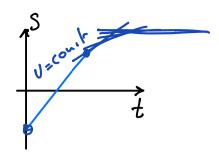

#### VITESSE SCALAIRE constante


$$V = \frac{\Delta x}{\Delta t} = constante$$

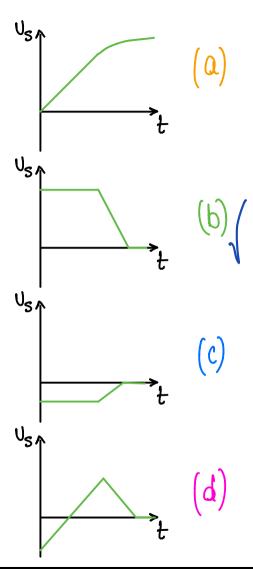


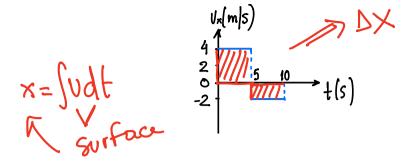






Quel est le diagramme qui répresente le mieux la position par rapport au temps de ce mouvement?




#### VITESSE SCALAIRE Instantanée


$$V = \lim_{\Delta t \to 0} \frac{\Delta l}{\Delta t} = \frac{dl}{dt}$$



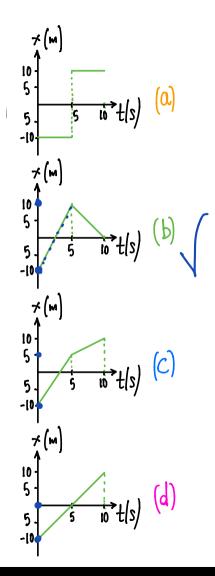


On connaît le diagramme position-temps dessus.
À quel diagramme vitesse-temps correspond-il?





On connaît le diagramme vitesse-temps dessus.
À quel diagramme position-temps correspond-il?

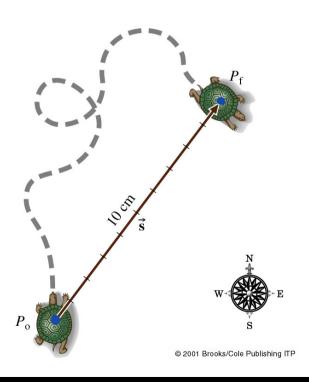

$$V = L_1 MS$$

$$V = -2mls$$

$$\Delta t = 5S$$

$$\Delta x = 20 M$$

$$\Delta x = 40 M$$




#### **DÉPLACEMENT**

distance direction

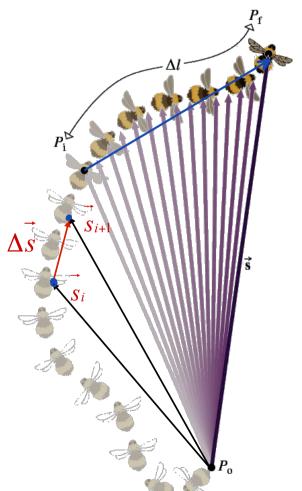
] |s| on s

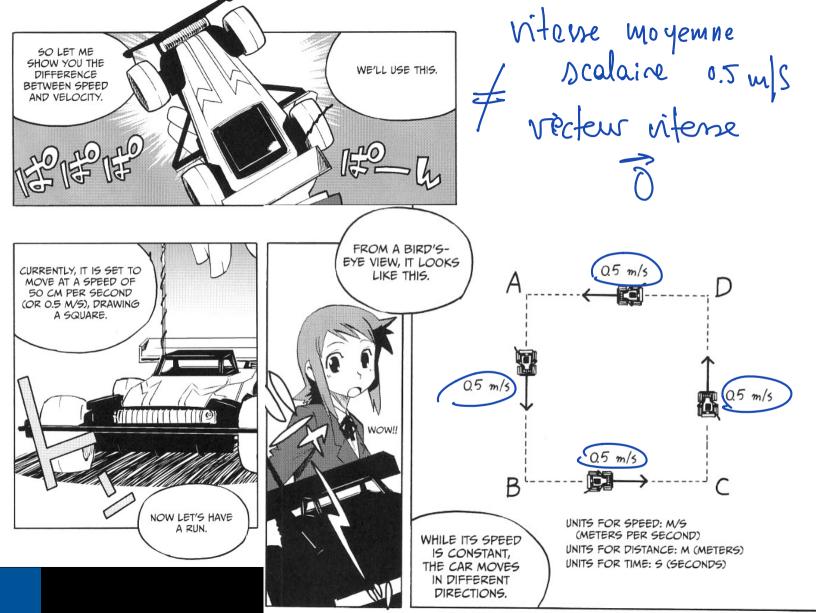
+ distance parcourue!



#### **VECTEUR VITESSE**

$$\frac{3}{5}(t)$$


$$\Delta S = S_{+} - S_{+}$$

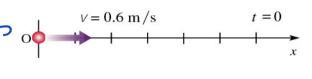

$$V = \frac{1}{\Delta S_{+}}$$

$$V = \frac{1}{\Delta S_{+}}$$

$$V = \frac{1}{\Delta S_{+}}$$

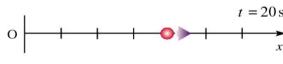
$$\Delta S = \frac{1}{\Delta$$






### Mouvement Rectiligne UniForme

**MRU** 


vitene moja

$$V = \lim_{\Delta \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$
 wit iste.

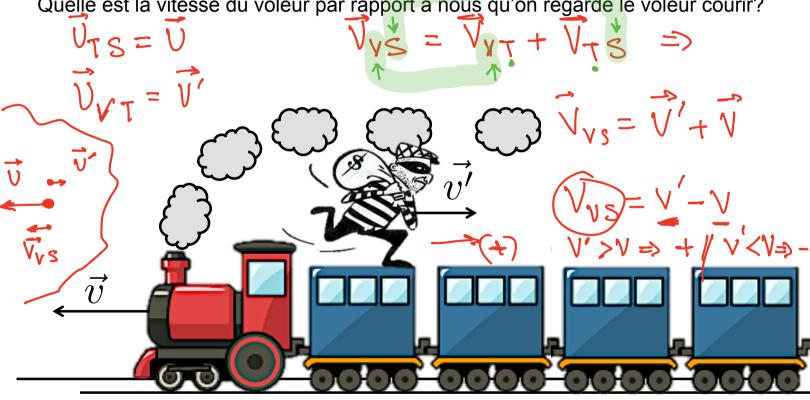






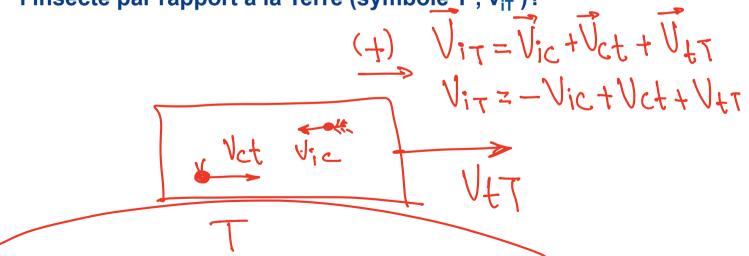




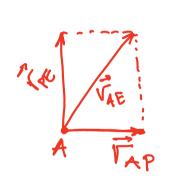

#### **MOUVEMENT RELATIF - 1D**

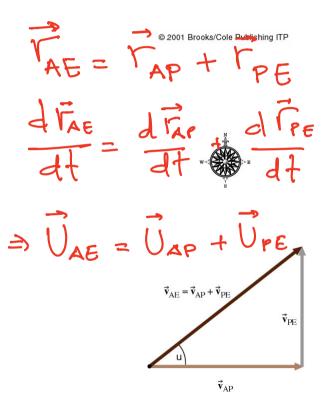
Vitesse du train par rapport au sol:  $\vec{v} = V_{TS}$ Quelle est la vitesse du chat par rapport à nous qu'on regarde le train bouger?

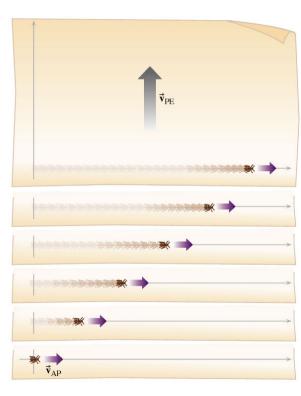



#### **MOUVEMENT RELATIF – 1D**

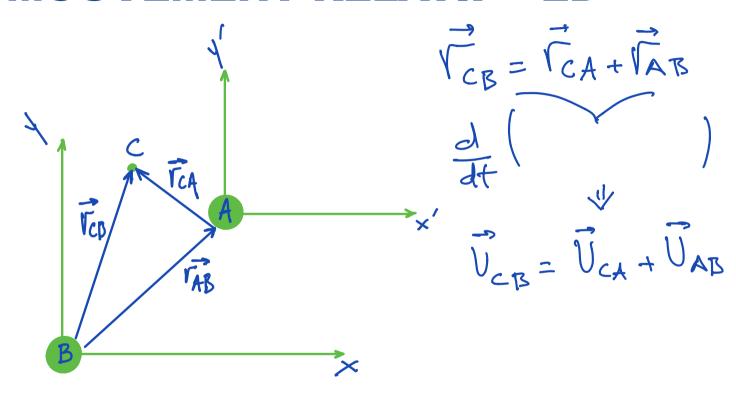
Vitesse du train par rapport au sol:  $\vec{v}$  et vitesse du voleur par rapport au train:  $\vec{v}$  Quelle est la vitesse du voleur par rapport à nous qu'on regarde le voleur courir?





#### **EXEMPLE**

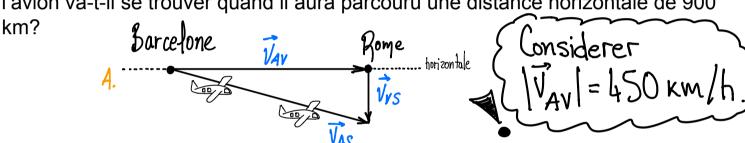

Dans un train (symbole t) qui se déplace par rapport à la Terre (symbole T) vers l'est à une vitesse  $v_{tT}$  = 10km/h, un grand chien (symbole c) se déplace lentement vers la tête du train à une vitesse  $v_{ct}$  = 5 km/h. Un insecte (symbole i) vole vers l'ouest à une vitesse  $v_{ic}$  = 0.01 km/h par rapport au chien. Quelle est la vitesse de l'insecte par rapport à la Terre (symbole T ,  $v_{iT}$ )?



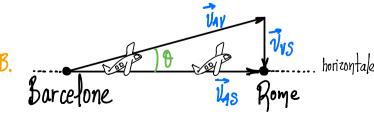

#### **MOUVEMENT RELATIF - 2D**



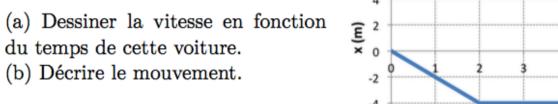


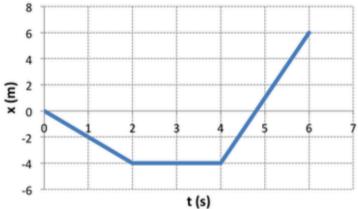



#### **MOUVEMENT RELATIF - 2D**




#### **MOUVEMENT RELATIF – 2D**


Un avion part de Barcelone en direction pour Rome, qui se trouve à 900 km à l'est de Barcelone. Le pilote a oublié ce matin-là de vérifier la météo et a raté l'information que le vent volait vers le sud avec une vitesse de 50 km/h. Où l'avion va-t-il se trouver quand il aura parcouru une distance horizontale de 900




Un autre pilote, plus prudent, sachant la météo, part vert le nord-est avec un angle  $\theta$  par rapport à l'horizontale. Quel est l'angle  $\theta$  pour que cet avion arrive à Rome?



Exercice 1.1. La figure à coté montre le graphe de la position en fonction du temps d'une voiture.





**Exercice 1.2.** La position d'un objet est donnée par la fonction  $x(t) = (-t^3 + 3t)$  m, où t est en s.

- (a) Quelles sont la position et la vitesse de l'objet à t = 2 s?
- (b) Dessiner les graphes de x et  $v_x$  dans l'interval de temps -3 s  $\leq t \leq 3$  s.
- (c) Décrire le mouvement de l'objet.