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Reminders From Lecture I

Description Observable Likelihood

Counting n Poisson

Binned shape 
analysis

ni, i=1..Nbins Poisson product

Unbinned 
shape analysis

mi, i=1..nevts Extended Unbinned Likelihood

P(ni ;S ,B)=∏
i=1

nbins

e−(S f i
sig
+ B f i

bkg
) (S f i

sig
+ B f i

bkg
)
n i

ni !

P(n;S ,B)=e−(S + B) (S + B)
n

n!

P(mi ;S ,B)=
e−(S + B)

nevts!
∏
i=1

nevts

S Psig(mi)+B Pbkg(mi)

Physics measurement data are produced through random processes,
Need to be described using a statistical model:

Model can include multiple categories, each with a separate description
Includes parameters of interest (POIs) but also nuisance parameters (NPs)
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Reminders From Lecture I
To estimate a parameter value, use the 
Maximum-likelihood estimate (MLE), 
a.k.a. Best-ft  alue of the parameter,

Today, further results:
• Discovery: we see an excess – 

is it a (new) signal, or a background 
fluctuation i

• Upper limits: we don’t see an excess – 
if there is a signal present, 
how small must it be i

• Parameter measurement: what is the 
allowed range (“confdence inter al”) 
for a model parameter i

→ The Statistical Model already contains all the 
     needed information – how to use it i



Outline

Lecture I: 
Statistics basics
Describing measurements
Computing statistics results:

Today:
Computing statistics results:

Disco ery
Limits
Confdence inter als

Profling

Lecture III: Look-Elsewhere Efect, Bayesian methods Practical modeling, BLUE
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Computing Statistical Results
II. Testing Hypotheses
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Hypothesis Testing
Hypothesis: assumption on model parameters, say  alue of S (e.g. H0 : S=0)
→ Goal : determine if H0 is true or false using a test based on the data

 Possible 
 outcomes:
 

Data disfavors H0 
(Discovery claim)

Data favors H0

(Nothing found)

H0 is false 
(New physics!) Discovery! 

Missed discovery
Type-II error
(1 - Power)

H0 is true 
(Nothing new)

False discovery claim
Type-I error 
(→ p-value, signifcance)

No new physics, 
none found

Stringent disco ery criteria 
 ⇒ lower Type-I errors, higher Type-II errors

→ Goal: test that minimizes Type-II 
errors for given level of Type-I error.

Background

Type-I error
p-value

Signal

Type-II Error
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Hypothesis Testing
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Hypothesis Testing with Likelihoods

Neyman-Pearson Lemma

When comparing two hypotheses H0 and H1, the 
optimal discriminator is the Likelihood ratio (LR) 

As for MLE, choose the hypothesis that is more likely for the data.

→ Minimizes Type-II uncertainties for gi en le el of Type-I uncertainties
→ Always need an alternate hypothesis to test against.

Caveat: Strictly true only for simple hypotheses (no free parameters)

→ In the following: all tests based on LR, will focus on p- alues (Type-I errors),
trusting that Type-II errors are anyway as small as they can be...

L(H1 ; data)

L(H0 ;data)
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Statistical Results as Hypothesis Tests
Usual HEP results can be recast in terms of hypothesis testing:

• Discovery: is the data compatible with background-only i
→ H0 : only background is present
→ How well can we reject H0 i → p-value (signifcance)

• Upper limits: no excess obser ed – how small must the signal be i
→ H0(S) : B + some signal S
→ How small can we make S, and still reject H0(S) at 95% C.L. (p=5%) i

• Parameter measurement
→ H0(μ): some parameter  alue μ
→ What  alues μ are not rejected at 68% C.L. (p=32%) i 
Þ 1σ confdence interval on μ

In all cases, H0 : null hypothesis – what we are trying to dispro e
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Computing Statistical Results
III. Discovery

Cowan, Cranmer, Gross & Vitells, Eur.Phys.J.C71:1554,2011

https://arxiv.org/abs/1007.1727
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Discovery: Test Statistic
Discovery :
• H0 : background only (S = 0) against
• H1: presence of a signal (S ≠ 0)
→ For H1, any S≠0 is possible, which to use i The one preferred by the data, S.

Þ Use LR

→ In fact use the test statistic

→ t0 is computed from the obser ed data – ft to data to get S.
→ t0 always ≥ 0, t0 = 0 reached for S = 0.
→ t0 measures the relati e likelihood of H1  s. H0 in data:

t0 =−2 log
L(S=0)

L( Ŝ)

S=0

H0
H1

Cowan, Cranmer, Gross & Vitells, Eur.Phys.J.C71:1554,2011

L(S=0)

L( Ŝ)

Large values of t0  large observed S⇔

https://arxiv.org/abs/1007.1727
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Discovery p-value

Large  alues of

 ⇒ large obser ed S
 ⇒ H0(S=0) disfavored compared to H1(S≠0).

How large t0 before we can exclude H0 i 
(and claim a disco ery!)

p-value : Fraction of outcomes that are at 
                least as H1-like (signal-like) as data, 
                when H0 is true (no signal present).

→ Smaller p- alue  Stronger case for disco ery⇒

→ Compute from distribution f(t0|H0) of t0 if H0 is true:

t 0=−2 log
L(S=0)

L( Ŝ)

S ~ 0

t0

Observed 
value t0

obs

data 
prefer 

H0

data 
prefer

H1

f(t0|H0) 

p0 =∫
t0

obs

∞

f ( t 0∣H0) dt0

S  σ≫ S
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Discovery signifcance

In ROOT:
p0 → Z   (Φ)   : ROOT::Math::gaussian_quantile_c
Z → p0   (Φ-1) : ROOT::Math::gaussian_cdf_c

 ⇒ How small is small enough i 
→ Con entionally, disco ery for  p0=  6 10-7    Z = 5σ⇔

Z p- alue

1 0.32
2 0.045
3 0.003
5 6 x 10-7

Interesting p- alues are quite small 
 express in terms of Gaussian quantiles⇒

→ Signifcance Z

p0 = 1 −∫
−Z

+Z
1

√2π
e−u2

/2du

= 1 − 2 Φ(Z )

Φ(Z)=∫
−∞

Z

G (u ;0,1)du
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Asymptotic Approximation: Wilks’ Theorem
→ Assume Gaussian regime for S (e.g. large ne ts) 
 ⇒ Central-limit theorem : 

  t0 is distributed as a χ2 under the hypothesis H0

In particular, signifcance:

Typically works well for for e ent counts O(5) 
and abo e (5 already “large”...)

Cowan, Cranmer, Gross & Vitells
Eur.Phys.J.C71:1554,2011

Z = √ t0

f ( t0 ∣H0 ) = f
χ

2
(ndof=1) ( t0 ) μ ~ 0

μ≫σμ

fχ2,ndof=1(t0) 

The 1-line “proof” : asymptotically L and S are Gaussian, so

t 0=−2 log
L(S=0)

L( Ŝ)

By defnition,
  t0 ~ χ2  √t⇒ 0 ~ G(0,1)

L(S) = exp [− 1
2

( S− Ŝσ )
2

] ⇒ t0= ( Ŝσ )
2

⇒ t0 ∼ χ
2
(ndof=1)  since Ŝ∼ G (0,σ )

t0

https://arxiv.org/abs/1007.1727
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One-sided vs. Two-Sided 
If S < 0, is it a discovery i (does reject the S=0 hypothesis…)
Usual assumption : only S >  0 is a bona fde signal
 ⇒ Change statistic so that S < 0  Þ t0 = 0 (perfect agreement with H0, as for S = 0)

H1

S=0

H0

Two-sided One-sided

t 0 =−2 log
L(S=0)

L( Ŝ)
q0 = {−2 log

L(S=0)

L( Ŝ)
Ŝ ≥ 0

0 Ŝ < 0

S=0

H0H1 H1

Z = Φ
−1
(1− p0)Z = Φ

−1
(1−

p0

2
)

p0 Z p0

0.32 1 0.16

0.003 3 0.0015

6 x 10-7 5 3 x 10-7

By convention, factor 2 
in p-values for a given Z

 ⇒ Same Z in both cases 
for a given signal S

Test
Statistic
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One-Sided Asymptotics
→ One-sided test: 

Asymptotics: “half-χ2” distribution:

S=0
H0

H1

f (q0 ∣ S=0) =
1
2
δ (q0) +

1
2
f
χ

2
(ndof=1)(q0)

Z = Φ
−1
(1− p0) = √ q0Signifcance:p0 = 1−Φ (√ q0)Discovery p-value:

q0= ( μ̂σμ )
2

μ̂
σμ

Φ  : normal CDF

1−Φ ( μ̂σμ )

q0 = {−2 log
L(S=0)

L( Ŝ)
Ŝ ≥ 0

0 Ŝ < 0

Φ( z)=∫
−∞

z

G(u ;0,1)du
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Example: Gaussian Counting
Count number of events n in data
→ assume n large enough so process is Gaussian
→ assume B is known, measure S

Likelihood :

MLE for S : S = n –  B

Test statistic: assume S > 0,

Finally: 

L(S ;n) = e
−

1
2 (
n−(S+B)

√S+B )
2

S+B

√(S+B)
n

q0 =−2 log
L(S=0)

L( Ŝ)
= λ(S=0) − λ(Ŝ) = (

n−B

√B )
2

= ( Ŝ

√B )
2

Z = √ q0 =
Ŝ

√B

λ (S ;n) = (
n−(S+B)

√S+B )
2

Known formula!
→ Strictly speaking only 
 alid in Gaussian regimge
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Example: Poisson Counting
Same problem but now not assuming Gaussianity

MLE: S = n –  B, same as Gaussian

Test statistic (for S > 0):

Assuming asymptotic distribution for q0,

Exact result can be obtained using
pseudo-experiments → close to √q0 result

L(S ;n) = e−(S+ B)
(S+B)n λ (S ;n) = 2(S+B)−2n log (S+B)

q0 = λ(S=0) − λ ( Ŝ) = −2 Ŝ−2( Ŝ+B)  log
B

Ŝ+B

Z = √ 2 [ ( Ŝ+B) log ( 1 +
Ŝ
B ) − Ŝ ]

Asymptotic formulas justifed by Gaussian
regime, but remain valid even for small 

values of S+B (5!)
See G. Cowan’s slides for case with B uncertainty

Eur.Phys.J.C71:1554,2011

http://www-conf.slac.stanford.edu/statisticalissues2012/talks/glen_cowan_slac_4jun12.pdf
https://arxiv.org/abs/1007.1727
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Some Examples High-mass X→γγ Search: JHEP 09 (2016) 1

Higgs Discovery: Phys. Lett. B 716 (2012) 1-29

p0 = 1.8 ´ 10-9  Û  Z = 5.9σ

Z
=

Φ
−

1(1
−
p

0 )
=
sgn

(q
0 )√

|q
0 |

http://link.springer.com/article/10.1007/JHEP09%282016%29001
http://www.sciencedirect.com/science/article/pii/S037026931200857X
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Some Examples High-mass X→γγ Search: JHEP 09 (2016) 1

Higgs Discovery: Phys. Lett. B 716 (2012) 1-29

p0 = 1.8 ´ 10-9  Û  Z = 5.9σ

Z
=

Φ
−

1(1
−
p

0 )
=
sgn

(q
0 )√

|q
0 |

Uncapped q0:

q0 = {
−2 log

L(S=0)

L( Ŝ)
Ŝ ≥ 0

+2 log
L(S=0)

L( Ŝ)
Ŝ < 0

http://link.springer.com/article/10.1007/JHEP09%282016%29001
http://www.sciencedirect.com/science/article/pii/S037026931200857X


21

Takeaways
Gi en a statistical model P(data; μ), defne likelihood L(μ) = P(data; μ)

To estimate a parameter, use  alue μ ̂that maximizes L(μ).

To decide between hypotheses H0 and H1, use the likelihood ratio

To test for discovery, use

For large enough datasets (n > 5), 

For a Gaussian measurement,

For a Poisson measurement,

L(H 0)

L(H 1)

q0 = {
−2 log

L(S=0)

L( Ŝ)
Ŝ ≥ 0

+2 log
L(S=0)

L( Ŝ)
Ŝ < 0

Z = √ q0

Z =
Ŝ

√B

Z = √ 2 [ ( Ŝ+B) log ( 1 +
Ŝ
B ) − Ŝ ]
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What was the question ?
Defnition of the p-value:

So 5σ signifcance (p0~10-7)  ⇔ Occurs once in107 if only background present

Howe er this is NOT “One chance in 107 to be a fuctuation”

The frst statement is about data probabilities – P(data; H0)

The second is on P(H0) itself – not addressed in the framework described so far
→ makes sense in a Bayesian context, more on this later in these lectures.

It’s also a diferent statement (although they sometimes get confused)
→ If a signal outcome is also  ery unlikely, we may not want to 
     reject H0, even with p0 ~ 10-7.

p-value =
number of signal-like outcomes with only background present

all outcomes with only background present

http://www.nytimes.com/2012/07/05/science/cern-physicists-may-have-discovered-higgs-boson-particle.html?pagewanted=all
https://understandinguncertainty.org/explaining-5-sigma-higgs-how-well-did-they-do
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What was the question ?
e.g. Faster-than-light neutrino anomaly

“despite the large signifcance of the measurement reported 
here and the stability of the analysis, the potentially great impact 
of the result motivates the continuation of our studies in order to 
investigate possible still unknown systematic efects that could 
explain the observed anomaly.”

P ( fluctuation) =
number of signal-like outcomes with only B present

number of signal-like outcomes from any source (S or B)

 ⇒ Very unlikely to be a background fluctuation, but 
hard to belie e since alternative (v>c) is far-fetched

Alternative:

→ Needs a priori P(S) and P(B) → Bayesian methods, discussed later
→ In frequentist context, only ha e p0 = P(deviation|B) 

 ⇒ However usually same conclusion, assuming P(S) is not  p≪ 0...

6.2σ above c

c

=
P (deviation∣B) P (B)

P (deviation∣S)P (S) + P (deviation∣B) P (B)

“Extraordinary claims 
require extraordinary 
evidence”

https://arxiv.org/abs/1109.4897v2
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Usual Statistical Results

• Discovery: we see an excess – 
is it a (new) signal, or a background 
fluctuation i

• Upper limits: we don’t see an excess – 
if there is a signal present, 
how small must it be i

• Parameter measurement: what is the 
allowed range (“confdence inter al”) 
for a model parameter i
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Upper Limits
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Hypothesis tests for Limits
If no signal in data, testing for disco ery 
not  ery rele ant (report 0.2σ excess i)
→ More interesting to exclude
large signals → Upper limits on signal yield

For discovery
• Try to exclude H0 : S=0
• Alternati e : H1 : S >  0
• Report p- alue for the test (or Z)

For limit-setting:
• Try to exclude H0 : S=S0

• Alternati e : H1 : S < S0 
• Usually, adjust S0 to get a predefned p-value (typically 5%)

→ Confdence Levels: CL = 1 - p (p = 5%  95% CL)⇔

H0

S=0 S0

H0
H1

H1

Discovery

Limit-Setting

?
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Hypothesis tests for Limits
If no signal in data, testing for disco ery 
not  ery rele ant (report 0.2σ excess i)
→ More interesting to exclude
large signals → Upper limits on signal yield

For discovery
• Try to exclude H0 : S=0
• Alternati e : H1 : S >  0
• Report p- alue for the test (or Z)

For limit-setting:
• Try to exclude H0 : S=S0

• Alternati e : H1 : S < S0 
• Usually, adjust S0 to get a predefned p-value (typically 5%)

→ Confdence Levels: CL = 1 - p (p = 5%  95% CL)⇔

H0

S=0 S0

H0
H1

H1

Discovery

Limit-Setting

OK ?
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Hypothesis tests for Limits
If no signal in data, testing for disco ery 
not  ery rele ant (report 0.2σ excess i)
→ More interesting to exclude
large signals → Upper limits on signal yield

For discovery
• Try to exclude H0 : S=0
• Alternati e : H1 : S >  0
• Report p- alue for the test (or Z)

For limit-setting:
• Try to exclude H0 : S=S0

• Alternati e : H1 : S < S0 
• Usually, adjust S0 to get a predefned p-value (typically 5%)

→ Confdence Levels: CL = 1 - p (p = 5%  95% CL)⇔

H0

S=0 S0

H0
H1

H1

Discovery

Limit-Setting

Not OK ?
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Test Statistic for Limit-Setting

Discovery :
• H0 : S = 0
• H1 : S >  0

Limit-setting
• H0 : S = μ0

• H1 : S < μ0

q0=−2 log
L(S=0)

L( Ŝ)

Compare
Likelihood of H0

Likelihood of H1

μ0

H0H1

qS0
=−2 log

L(S0)

L( Ŝ)

Compare
Likelihood of H0

Likelihood of H1

S=0
H0 H1

S ~ S0 (no exclusion) : qS0 ~ 0
S  S≪ 0 (good exclusion) : qS0  ≫ 1 

Same as q0 : large  alues 
Þ good rejection of H0.
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H1H0

One-sided Test Statistic
For upper limits, alternate is H1 : S < μ0 :
→ Ιf large signal obser ed (S  S≫ 0), does not fa or H1 o er H0

→ Only consider S < S0 for H1, and include S ≥ S0 in H0. 

Þ Set qS0 = 0 for  S >  S0  – only small signals (S < S0) help lower the limit.
→ Also treat separately the case S < 0 
to a oid technical issues in -2logL fts.

Asymptotics:
qS0 ~ “½χ2” under H0(S=S0), same as q0, 
except for special treatment of S < 0.

H0

S=0 S0

H1

Discovery

Limit-Setting

~qS0
= {

0 Ŝ ≥ S0

−2 log
L(S=S0)

L ( Ŝ)
0 ≤ Ŝ ≤ S0

−2 log
L(S=S0)

L(S=0)
Ŝ < 0

Cowan, Cranmer, Gross & Vitells, Eur.Phys.J.C71:1554,2011
p0 = 1−Φ (√ qS0 )

https://arxiv.org/abs/1007.1727
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Inversion : Getting the limit for a given CL

Procedure
→ Consider H0 : H(S=S0) – alternati e H1 : H(S < S0)
→ Compute qS0, get exclusion p-value pS0.
→ Adjust S0 until 95% CL exclusion (pS0 = 5%) is reached
Asymptotics: set target in terms of qS0 :

qS1 p-value 
for qS1

qS = 2.70 : p = 5% 

S1 : (too) strong exclusion 

CL Region

90% qS > 1.64

95% qS > 2.70

99% qS > 5.41

Asymptotics

√ qS0
= Φ

−1
(1− p0 )



33

Inversion : Getting the limit for a given CL

Procedure
→ Consider H0 : H(S=S0) – alternati e H1 : H(S < S0)
→ Compute qS0, get exclusion p-value pS0.
→ Adjust S0 until 95% CL exclusion (pS0 = 5%) is reached
Asymptotics: set target in terms of qS0 :

qS2
qS1 p-value 

for qS1

qS = 2.70 : p = 5% 

S1 : (too) strong exclusion S2 : no exclusion 

CL Region

90% qS > 1.64

95% qS > 2.70

99% qS > 5.41

Asymptotics

√ qS0
= Φ

−1
(1− p0 )
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Inversion : Getting the limit for a given CL

Procedure
→ Consider H0 : H(S=S0) – alternati e H1 : H(S < S0)
→ Compute qS0, get exclusion p-value pS0.
→ Adjust S0 until 95% CL exclusion (pS0 = 5%) is reached
Asymptotics: set target in terms of qS0 :

qS2
qS1 p-value 

for qS1

qS = 2.70 : p = 5% 

qS3

S1 : (too) strong exclusion S2 : no exclusion S3 : 95% exclusion 

CL Region

90% qS > 1.64

95% qS > 2.70

99% qS > 5.41

Asymptotics

√ qS0
= Φ

−1
(1− p0 )
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Upper Limits: Gaussian Example
Usual Gaussian counting example with known B:

Reminder:
Best ft signal : S = n - B
Signifcance: Z = S/√B

Compute the 95% CL upper limit on S:

so

And fnally

S+B

σ 
n

λ (S) = ( n−(S+B)
σ S )

2

qS0
=−2 log

L(S=S0)

L( Ŝ)
= λ (S0) − λ ( Ŝ) = ( n−(S0+B)

σ S )
2

= ( S0− Ŝ
σS )

2 for 
S0 > S 

qS0
= 2.70  for  S0 = Ŝ + √2.70 σ S

Sup = Ŝ + 1.64σ S  at 95 % CL
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Upper Limit Pathologies
Upper limit:   Sup ~ S + 1.64 σS.

Problem: for negati e S, get very good 
obser ed limit. 
→ For S sufciently negati e, e en Sup < 0 ! 

How can this be i
→ Background modeling issue ?… Or:
→ This is a 95% limit
 ⇒ 5% of the time, the limit wrongly 

excludes the true value, e.g. S*=0.
But if we assume S must be >0, we 
know a priori this is just a fluctuation. 

Options
→ live with it: sometimes report limit < 0
→ Special procedure to avoid these cases

σS = 1
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Upper Limit Pathologies
When setting limits, goal is to exclude large S, 
to indicate that S~0. What happens at S=0  i

Normal case: S ~ 0, S=0 not excluded : 
Sup = S + 1.64 σS >  0, large p-value for S=0

Pathological case,  ery negati e S, S=0 also excluded : 
Sup = S + 1.64 σS < 0, p-value for S=0 also small

→ Howe er we know a priori that S ≥ 0 
  ⇒ Inject this information into the procedure

qS0,obs

S=0

p=5% for S

large p 
for S=0

p=5% for S

small p
for S=0

H0

S=0 S0

H1

H0
H1

S

S=0 S0S

S=S0

qS0,obs

S=0

S=S0

σS 

σS
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CLs

Usual solution in HEP : CLs.
→ Compute modifed p- alue 
• pS0 is the usual p- alue (5%)
• p0 is the p- alue computed under H(S=0).
 ⇒ Rescale exclusion at S0 by exclusion at S=0.

→ Somewhat ad-hoc, but good properties…

Good case : p0 ~ O(1)
pCLs ~ pS0 ~ 5%, no change.

Pathological case : p0  1≪
pCLs~ pS0/p0  5%≫

→ no exclusion  ⇒ worse limit, usually >0 as 
desired

Drawback: overcoverage 
→ limit is actually >95% CL for small p0.

p0pS0

S=0
μ0

S0

S=0

pCLs =
pS0

p0

A. Read, J.Phys. G28 (2002) 2693-2704

σS = 1

http://inspirehep.net/record/599622?ln=en


39

CLs : Gaussian Example

Usual Gaussian counting example with known B:

Reminder 
Best ft signal : S = n - B
CLs+b limit:  

CLs upper limit : still ha e 
so need to sol e

for S = 0,  

S+B

ÖB

n

λ (S) = ( n−(S+B)
σ S )

2

qS0
= ( S0− Ŝ

σ S )
2

(for S0 > S) 

Sup = Ŝ + 1.64σ S  at 95 % CL
S ~ G(S, σS) so
Under H0(S = S0) :

Under H0(S = 0) :
pCLs =

pS0

p0

=
1−Φ(√ qS0

)

1−Φ(√ qS0
− S0 / σ S)

= 5%

Φ(0) = 0.5 ⇒ at 95% CL, CLs :  Sup = 1.96σ S

Sup = Ŝ + [ Φ−1

(1 − 0.05 Φ ( Ŝ / σ S) ) ] σ S  at 95 %  CL

pS0
= 1−Φ(√qS0

)

p0 = 1−Φ(√ qS0
−S0 / σ S)

√ qS0
∼ G (S0 / σ S ,1)

√ qS0
∼ G (0, 1)

CLs+b :  Sup = 1.64σ S
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CLS: Poisson Rule of Thumb
Same exercise, for the Poisson case
Exact computation : sum probabilities of cases “at least as extreme as data” (n)

For n = 0: 

 ⇒ Rule of thumb: when nobs=0, the 95% CLs limit is 3 events (for any B)

Asymptotics: as before, 

For n = 0,

 ⇒ Sup ~ 2, exact  alue depends on B 
 Asymptotics not  alid in this case (n=0) – need to use exact results, or toys⇒

qS0
= λ (S0) − λ ( Ŝ) = 2(S0 + B− n)−2n  log

S0+B

n

pS0
(n) =∑

0

n

e−(S0+B)
(S0+B)

k

k !

pCLs =
pSup

(0)

p0(0)
= e−Sup = 5% ⇒ Sup = log (20) = 2.996 ≈ 3

and one should sol e pCLs =
pSup

(n)

p0(n)
= 5 %  for Sup

pCLs =
pS0

p0

=
1−Φ(√ qS0

(n=0))

1−Φ(√ qS0
(n=0)−√ qS0

(n=B))
= 5%

qS0
(n=0) = 2(S0+B)
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Expected Limits: Toys
Expected results: median outcome under a gi en hypothesis
→ usually B-only by con ention, but other choices possible.

Two main ways to compute:
→ Pseudo-experiments (toys):
• Generate pseudo-data in B-only hypothesis
• Compute limit
• Repeat and histogram the results
• Central  alue = median, bands 

based on quantiles

Computed limit

95% of toys68% of toys

Repeat for 

each mass

Nu
m

be
r o

f T
oy

s

Eur.Phys.J.C71:1554,2011

Phys. Lett. B 775 (2017) 105

https://arxiv.org/abs/1007.1727
http://www.sciencedirect.com/science/article/pii/S0370269317308511?via=ihub
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Expected Limits: Asimov
Expected results: median outcome under a gi en hypothesis
→ usually B-only by con ention, but other choices possible.

Two main ways to compute:

→ Asimov Datasets
• Generate a “perfect dataset” – e.g. for binned

data, set bin contents carefully, no fluctuations.
• Gi es the median result immediately:

median(toy results)  result(median dataset) ↔
• Get bands from asymptotic formulas:

Band width

⊕ Much faster (1 “toy”)
⊖ Relies on Gaussian approximation

σ S0 , A
2

=
S0

2

qS0
(Asimov)

Strictly speaking, Asimo  dataset if
X̂ = X0 for all parameters X, 

where X0 is the generation  alue
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CLs : Gaussian Bands

Usual Gaussian counting example with known B:
95% CLs upper limit on S:

Compute expected bands for S=0:
→ Asimov dataset  S = 0⇔  : 
→ ± nσ bands:  

Sup,exp
0

= 1.96 σ S

Sup = Ŝ + [ Φ−1

(1 − 0.05 Φ ( Ŝ / σ S) ) ] σ S

Sup,exp
±n

= (±n + [ 1 − Φ
−1

( 0.05 Φ(∓n) ) ] ) σ S

S 

n Sexp
±n

  /√B

+2 3.66

+1 2.72

  0 1.96

-1 1.41

-2 1.05

CLs : 
● Positi e bands 
somewhat reduced,

● Negati e ones more so

σS = √B
with

Band width from
depends on S, for
non-Gaussian cases,diferent
 alues for each band...

σ S , A
2

=
S2

qS(Asimov)

Eur.Phys.J.C71:1554,2011

https://arxiv.org/abs/1007.1727
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Upper Limit Examples
ATLAS 2015-2016 4l aTGC Search

Phys. Lett. B 775 (2017) 105

Phys. Re  . D
 92 (2015) 0 12004 

http://inspirehep.net/record/1625109
http://www.sciencedirect.com/science/article/pii/S0370269317308511?via=ihub
http://dx.doi.org/10.1103/PhysRevD.92.012004
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Usual Statistical Results

• Discovery: we see an excess – 
is it a (new) signal, or a background 
fluctuation i

• Upper limits: we don’t see an excess – 
if there is a signal present, 
how small must it be i

• Parameter measurement: what is the 
allowed range (“confdence inter al”) 
for a model parameter i
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Confdence Intervals
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Gaussian Inversion
If μ̂ ~ G(μ*, σ), known quantiles : 

This is a probability for μ̂ , not μ* !
→ μ* is a fxed number, not a random variable

But we can in ert the relation:

→ This gi es the desired statement on μ* : if we repeat the experiment many 
times, [μ̂ - σ, μ̂ + σ] will contain the true value 68% of the time: μ̂ = μ* ± σ  
This is a statement on the interval [μ̂ - σ, μ̂ + σ] obtained for each experiment

Works in the same way for other inter al
sizes: [μ̂ - Zσ, μ̂ + Zσ] with

Experiment 6

Experiment 4

Experiment 3

Experiment 2

Experiment 5

Experiment 1

μ*– σ     μ*    μ*+σ

Z 1 1.96 2
CL 0.68 0.95 0.955

P (μ*
− σ < μ̂ < μ

*
+ σ) = 68 %

⇒ P (∣ μ̂ − μ
*
∣< σ) = 68 %

P (μ*
− σ < μ̂ < μ

*
+ σ) = 68 %

⇒ P (μ̂ − σ < μ
*
< μ̂ + σ) = 68 %
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Neyman Construction
Tru

e 
va

lu
e

Observed value

General case: Build 1σ inter als of obser ed  alues for each true  alue 
 ⇒ Confdence belt
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Inversion using the Confdence Belt
Tru

e 
va

lu
e 

μ*

σμ
+

μ̂ 

σμ
-

μ̂ Observed value μ̂

General case: Intersect belt with gi en μ ̂, get 
→ Same as before for Gaussian, works also when P(μobs|μ)  aries with μ.

σμ comes from the 
model, not the data
→ data only pro ides μ̂.

σμ
+ from negative side of μ̂ inter als

σμ
- from positive side of μ̂ inter als

Doesn’t generalize well to many NPs 
in realistic models

P (μ̂ − σμ

-
< μ

*
< μ̂ + σμ

+
) = 68%
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Likelihood Intervals
Confdence intervals from L:
• Test H(μ0) against alternati e using
• Two-sided test since true  alue can be 

higher or lower than obser ed

Asymptotics:
• tμ ~ χ2(NPOI) under H(μ0)
• √tμ ~ G(0,1) (Gaussian with d=NPOI)

In practice:
• Plot tμ  s. μ
• The minimum occurs at μ = μ̂
• Crossings with tμ= Z2 gi e the 

±Zσ uncertainties (for NPOI=1)

→ Gaussian case:  parabolic profle,
same result as Neyman construction, also robust against non-Gaussian efects.

H0
μ

tμ 0
=−2 log

L(μ=μ0)

L(μ̂ )
μ can be 
se eral POI!

ATLAS-CONF-2017-047 

H1
H1

tμ = ( μ−μ̂
σ )

2

⇒ μ± = μ̂ ± σ  at tμ = 1

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-047/
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2D Example: Higgs σVBF vs. σggF
ATLAS-CONF-2017-047 

By
 K
ris
hn

a 
ed

al
a 
- O

w
n 
w
or
k,
 C
C
 B
Y-
SA

 3
.0
, h

ttp
s:/

/c
om

m
on

s.w
iki
m
ed

ia
.o
rg
/w

/in
de

x.
ph

pi
cu

rid
=1

52
78

82
6

tggF,VBF

ggF

VBF

CL 68% (1σ) 95% 95.5% (2σ)
1D Z2 1 3.84 4
2D Z2 2.30 5.99 6.18

Z2

 t < 2.30
t < 5.99

Gaussian case: elliptic 
paraboloid surface

t=−2 log
L(X0,Y 0)

L( X̂ , Ŷ )
∼ χ

2
(N dof=2)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-047/
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Reparameterization
Start with basic measurement in terms of e.g. σ´B
→ How to measure deri ed quantities (couplings, parameters in some theory 
model, etc.) i  → just reparameterize the likelihood:
e.g. Higgs couplings: σggF, σVBF sensiti e to Higgs coupling modifers κV, κF. 

L(σ ggF ,σVBF) L(σ ggF( κV ,κF) ,σVBF( κV ,κF)) ≡ L' ( κV ,κF)

σggF→σ ggF(κV , κF)

σVBF→σVBF (κV , κF)
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Reparameterization: Limits
CMS Run 2 Monophoton Search: measured 
NS in a counting experiment reparameterized  
according to  arious DM models

http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-16-039/
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Takeaways
Limits : use LR-based test statistic:

→ Use CLs procedure to a oid negati e limits

Poisson regime, n=0 : Sup = 3 events
Gaussian regime, n=0 : Sup = 1.96 σGauss

Uncertainty bands: obtain from toys or from Asimo 

Confdence intervals: use

→ 1D: crossings with tμ0 = Z2 for ±Zσ inter als

Gaussian regime: μ = μ̂ ± σGauss (1σ inter al)

σ S , A
2

=
S2

qS(Asimov)

~qμ 0
= {

0 μ̂ ≥ μ0

−2 log
L (μ=μ 0)

L (μ̂ )
0 ≤ μ̂ ≤ μ0

−2 log
L (μ=μ 0)

L(μ=0)
μ̂ < 0

tμ0
=−2 log

L(μ=μ 0)

L(μ̂ )
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Historical Aside
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Classic Discoveries (1)

y Discovery 
Lo

g 
sc

al
e!

Z0 Discovery

Huge signal
S/B~50
Several 1000 events

(almost) no 
background

Logbo ok of J. Roh lf, 1983 -05-3 0
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Classic Discoveries (2) y' : discovered online 
by the (lucky) shifters

First hints of top at D0: 
O(10) signal events, 

a few bkg events, 2.4σ
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And now ?
Short answer: The high-signal, low-background experiments ha e been done 
already (although a surprise would be welcome...)
e.g. at LHC:
• High background levels, need precise modeling
• Large systematics, need to be described accurately
• Small signals: need optimal use of a ailable information :

– Shape analyses instead of counting
– Categories to isolated signal-enriched regions

AT
LA

S-
C
O
N
F-
20
17

-0
45

JH
EP

 1
2 
(2
01

7)
 0
24

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-045/
https://link.springer.com/article/10.1007/JHEP12(2017)024
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Discoveries that weren't

 Phys. Re . Lett. 91, 252001 (2003)

UA1 Monojets (1984)

Pentaquarks (2003) BICEP2 B-mode Polarization (2014)

5.2σ

Avoid spurious discoveries!
→ Treatment of modeling uncertainties,
systematics in general

http://www.sciencedirect.com/science/article/pii/0370269384900467
https://inspirehep.net/record/622999
https://inspirehep.net/record/1286113
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Profling
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Nuisances and Systematics
Likelihood typically includes
• Parameters of interest (POIs) : S, σ×B, mW, …
• Nuisance parameters (NPs) : other parameters 

needed to defne the model
→ Ideally, constrained by data like the POI

e.g. shape of H→μμ continuum bkg

What about systematics ?
= what we don’t know about the random processs
Þ Parameterize using additional NPs
→ By defnition, not constrained by the data

 ⇒ Cannot be free, or would spoil the measurement
(lumi free Þ no σ×B measurement!) 
Þ Introduce a constraint in the likelihood:

L(μ ,θ ;data) = Lmeasurement(μ ,θ ;data) C (θ)

Phys. Re . Lett. 119 (2017) 051802

POI Systematics 
NP

Measurement
Likelihood

NP Constraint term 
 penalty for θ ≠ θ⇒ nominal

e−αmμ μ

"Systematic uncertainty is, in any 
statistical inference procedure, 
the uncertainty due to the 
incomplete knowledge of the 
probability distribution of the 
obser ables.
G. Punzi, What is systematics ?

http://inspirehep.net/record/1599399
https://www-cdf.fnal.gov/physics/statistics/notes/punzi-systdef.ps
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Frequentist Constraints
Prototype: NP measured in a separate auxiliary experiment 
e.g. luminosity measurement

→ Build the combined likelihood of the main+auxiliary measurements

Gaussian form often used by default:

In the combined likelihood, systematic NPs are constrained
→ now same as other NPs: all uncertainties statistical in nature

→ Often no clear setup for auxiliary measurements
e.g. theory uncertainties on missing HO terms from scale  ariations
→ Implemented in the same way nevertheless (“pseudo-measurement”)

L(μ ,θ ;data) = Lmain(μ ,θ ;main data) Laux(θ ;aux. data )

Laux(θ ;aux. data) = G (θ
obs ;θ ,σ syst)

Independent 
measurements: 
Þ just a product
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Likelihood, the full version (binned case)

Bin Yields or
Observable 

values
Sig/Bkg Shapes,

efciencies

Systematics

L(μ , {θ j } j=1. ..nNP
;{ni

(k )
}
i=1... ndata

( k)

k=1. ..ncat , {θ j
obs
} j=1. .nNP

)=

∏
k=1

ncat

P [ ni ;μ ϵi , k ( θ⃗ ) N S , i , k ( θ⃗ ) + Bi ,k ( θ⃗ ) ] ∏
j=1

nsyst

G(θ j
obs ;θ j ;1)

DataPseudo-
experiments

MC
Auxiliary 

Data

Expected 
bin yield

POI NPs

× number of categories!
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Wilks’ Theorem, the unabridged version
The likelihood usually has NPs:
• Systematics
• Parameters ftted in data

→ What values to use when defning the hypotheses ? → H(μ=0, θ=i)

Answer: let the data choose  Þ use the best-ft values (Profling)

Þ Profle Likelihood Ratio (PLR)

tμ 0
=−2 log

L(μ=μ0,

^̂
θμ0

)

L(μ̂ , θ̂)
θ̂ o erall best-ft  alue (unconditional MLE)

^̂
θμ0

best-ft  alue for μ=μ0  (conditional MLE)

Wilks’ Theorem: PLR also follows a χ2 ! 

→ Profling “builds in” the efect of the NPs
Þ Can treat the PLR as a function of the POI only

f ( tμ0
∣μ=μ0 ) = f

χ
2
(ndof=1) ( tμ0 )

also with NPs present
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Profling Example: ttH→bb
Profled parameters fxed by aux. meas. + data : here CRs
→ Reduction in large uncertainties on tt bkg
→ Propagates to the high-S/B categories through the
statistical modeling 
Þ Care needed in the propagation (e.g. diferent 
kinematic regimes)

ATLA
S- C

O
N
F- 2016-08

0

Fit



69

Uncertainty decomposition
All systematics NPs fxed to 0 : statistical uncertainty only

1σ intervals

exp. syst. NPs fxed to 0 : stat+theory uncertainty

σ syst = √σ total
2

− σ stat
2

σ theo = √σ stat+theo
2

− σ stat
2

Subtraction in quadrature

μ = 0.99 ± 0.12 (stat) ± 0.06 (syst) ± 0.06 ( theo)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-080/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-080/
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Pull/Impact plots
Systematics are described by NPs 
included in the ft. Nominally:
• NP central value = 0 : corresponds to 

the pre-ft expectation (usually MC)
• NP uncertainty = 1 : since NPs 

normalized to the  alue of the syst. : 

Fit results pro ide information on 
impact of the systematic on the result:
• If central value ¹ 0: some data 

feature absorbed by nonzero  alue 
Þ Need in estigation if large pull

• If uncertainty < 1 : systematic is 
constrained by the data
 Þ Needs checking if this legitimate 
or a modeling issue

• Impact on result of ±1σ shift of NP 

ATLAS-CONF-2016-058

N = N 0 (1 + σ syst θ) , θ ∼ G (0 , 1)
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Pull/Impact plots
Systematics are described by NPs 
included in the ft. Nominally:
• NP central value = 0 : corresponds to 

the pre-ft expectation (usually MC)
• NP uncertainty = 1 : since NPs 

normalized to the  alue of the syst. : 

Fit results pro ide information on 
impact of the systematic on the result:
• If central value ¹ 0: some data 

feature absorbed by nonzero  alue 
Þ Need in estigation if large pull

• If uncertainty < 1 : systematic is 
constrained by the data
 Þ Needs checking if this legitimate 
or a modeling issue

• Impact on result of ±1σ shift of NP 

ATLAS-CONF-2016-05813 TeV single-t XS (arXi :1612.07231)

N = N 0 (1 + σ syst θ) , θ ∼ G (0 , 1)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-058/
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Takeaways
Systematics: uncertainties on the form of the statistical model 
(as opposed to the uncertainties encoded in the model itself)
→ Implemented using additional nuisance parameters in the model
→ Constrained by adding auxiliary measurements (sometimes fctitious ones) 
to the model – usually represented by a single Gaussian for each NP.

 ⇒ Systematics treated in the same way as statistical uncertainties, although we 
still keep track of systematics NPs for bookkeeping purposes

Profling: when testing a hypothesis, use the best-ft  alues 
of the nuisance parameters: profle likelihood ratio.

Wilks’ Theorem: the PLR has the same asymptotic properties as the LR without
systematics: can profle out NPs and just deal with POIs. 
→ NPs still show up in the PLR as increased uncertainties – Gaussian case:

L(μ=μ0,

^̂
θμ 0

)

L(μ̂ , θ̂)

L(μ ,θ ;data) = Lmain(μ ,θ ;main data) G(θ
obs ,θ ,1)

σ total = √σ stat
2

+ σ syst
2

Profling can have unintended efnects –  need to carefully check behavior 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-058/
https://arxiv.org/abs/1612.07231
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Summary of Statistical Results Computation
Methods pro ide:

→ Optimal use of information from the data under general hypotheses

→ Arbitrarily complex/realistic models (up to computing constraints...)

→ No Gaussian assumptions in the measurements
Still often assume Gaussian beha ior of PLR – but weaker assumption and 
can be lifted with toys
Systematics treated as auxiliary measurements – modeling can be tailored 
as needed

→ Single PLR-based framework for all usual classes of measurements
Disco ery testing
Upper limits on signal yields
Parameter estimation
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Beyond Asymptotics: Toys
Asymptotics usually work well, but break down in 
some cases – e.g. small event counts.

Solution: generate pseudo data (toys) using the PDF, 
under the tested hypothesis
→ Also randomize the obser able 
(θobs) of each auxiliary experiment:
→ Samples the true distribution of the PLR

 ⇒ Integrate abo e obser ed PLR to get the p- alue
→ Precision limited by number of generated toys, 
Small p-values (5σ : p~10-7!) Þ large toy samples 

p(data|x)

PDF

Pseudo data

CMS-PAS-HIG-11-022

q0

Repeat Ntoys times

G (θ
obs ;θ ,σ syst)
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Toys: Example  arXi :1708.00212

ATLAS X→Zγ Search: co ers 200 GeV < mX < 2.5 TeV
→ for mX > 1.6 TeV, low e ent counts Þ deri e results from toys

Asymptotic results (in gray) gi e optimistic result compared to toys (in blue) 
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Extra Slides

http://cds.cern.ch/record/1376643
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Gaussian Profling

μ

θ

L(μ ,θ ;μ̂ , θ̂) = exp [− 1
2 (

μ−μ̂

θ−θ̂ )
T

C−1 (
μ−μ̂

θ−θ̂ ) ]

λ(μ ,θ ;μ̂ , θ̂ ) = Fμμ (μ−μ̂)
2
+ 2Fμ θ(μ−μ̂ )(θ−θ̂) + Fθ θ(θ−θ̂)

2

“data”
C = [ σ μ

2
γ σμσ θ

γ σμ σθ σθ
2 ]

Gaussian measurement with 1 POI μ and 1 NP θ:

→ λ(μ, θ) defnes an ellipse:

σμ σ θ

Uncertainty on μ:
● From C, with θ 

included: σμ

F ≡ C−1

(μ̂ , θ̂ )

= [ Fμ μ Fμ θ

Fμ θ Fθθ ]

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2016-14/
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Gaussian Profling

^̂
θ (μ

)

λ(μ ,θ ;μ̂ , θ̂ ) = Fμμ (μ−μ̂)
2
+2Fμ θ(μ−μ̂)(θ−θ̂)+Fθ θ(θ−θ̂)

2

Profle likelihood ratio:

Uncertainty on μ:

● From C:
● From PLR:

λ(μ ,
^̂
θ(μ) ;μ̂ , θ̂ ) = (Fμμ−Fμ θFθ θ

−1Fθμ ) (μ−μ̂)
2
= Cμμ

−1
(μ−μ̂)

2
= ( μ−μ̂

σμ )
2

Proof of Wilks’ theorem...

μ

θ

^̂
θ(μ) = θ̂ − Fθθ

−1Fθ μ(μ − μ̂)

Profled θ (minimize λ at fxed μ) :

σμ

σμ

Profled θ crosses ellipse at 
vertical tangents by 
defnition (L is lower at other 
points on the tangent)

Fμμ ≠ Cμμ

−1  !!

C = [ σμ

2
γ σμσ θ

γ σμσθ σθ

2 ]

(μ̂ , θ̂ )

F = [
Fμμ Fμ θ

Fμ θ Fθθ ]
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Gaussian Profling

λ(μ ,θ = θ̂ ;μ̂ , θ̂) = Fμμ(μ−μ̂)
2
= (

μ−μ̂

σμ √ 1−γ
2 )

2

F ≡ C−1
=

1

1−γ
2 [

1

σ μ

2

γ
σμ σ θ

γ
σμ σθ

1

σ θ
2 ]→ For fxed θ = θ̂, λ(μ) defnes an inter al:

σμ √ 1 − γ
2

μ

λ(μ ,θ ;μ̂ , θ̂ ) = Fμμ(μ−μ̂)
2
+2Fμ θ(μ−μ̂)(θ−θ̂)+Fθ θ(θ−θ̂)

2

θUncertainty on μ:

● From C:
● From PLR:

● From λ(μ):

σμ

σμ √1 − γ
2

σμ

(μ̂ , θ̂ )
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Gaussian Profling

λ(μ ,θ = θ̂ ;μ̂ , θ̂) = Fμμ(μ−μ̂)
2
= (

μ−μ̂

σμ √ 1−γ
2 )

2

F ≡ C−1
=

1

1−γ
2 [

1

σ μ

2

γ
σμ σ θ

γ
σμ σθ

1

σ θ
2 ]→ For fxed θ = θ̂, λ(μ) defnes an inter al:

σμ √ 1 − γ
2

μ

λ(μ ,θ ;μ̂ , θ̂ ) = Fμμ(μ−μ̂)
2
+2Fμ θ(μ−μ̂)(θ−θ̂)+Fθ θ(θ−θ̂)

2

θ

Total uncertainty

Uncertainty on μ:

● From C:
● From PLR:

● From λ(μ):

σμ

σμ √1 − γ
2

σμ

σμ = √ ( √1 − γ
2
σμ )

2
+ ( γ σμ )

2

Stat uncertainty Syst uncertainty
(μ̂ , θ̂ )
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