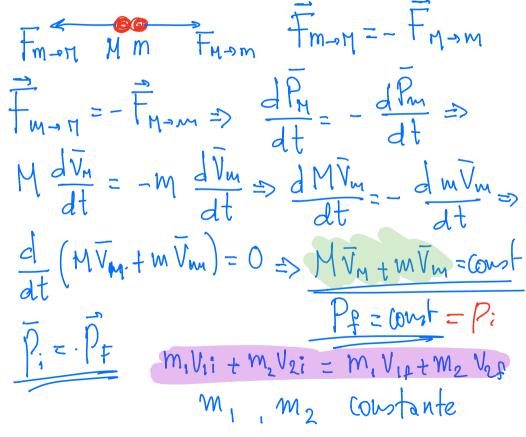
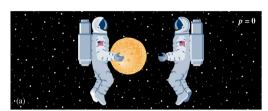
# COLLISIONS ET LA CONSERVATION DE LA QUANTITÉ DE MOUVEMENT

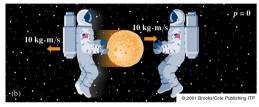
PGC-12

# LA QUANTITÉ DE MOUVEMENT

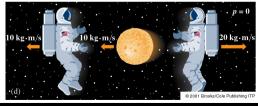
$$\frac{\partial^2 P}{\partial t} = \frac{\partial P}{\partial t}$$


$$\frac{\partial^2 P}{\partial t} = m\tilde{v}$$


$$S_{i} = F_{m} = 0 \Rightarrow P = 0$$


$$\tilde{p}_{i} = \tilde{p}_{i}$$




## CONVERVATION DE LA QUANTITÉ DE MOUVEMENT





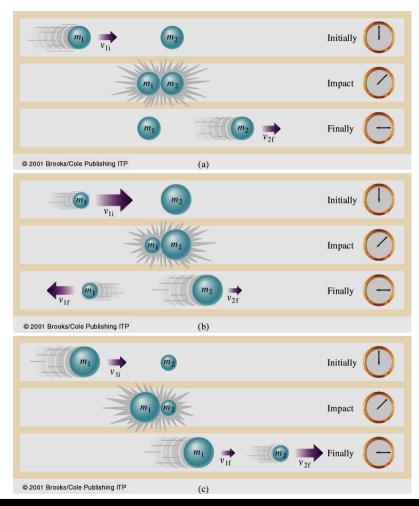






# COLLISIONS ÉLASTIQUES EN 1-D Comeration

2 3 V2F Z 2 M1 V1;


# **COLLISIONS ÉLASTIQUES**

#### **EN 1-D**

$$V_{i}F = \frac{m_{i} - m_{2}}{m_{i} + m_{2}} V_{i}$$

$$\Lambda^{5}t=\frac{M^{1}+M^{5}}{5M!}$$





# COLLISIONS INÉLASTIQUES

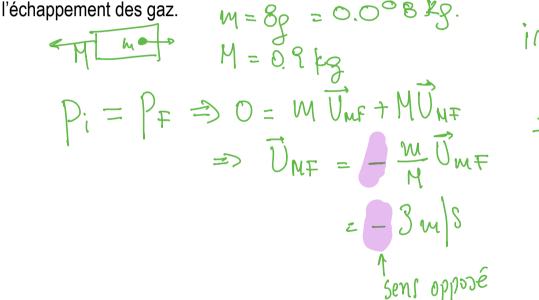
EN 1-D

PERTE D' ÉNERGIE

ECIN 
$$\neq$$
 Converse

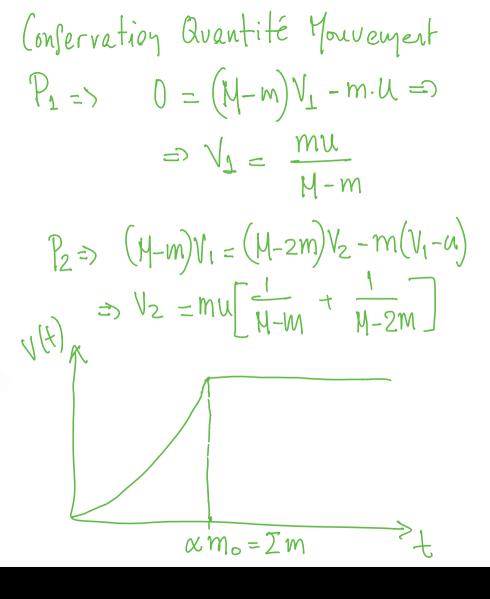
 $v_{1i}$   $v_{2i}$   $v$ 

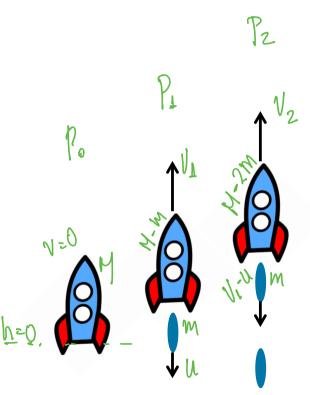
### LLISIONS ÉLASTIQUES


EN 2-D

$$C_{CIN} = C_{CIN} + D$$

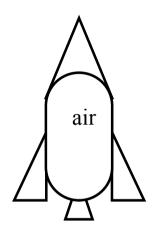
$$P_1 = P_2$$
(a)

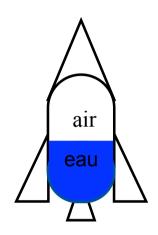

#### **EXEMPLE**


Une balle de masse m = 8.0 g est tirée horizontalement avec une vitesse v = 352.0 m/s avec un pistolet Luger de 0.90 kg au repos. Quelle est la vitesse de recul? Négligez l'effet de



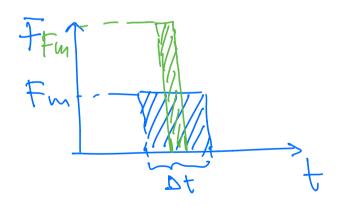
int 
$$V_{H}=0$$
  
 $V_{M}=0$   
 $V_{N}=0$   
 $V_{N}=7$   
 $V_{M}=352.m/s$ 


# **FUSÉE**






### **FUSÉE SUR FIL**


Une fusée peut être remplie d'air comprimé ou d'un mélange d'eau et d'air comprimé. Dans quel cas s'envole-t-elle le plus loin ?

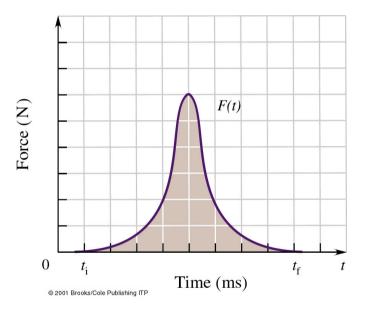


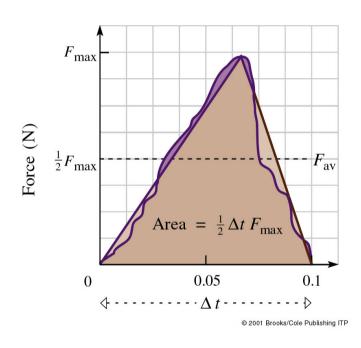


#### **IMPACT DE FORCE**

$$\bar{T}_{m} = \frac{\Delta \bar{P}}{\Delta t}$$




$$\overrightarrow{AP} = \overrightarrow{F}_{m} \cdot \Delta t$$


$$\overrightarrow{AP} = F_{m} \cdot \Delta t$$

$$\overrightarrow{AP} = \overrightarrow{F}_{m} \cdot \Delta t$$

$$\overrightarrow{AP} = \overrightarrow{AP} = \overrightarrow{AP$$

#### **IMPACT ET FORCE VARIABLE**



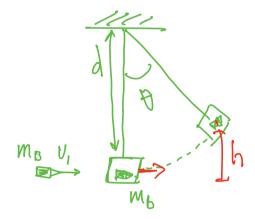


#### IMPACT ET FORCE VARIABLE



bt = 0






# EXEMPLE – PENDULE BALLISTIQUE

mb=116

Une balle de 10 g est tirée contre une pièce de bois suspendue d'un fil de longueur de 150 cm. La balle entre dans le bois et le bloque se lève à une position correspondante à une angle de 40°. Quelle était la vitesse initialle de la balle?

$$M_{B} = 0.01 kg$$
  
 $d = 150 cm$   
 $\theta = 40^{\circ}$   
 $V_{1} = ?$ 

