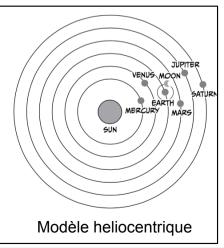

LA GRAVITÉ SELON NEWTON

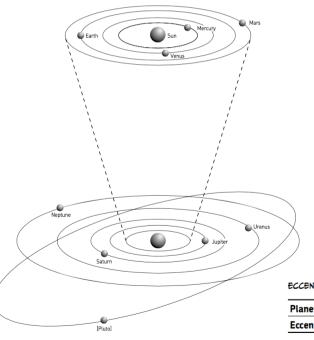
UN PEU D'HISTOIRE

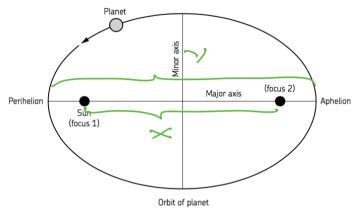
Moon VENUS SUN SATURN MARS EARTH MARS MARS MARS


A cosmology positing a hemispherical dome over Earth

1543 'De Revolutionibus'

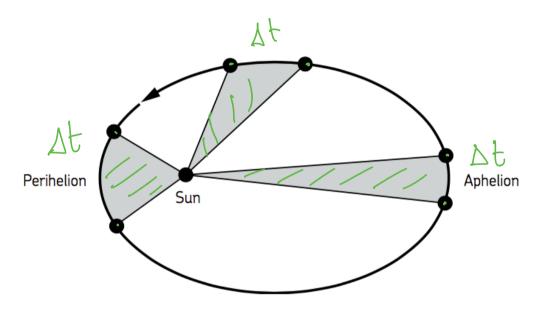
Kepler
'Astronomia nova'
'Harmonices Mundi'


Galilée
Téléscope
'Dialogo sopra i due ma


'Dialogo sopra i due massimi sistemi del mondo'

A spherical cosmology

1.



Orbit of a planet according to Kepler's First Law

ECCENTRICITY OF EACH PLANET IN THE SOLAR SYSTEM

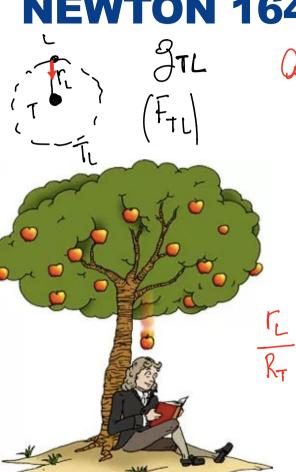
Planet	Mercury	Venus	Earth	Mars	Jupiter	Saturn	Uranus	Neptune
Eccentricity	0.2056	0.0068	0.0167	0.0934	0.0485	0.0555	0.0463	0.0090

2.



Orbit of a planet according to Kepler's Second Law

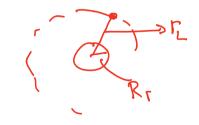
 $\frac{7^3}{T^2} = comtant$


SEMIMAJOR AXIS OF A PLANET'S ORBIT AND ORBITAL PERIOD

Planet	Semimajor axis of orbit a (AUs)	a ³	Orbital period relative to the fixed star's <i>P</i> (solar years)	P ²	a ³ /P ²
Mercury	0.3871	0.05800555	0.2409	0.05803281	0.9995
Venus	0.7233	0.37840372	0.6152	0.37847104	0.9998
Earth	1.0000	1	1.0000	1	1.0000
Mars	1.5237	3.53751592	1.8809	3.53778481	0.9999
Jupiter	5.2026	140.819017	11.8620	150.707044	1.0008
Saturn	9.5549	872.32524	29.4580	867.773764	1.0052
Uranus	19.2184	7098.25644	84.0220	7049.69648	1.0055
Neptune	30.1104	27299.1783	164.7740	27150.4711	1.0055

1609: télé100pe -- voir/observer les fois de fepler

NEWTON 1642-1727


$$Q_{c} = S_{TL} = \frac{V_{c}^{2}}{\Gamma_{c}}$$

$$V_{L} = \frac{2\Pi\Gamma_{c}}{T_{c}}$$


$$V_{L} = \frac{4\eta^{2}\Gamma_{c}}{T_{c}^{2}} = 0.00272$$

$$V_{L} = \frac{2\Pi\Gamma_{c}}{T_{c}}$$

$$\frac{9\pi L}{9\pi} = \frac{0.00272}{9.8} \approx \frac{1}{3600}$$

LOI DE GRAVITÉ DE NEWTON

GRANDEUR DE LA FORCE GRAVITATIONNELLI

$$m_1 = 1 + g$$
 $m_2 = 1 + g$
 $r = 1 + m$

$$M_1 = M_T = 6 \times 10^{24} \text{ kg}$$
 $M_2 = 1 \text{ kg}$

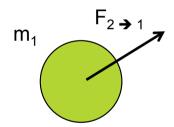
$$M_1 = M_T = 6 \times 10^4 \text{ kg}$$
 $M_2 = 1 \text{ kg}$
 $M_2 = 1 \text{ kg}$
 $M_3 = 1 \text{ kg}$
 $M_4 = 1 \text{ kg}$
 $M_5 = 1 \text{ kg}$
 $M_7 = 1 \text{ kg}$

PRINCIPE DE L'ÉQUIVALENCE

Minertie =
$$\frac{F}{\alpha}$$
 ms

Morant = $\frac{r^2F}{GM}$ ms

THÉORIE DE GRAVITÉ DE NEWTON


- $T = G \frac{M_1 M_2}{R^2}$
- 2 PRINCIPE D'ÉQUIVALENCE
- (3) 3 lois DE NEW TON

QUESTION

$$F = G \frac{M_1 M_2}{\Gamma^2}$$

$$F_{2\rightarrow 1} = F_{1\rightarrow 2}$$

$$m_{1} = 2 m_{1}$$

(a)
$$F_{1 \rightarrow 2} = F_{2 \rightarrow 1}$$

(b)
$$F_{1\rightarrow 2} = 2 F_{2\rightarrow 1}$$

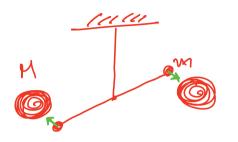
(c)
$$2 F_{1 \rightarrow 2} = F_{2 \rightarrow 1}$$

(d)
$$F_{1 \rightarrow 2} = 4 F_{2 \rightarrow 1}$$

(e)
$$4 F_{1 \rightarrow 2} = F_{2 \rightarrow 1}$$

GRAND G ET PETIT 9

For
$$GHM$$
 GHM
 GHM


LA MASSE DE LA TERRE?

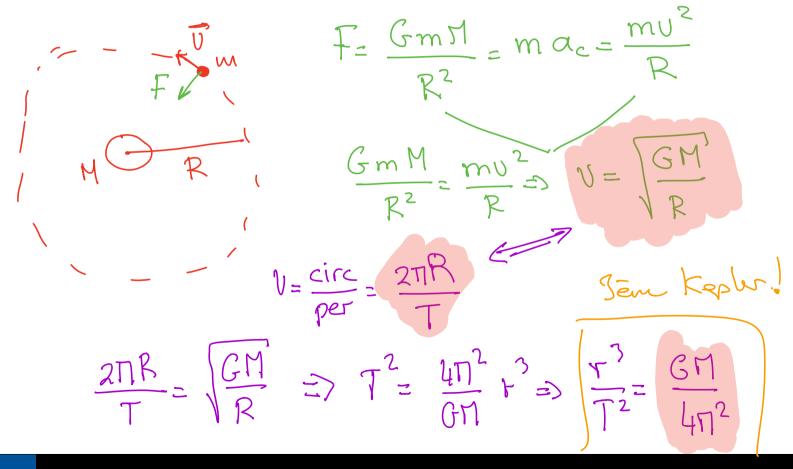
M? G?

Henry Cavendish

GE FHM +2

Mm

m=10gr M=1 kg


G MT = 9 RT

g. cinematique

G: Caverdish

RT: techniques i surveillance

ORBITE DE SATELLITE

ORBITES GEOSTATIONNAIRES

$$\frac{r^3}{T^2} = const = 3 \log r^3 - \log T^2 = const$$

$$3 \log r - 2 \log T = const$$

$$\log T = 1.5 \cdot \log r + const$$

$$\gamma = 1.5 \times + const$$

$$T = 24h$$

$$r = 36.000 \text{ km}$$

$$25.6 \text{ kg}$$

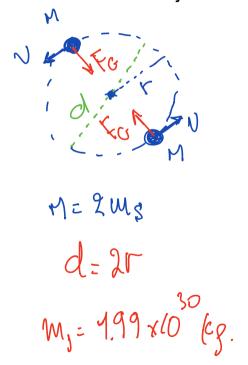
QUESTION

$$\frac{\Gamma^{3}}{T^{2}} = \text{const}$$

$$\frac{\Gamma^{3}}{T^{2}} = \frac{\Gamma^{2}}{T^{2}} = \frac{\Gamma^{3}}{\Gamma^{2}} = \frac{\Gamma^{3}}{\Gamma^{3}} =$$

$$\Rightarrow$$
 $T_2 = 2.8T_1$

(a)
$$T_2 = 2 T_1$$


(b)
$$T_2 = 2.8 T_1$$

(c)
$$T_2 = 4 T_1$$

(d)
$$T_2 = 0.2 T_1$$

EXEMPLE

Système binaire des étoiles. Masse de chacune: 2 x masse du soleil. Période de 90 jours. Quelle est la distance entre les deux étoiles?

