Machine Learning: Lecture II

Michael Kagan

SLAC

University of Geneva
May 31, 2018

Lecture Topics

- Recap of last time
- What is Machine Learning
- Linear Regression
- Logistic Regression
- Over fitting and Regularization
- Training procedures and cross validation
- Gradient descent
- This Lecture
- Neural Networks
- Decision Trees and Ensemble Methods
- Unsupervised Learning
- Dimensionality reduction
- Clustering
- No Free Lunch and some Practical Advice

Neural Networks

Reminder of Logistic Regression

- Input output pairs $\left\{\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right\}$, with
$-\mathbf{x}_{\mathrm{i}} \in \mathbb{R}^{\mathrm{m}}$
$-\mathrm{y}_{\mathrm{i}} \in\{\mathrm{O}, 1\}$
- Linear decision boundary

$$
h(\mathbf{x} ; \mathbf{w})=\mathbf{w}^{T} \mathbf{x}
$$

[Bishop]

Reminder of Logistic Regression

- Input output pairs $\left\{\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right\}$, with
$-\mathrm{x}_{\mathrm{i}} \in \mathbb{R}^{\mathrm{m}}$
$-y_{i} \in\{0,1\}$
- Linear decision boundary

$$
h(\mathbf{x} ; \mathbf{w})=\mathbf{w}^{T} \mathbf{x}
$$

- Distance from decision boundary $\quad p(y=1 \mid \mathbf{x})=\sigma(h(\mathbf{x}, \mathbf{w}))$ is converted to class probability using logistic sigmoid function

$$
=\frac{1}{1+e^{-\mathbf{w}^{T} \mathbf{x}}}
$$

Logistic Regression

Adding non-linearity

- What if we want a non-linear decision boundary?

Adding non-linearity

- What if we want a non-linear decision boundary?
- Choose basis functions, e.g: $\quad \phi(\mathrm{x}) \sim\left\{\mathrm{x}^{2}, \sin (\mathrm{x}), \log (\mathrm{x}), \ldots\right\}$

$$
p(y=1 \mid \mathbf{x})=\frac{1}{1+e^{-\mathbf{w}^{T} \phi(\mathbf{x})}}
$$

$$
\Phi:\binom{x_{1}}{x_{2}} \rightarrow\left(\begin{array}{c}
x_{1}^{2} \\
x_{2}^{2} \\
\sqrt{2} x_{1} x_{2}
\end{array}\right) \quad \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}
$$

Adding non-linearity

- What if we want a non-linear decision boundary?
- Choose basis functions, e.g: $\quad \phi(\mathrm{x}) \sim\left\{\mathrm{x}^{2}, \sin (\mathrm{x}), \log (\mathrm{x}), \ldots\right\}$

$$
p(y=1 \mid \mathbf{x})=\frac{1}{1+e^{-\mathbf{w}^{T} \phi(\mathbf{x})}}
$$

- What if we don't know what basis functions we want?

Adding non-linearity

- What if we want a non-linear decision boundary?
- Choose basis functions, e.g: $\quad \phi(\mathrm{x}) \sim\left\{\mathrm{x}^{2}, \sin (\mathrm{x}), \log (\mathrm{x}), \ldots\right\}$

$$
p(y=1 \mid \mathbf{x})=\frac{1}{1+e^{-\mathbf{w}^{T} \phi(\mathbf{x})}}
$$

- What if we don't know what basis functions we want?
- Learn the basis functions directly from data

$$
\phi(\mathbf{x} ; \mathbf{u}) \quad \mathbb{R}^{\mathrm{m}} \rightarrow \mathbb{R}^{\mathrm{d}}
$$

- Where \mathbf{u} is a set of parameters for the transformation

Adding non-linearity

- What if we want a non-linear decision boundary?
- Choose basis functions, e.g: $\quad \phi(x) \sim\left\{x^{2}, \sin (x), \log (x), \ldots\right\}$

$$
p(y=1 \mid \mathbf{x})=\frac{1}{1+e^{-\mathbf{w}^{T} \phi(\mathbf{x})}}
$$

- What if we don't know what basis functions we want?
- Learn the basis functions directly from data

$$
\phi(\mathbf{x} ; \mathbf{u}) \quad \mathbb{R}^{\mathrm{m}} \rightarrow \mathbb{R}^{\mathrm{d}}
$$

- Where \mathbf{u} is a set of parameters for the transformation
- Combines basis selection and learning
- Several different approaches, focus here on neural networks
- Complicates the optimization

Neural Networks

- Define the basis functions $\mathrm{j}=\{1 \ldots \mathrm{~d}\}$

$$
\phi_{\mathrm{j}}(\mathbf{x} ; \mathbf{u})=\sigma\left(\mathbf{u}_{\mathrm{j}}^{\mathrm{T}} \mathbf{x}\right)
$$

Neural Networks

- Define the basis functions $j=\{1 \ldots \mathrm{~d}\}$

$$
\phi_{\mathrm{j}}(\mathbf{x} ; \mathbf{u})=\sigma\left(\mathbf{u}_{\mathrm{j}}^{\mathrm{T}} \mathbf{x}\right)
$$

- Put all $\mathbf{u}_{\mathrm{j}} \in \mathbb{R}^{1 \times \mathrm{mm}}$ vectors into matrix \mathbf{U}

$$
\phi(\mathbf{x} ; \mathbf{U})=\sigma(\mathbf{U x})=\left[\begin{array}{c}
\sigma\left(\mathbf{u}_{1}^{\top} \mathbf{x}\right) \\
\sigma\left(\underline{u^{\top}} \mathbf{x}\right) \\
\sigma\left(\mathbf{u}_{\mathrm{d}}^{\top} \mathbf{x}\right)
\end{array}\right] \quad \in \mathbb{R}^{\mathrm{d}}
$$

$-\sigma$ is a pointwise sigmoid acting on each vector element

Neural Networks

- Define the basis functions $\mathrm{j}=\{1 \ldots \mathrm{~d}\}$

$$
\phi_{j}(\mathbf{x} ; \mathbf{u})=\sigma\left(\mathbf{u}_{j}{ }^{\mathrm{T}} \mathbf{x}\right)
$$

- Put all $\mathbf{u}_{\mathrm{j}} \in \mathbb{R}^{1 \mathrm{xm}}$ vectors into matrix \mathbf{U}

$$
\phi(\mathbf{x} ; \mathbf{U})=\sigma(\mathbf{U x})=\left[\begin{array}{l}
\sigma\left(\mathbf{u}^{\top} \mathbf{x} \mathbf{x}\right) \\
\sigma\left(\mathbf{u}_{2}^{\top} \mathbf{x}\right) \\
\ldots\left(\mathbf{u}_{\mathrm{d}}^{\top} \mathbf{x}\right)
\end{array}\right] \quad \in \mathbb{R}^{\mathrm{d}}
$$

$-\sigma$ is a pointwise sigmoid acting on each vector element

- Full model becomes

$$
\mathrm{h}(\mathbf{x} ; \mathbf{w}, \mathbf{U})=\mathbf{w}^{\mathrm{T}} \phi(\mathbf{x} ; \mathbf{U})
$$

Feed Forward Neural Network

Multi-layer Neural Network

- Multilayer NN
- Each layer adapts basis functions based on previous layer

Universal approximation theorem

- Feed-forward neural network with a single hidden layer containing a finite number of neurons can approximate continuous functions arbitrarily well on a compact space of \mathbb{R}^{n}
- Only mild assumptions on non-linear activation function needed. Sigmoid functions work, as do others

Universal approximation theorem

- Feed-forward neural network with a single hidden layer containing a finite number of neurons can approximate continuous functions arbitrarily well on a compact space of \mathbb{R}^{n}
- Only mild assumptions on non-linear activation function needed. Sigmoid functions work, as do others
- But no information on how many neurons needed, or how much data!

Universal approximation theorem

- Feed-forward neural network with a single hidden layer containing a finite number of neurons can approximate continuous functions arbitrarily well on a compact space of \mathbb{R}^{n}
- Only mild assumptions on non-linear activation function needed. Sigmoid functions work, as do others
- But no information on how many neurons needed, or how much data!
- How to find the parameters, given a dataset, to perform this approximation?

Neural Network Optimization Problem

- Neural Network Model: $\quad h(\mathbf{x})=\mathbf{w}^{T} \sigma(\mathbf{U x})$
- Classification: Cross-entropy loss function

$$
\begin{aligned}
p_{i} & =p\left(y_{i}=1 \mid \mathbf{x}_{i}\right)=\sigma\left(h\left(\mathbf{x}_{i}\right)\right) \\
L(\mathbf{w}, \mathbf{U}) & =-\sum_{i} y_{i} \ln \left(p_{i}\right)+\left(1-y_{i}\right) \ln \left(1-p_{i}\right)
\end{aligned}
$$

Neural Network Optimization Problem

- Neural Network Model: $\quad h(\mathbf{x})=\mathbf{w}^{T} \sigma(\mathbf{U x})$
- Classification: Cross-entropy loss function

$$
\begin{aligned}
p_{i} & =p\left(y_{i}=1 \mid \mathbf{x}_{i}\right)=\sigma\left(h\left(\mathbf{x}_{i}\right)\right) \\
L(\mathbf{w}, \mathbf{U}) & =-\sum_{i} y_{i} \ln \left(p_{i}\right)+\left(1-y_{i}\right) \ln \left(1-p_{i}\right)
\end{aligned}
$$

- Regression: Square error loss function

$$
L(\mathbf{w}, \mathbf{U})=\frac{1}{2} \sum_{i}\left(y_{i}-h\left(\mathbf{x}_{i}\right)\right)^{2}
$$

Neural Network Optimization Problem

- Neural Network Model: $\quad h(\mathbf{x})=\mathbf{w}^{T} \sigma(\mathbf{U x})$
- Classification: Cross-entropy loss function

$$
\begin{aligned}
p_{i} & =p\left(y_{i}=1 \mid \mathbf{x}_{i}\right)=\sigma\left(h\left(\mathbf{x}_{i}\right)\right) \\
L(\mathbf{w}, \mathbf{U}) & =-\sum_{i} y_{i} \ln \left(p_{i}\right)+\left(1-y_{i}\right) \ln \left(1-p_{i}\right)
\end{aligned}
$$

- Regression: Square error loss function

$$
L(\mathbf{w}, \mathbf{U})=\frac{1}{2} \sum_{i}\left(y_{i}-h\left(\mathbf{x}_{i}\right)\right)^{2}
$$

- Minimize loss with respect to weights \mathbf{w}, \mathbf{U}

Gradient Descent

- Minimize loss by repeated gradient steps
- Compute gradient w.r.t. parameters: $\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}}$
- Update parameters: $\mathbf{w}^{\prime} \leftarrow \mathbf{w}-\eta \frac{\partial L(\mathbf{w})}{\partial \mathbf{w}}$

Gradient Descent

- Minimize loss by repeated gradient steps
- Compute gradient w.r.t. parameters: $\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}}$
- Update parameters: $\mathbf{w}^{\prime} \leftarrow \mathbf{w}-\eta \frac{\partial L(\mathbf{w})}{\partial \mathbf{w}}$
- Now we need gradients w.r.t. w and \mathbf{U}
- Gradients will depend on loss and network architecture
- Loss function is non-convex (many local minimum / saddle points) - Gradient descent may get stuck in non-optimal stationary point
- Can be a major issue!
- Variants of stochastic gradient descent can be helpful!

Chain Rule

$$
L(\mathbf{w}, \mathbf{U})=-\sum_{i} y_{i} \ln \left(\sigma\left(h\left(\mathbf{x}_{i}\right)\right)\right)+\left(1-y_{i}\right) \ln \left(1-\sigma\left(h\left(\mathbf{x}_{i}\right)\right)\right)
$$

- Derivative of sigmoid: $\frac{\partial \sigma(x)}{\partial x}=\sigma(x)(1-\sigma(x))$
- Chain rule to compute gradient w.r.t. w

$$
\frac{\partial L}{\partial \mathbf{w}}=\frac{\partial L}{\partial h} \frac{\partial h}{\partial \mathbf{w}}=\sum_{i} y_{i}\left(1-\sigma\left(h\left(\mathbf{x}_{i}\right)\right)\right) \sigma(\mathbf{U} \mathbf{x})+\left(1-y_{i}\right) \sigma(h(\mathbf{x})) \sigma\left(\mathbf{U x}_{i}\right)
$$

- Chain rule to compute gradient w.r.t. \mathbf{u}_{j}

$$
\begin{aligned}
\frac{\partial L}{\partial \mathbf{u}_{j}}= & \frac{\partial L}{\partial h} \frac{\partial h}{\partial \sigma} \frac{\partial \sigma}{\partial \mathbf{u}_{j}}= \\
= & \sum_{i} y_{i}\left(1-\sigma\left(h\left(\mathbf{x}_{i}\right)\right)\right) w_{j} \sigma\left(\mathbf{u}_{j} \mathbf{x}_{i}\right)\left(1-\sigma\left(\mathbf{u}_{j} \mathbf{x}_{i}\right)\right) \mathbf{x}_{i} \\
& +\left(1-y_{i}\right) \sigma\left(h\left(\mathbf{x}_{i}\right)\right) w_{j} \sigma\left(\mathbf{u}_{j} \mathbf{x}_{i}\right)\left(1-\sigma\left(\mathbf{u}_{j} \mathbf{x}_{i}\right)\right) \mathbf{x}_{i}
\end{aligned}
$$

Backpropagation

- Loss function composed of layers of nonlinearity

$$
L\left(\phi^{N}\left(\ldots \phi^{1}(x)\right)\right)
$$

Backpropagation

- Loss function composed of layers of nonlinearity

$$
L\left(\phi^{N}\left(\ldots \phi^{1}(x)\right)\right)
$$

- Forward step (f-prop)
- Compute and save intermediate computations

$$
\phi^{N}\left(\ldots \phi^{1}(x)\right)
$$

Backpropagation

- Loss function composed of layers of nonlinearity

$$
L\left(\phi^{N}\left(\ldots \phi^{1}(x)\right)\right)
$$

- Forward step (f-prop)
- Compute and save intermediate computations

$$
\phi^{N}\left(\ldots \phi^{1}(x)\right)
$$

- Backward step (b-prop) $\frac{\partial L}{\partial \phi^{a}}=\sum_{j} \frac{\partial \phi_{j}^{(a+1)}}{\partial \phi_{j}^{a}} \frac{\partial L}{\partial \phi_{j}^{(a+1)}}$

Backpropagation

- Loss function composed of layers of nonlinearity

$$
L\left(\phi^{N}\left(\ldots \phi^{1}(x)\right)\right)
$$

- Forward step (f-prop)
- Compute and save intermediate computations

$$
\phi^{N}\left(\ldots \phi^{1}(x)\right)
$$

- Backward step (b-prop) $\frac{\partial L}{\partial \phi^{a}}=\sum_{j} \frac{\partial \phi_{j}^{(a+1)}}{\partial \phi_{j}^{a}} \frac{\partial L}{\partial \phi_{j}^{(a+1)}}$
- Compute parameter gradients $\frac{\partial L}{\partial \mathbf{w}^{a}}=\sum_{j} \frac{\partial \phi_{j}^{a}}{\partial \mathbf{w}^{a}} \frac{\partial L}{\partial \phi_{j}^{a}}$

Training

- Repeat gradient update of weights to reduce loss
- Each iteration through dataset is called an epoch
- Use validation set to examine for overtraining, and determine when to stop training

Regularization

- L2 regularization: add $\Omega(\mathbf{w})=| | \mathbf{w} \|^{2}$ to loss
- Also called "weight decay"
- Gaussian prior on weights, keep weights from getting too large and saturating activation function
- Regularization inside network, example: Dropout
- Randomly remove nodes during training
- Avoid co-adaptation of nodes
- Essentially a large model averaging procedure

(a) Standard Neural Net

(b) After applying dropout.

Activation Functions

- Vanishing gradient problem
- Derivative of sigmoid:

$$
\frac{\partial \sigma(x)}{\partial x}=\sigma(x)(1-\sigma(x))
$$

- Nearly 0 when x is far from o !
- Gradient descent difficult!
- Rectified Linear Unit (ReLU)
$-\operatorname{ReLU}(x)=\max \{0, x\}$
- Derivative is constant!

$$
\frac{\partial \operatorname{Re} L U(x)}{\partial x}=\left\{\begin{array}{cc}
1 & \text { when } x>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

- ReLU gradient doesn't vanish

Neural Network Decision Boundaries

Three neurons

Five neurons

Fifty neurons

Four neurons

Twenty neurons

4-class classification 2-hidden layer NN ReLU activations
L2 norm regularization

2-class classification 1-hidden layer NN L2 norm regularization

Deep Neural Networks

- As data complexity grows, need exponentially large number of neurons in a single-hidden-layer network to capture all the structure in the data
- Deep neural networks have many hidden layers
- Factorize the learning of structure in the data across many layers
- Difficult to train, only recently possible with large datasets, fast computing (GPU) and new training procedures / network structures (like dropout)

Neural Network Architectures

- Structure of the networks, and the node connectivity can be adapted for problem at hand
- Moving inductive bias from feature engineering to machine learning (neural network) model design
- Inductive bias: Knowledge about the problem
- Feature engineering: Hand crafted variables
- Model design:

The data representation and the structure of the machine learning model / network

Convolutions

- Convolutions: $x \in \mathbb{R}^{M}$ and kernel $u \in \mathbb{R}^{k}$ discrete convolution $x * u$ is vector of size $\mathrm{M}-\mathrm{k}+1$

$$
(x * \mathrm{u})_{i}=\sum_{b=0}^{k-1} x_{i+b} u_{b}
$$

Output

Convolutions

- Kernels are "scanned" across input, picking up local pattern learned by the weights
- Shared weights of neurons, but each neuron only takes subset of inputs
- Insensitive to translations of the features the kernel is activated by
- "Tied weights" reduced total number of parameters

Convolutional Neural Networks

- Chain together with non-linearities and down-sampling (e.g. maxpooling)
- After processing with several convolutions, use fully connected layers for classification
- Structure allows for capturing local structure in convolutions, and long range structure in later stage convolutions and in fully connected layers

(Simonyan and Zisserman, 2014)

Feature visualization of convolutional net trained on ImaqeNet from [Zeiler \& Ferqus 20131

Neural Networks in HEP

Jets at the LHC

Neutrino identification Example: NOvA

3D schematic of NOvA particle detector

What do neural networks learn?

- Can visualize weights: neutrino decay classification

Image Y-view

Weights of First layer
arXiv:1604.01444

		-					

Output of convolution

- Find inputs that most activate a neuron:
- Separating boosted W-jets from quark/gluon jets

Decision Tree Models

Decision Trees

- Partition data based on a sequence of thresholds
- In a given partition, estimate the class probability from N_{m} examples in partition m and N_{k} of the examples in partition from class k :

$$
p_{m k}=\frac{N_{k}}{N_{m}}
$$

Single Decision Trees: Pros and Cons

- Pros:
- Simple to understand, can visualize a tree
- Requires little data preparation, and can use continuous and categorical inputs
- Cons:
- Can create complex models that overfit data
- Can be unstable to small variations in data
- Training a tree is an NP-complete problem
- Hard to find a global optimum of all data partitionings
- Have to use heuristics like greedy optimization where locally optimal decisions are made
- We will discuss the ways to overcome these Cons, including early stopping of training, and ensembles

Greedy Training of a Decision Tree

- Greedy Training: instead of optimizing all splittings at the same time, optimize them one-byone, then move onto next splitting

Greedy Training of a Decision Tree

- Greedy Training: instead of optimizing all splittings at the same time, optimize them one-byone, then move onto next splitting
- Given N_{m} examples in a node, for a candidate splitting $\theta=\left(x_{j}, t_{m}\right)$ for feature x_{j} and threshold t_{m}

Greedy Training of a Decision Tree

- Greedy Training: instead of optimizing all splittings at the same time, optimize them one-byone, then move onto next splitting
- Given N_{m} examples in a node, for a candidate splitting $\theta=\left(x_{j}, t_{m}\right)$ for feature x_{j} and threshold t_{m}
- If data partitioned into subsets $Q_{\text {left }}$ and $Q_{\text {right }}$, compute:

$$
G(Q, \theta)=\frac{n_{\text {left }}}{N_{m}} H\left(Q_{\text {left }}(\theta)\right)+\frac{n_{\text {right }}}{N_{m}} H\left(Q_{\text {right }}(\theta)\right)
$$

- Where $H()$ is an impurity function

Greedy Training of a Decision Tree

- Greedy Training: instead of optimizing all splittings at the same time, optimize them one-byone, then move onto next splitting
- Given N_{m} examples in a node, for a candidate splitting $\theta=\left(\mathrm{x}_{\mathrm{j}}, \mathrm{t}_{\mathrm{m}}\right)$ for feature x_{j} and threshold t_{m}
- If data partitioned into subsets $Q_{\text {left }}$ and $Q_{\text {right }}$, compute:

$$
G(Q, \theta)=\frac{n_{\text {left }}}{N_{m}} H\left(Q_{\text {left }}(\theta)\right)+\frac{n_{\text {right }}}{N_{m}} H\left(Q_{\text {right }}(\theta)\right)
$$

- Where $H()$ is an impurity function
- Choose splitting θ using:

$$
\theta^{*}=\arg \min _{\theta} G(Q, \theta)
$$

Impurity Functions

- Classification
- Proportion of class k in node $m: \quad p_{m k}=\frac{N_{k}}{N_{m}}$
- Gini:

$$
H\left(X_{m}\right)=\sum_{k} p_{m k}\left(1-p_{m k}\right)
$$

- Cross entropy:

$$
H\left(X_{m}\right)=-\sum_{k} p_{m k} \log \left(p_{m k}\right)
$$

- Miss-classification:

$$
H\left(X_{m}\right)=1-\max _{k}\left(p_{m k}\right)
$$

- Regression
- Continuous target y, in region estimate: $\quad c_{m}=\frac{1}{N_{m}} \sum_{i \in N_{m}} y_{i}$
- Square error:

$$
H\left(X_{m}\right)=\frac{1}{N_{m}} \sum_{i \in N_{m}}\left(y_{i}-c_{m}\right)^{2}
$$

When to stop splitting?

- In principle, can keep splitting until every event is properly classified...

When to stop splitting?

- In principle, can keep splitting until every event is properly classified...

[Rogozhnikov]
- Single decision trees can quickly overfit
- Especially when increasing the depth of the tree

When to stop splitting?

- In principle, can keep splitting until every event is properly classified...
- Can stop splitting early. Many criteria:
- Fixed tree depth
- Information gain is not enough
- Fix minimum samples needed in node
- Fix minimum number of samples needed to split node
- Combinations of these rules work as well

Mitigating Overfitting

no pre-stopping

$\min \#$ of samples in leaf

max_depth

maximal number of leaves

Ensemble Methods

- Can we reduce the variance of a model without increasing the bias?

Ensemble Methods

- Can we reduce the variance of a model without increasing the bias?
- Yes! By training several slightly different models and taking majority vote (classification) or average (regression) prediction
- Bias does not largely increase because the average ensemble performance is equal to the average of its members
- Variance decreases because a spurious pattern picked up by one model may not be picked up by other

Ensemble Methods

Individual Models

Average Model

- Combining several weak learners (only small correlation with target value) with high variance can be extremely powerful
- Can be used with decision trees to overcome their problems of overfitting!

Bagging and Boosting

- Bootstrap Aggregating (Bagging):
- Sample dataset D with replacement N -times, and train a separate model on each derived training set
- Classify example with majority vote, or compute average output from each tree as model output

$$
h(\mathbf{x})=\frac{1}{N_{\text {trees }}} \sum_{i=1}^{N_{\text {trees }}} h_{i}(\mathbf{x})
$$

- Boosting:
- Train N models in sequence, giving more weight to examples not correctly classified by previous models
- Take weighted vote to classify examples

$$
h(\mathbf{x})=\frac{\sum_{i=1}^{N_{\text {trees }}} \alpha_{i} h_{i}(\mathbf{x})}{\sum_{i=1}^{N_{\text {trees }}} \alpha_{i}}
$$

- Boosting algorithms include: AdaBoost, Gradient boost, XGBoost

Random Forest

- One of the most commonly used algorithms in industry is the Random Forest
- Use bagging to select random example subset
- Train a tree, but only use random subset of features (V_{m} features) at each split. This increases the variance

Ensembles of Trees

- Tree Ensembles tend to work well
- Relatively simple
- Relatively easy to train
- Tend not to overfit (especially random forests)
- Work with different feature types:
continuous, categorical, etc.

data

50 trees

optimal boundary

CMS $h \rightarrow \gamma \gamma(8 \mathrm{TeV})-$ Boosted decision tree

Decision Tree Ensembles in HEP

- Decision tree ensembles, especially with boosting, are used very widely in HEP!

https://arxiv.org/abs/1512.05955

	ATLAS Simulation		$z / \gamma^{*} \rightarrow \tau \tau$		
	Tau Particle Flow		Diagonal fraction: 74.7%		
	0.2	2.5	3.6	5.3	56.6
$\stackrel{\text { O }}{ }{ }^{\text {t }}$	0.2	0.6	0.3	92.5	40.2
$\bigcirc{ }^{\circ} n^{ \pm} \geq 2 \pi^{0}$	0.4	6.0	35.4	0.1	0.4
	9.4	74.8	56.3	0.9	2.5
	-89.7	16.0	4.3	1.2	$0.3-$
	$h^{ \pm}$	$h^{ \pm} \pi^{0}$	$h^{ \pm} \geq 2 \pi^{0}$	$3 h^{ \pm}$	$3 h^{ \pm} \geq 1 \pi^{0}$
	Generated decay mode				

Unsupervised Learning

- Learning without targets/labels, find structure in data

Dimensionality Reduction

- Find a low dimensional (less complex) representation of the data with a mapping $\mathrm{Z}=\mathrm{h}(\mathrm{X})$

Principle Components Analysis

- Given data $\left\{\mathbf{x}_{\mathrm{i}}\right\}_{\mathrm{i}=1 \ldots \mathrm{~N}}$ can we find a directions in features space that explain most variation of data?

Principle Components Analysis

- Given data $\left\{\mathbf{x}_{\mathrm{i}}\right\}_{\mathrm{i}=1 \ldots \mathrm{~N}}$ can we find a directions in features space that explain most variation of data?
- Data covariance: $\mathbf{S}=\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{2}$

Principle Components Analysis

- Given data $\left\{\mathbf{x}_{\mathrm{i}}\right\}_{\mathrm{i}=1 \ldots \mathrm{~N}}$ can we find a directions in features space that explain most variation of data?
- Data covariance: $\mathbf{S}=\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{2}$
- Let \mathbf{u}_{1} be the projected direction, we can solve:

$$
\begin{aligned}
\mathbf{u}_{1}^{*} & =\arg \max _{\mathbf{u}_{1}} \overbrace{\mathbf{u}_{1}^{T} \mathbf{S} \mathbf{u}_{1}}^{\text {Variance of projected data }}+\lambda \overbrace{\left.1-\mathbf{u}_{1}^{T} \mathbf{u}_{1}\right)}^{\text {Unit ength vector constantant }} \\
& \rightarrow \mathbf{S} \mathbf{u}_{1}=\lambda \mathbf{u}_{1}
\end{aligned}
$$

Principle Components Analysis

- Given data $\left\{\mathbf{x}_{\mathrm{i}}\right\}_{\mathrm{i}=1 \ldots \mathrm{~N}}$ can we find a directions in features space that explain most variation of data?
- Data covariance: $\mathbf{S}=\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{2}$
- Let \mathbf{u}_{1} be the projected direction, we can solve:

$$
\begin{aligned}
\mathbf{u}_{1}^{*} & =\arg \max _{\mathbf{u}_{1}} \overbrace{\mathbf{u}_{1}^{T} \mathbf{S} \mathbf{u}_{1}}^{\text {Variance of projected datat }^{\overbrace{\text { Unit engst vector constraint }}}+\lambda(\overbrace{\left.1-\mathbf{u}_{1}^{T} \mathbf{u}_{1}\right)}} \\
& \rightarrow \mathbf{S} \mathbf{u}_{1}=\lambda \mathbf{u}_{1}
\end{aligned}
$$

- Principle components are the eigenvectors of the data covariance matrix!
- Eigenvalues are the variance explained by that component

PCA Example

First principle component, projects on to this axis have large variance

PCA Example

Second principle component, projects have small variance

Clustering

Clustering

- Partition the data into groups $\mathrm{D}=\left\{\mathrm{D}_{1} \cup \mathrm{D}_{2} \ldots \cup \mathrm{D}_{\mathrm{k}}\right\}$
- What is a good clustering?
- One where examples within a cluster are more "similar" than to examples in other clusters
- What does similar mean? Use distance metric, e.g.

$$
d\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sqrt{\sum_{i}\left(x_{i}-x_{i}^{\prime}\right)^{2}}
$$

- Data $\mathbf{x}_{\mathrm{i}} \in \mathbb{R}^{\mathrm{m}}$ which you want placed in K clusters
- Associate each example to a cluster by minimizing within-class variance

K-means

- Data $\mathbf{x}_{\mathrm{i}} \in \mathbb{R}^{\mathrm{m}}$ which you want placed in K clusters
- Associate each example to a cluster by minimizing within-class variance
- Give each cluster S_{k} a prototype $\mu_{k} \in \mathbb{R}^{m}$ where $\mathrm{k}=1 \ldots \mathrm{~K}$
- Data $\mathbf{x}_{\mathrm{i}} \in \mathbb{R}^{\mathrm{m}}$ which you want placed in K clusters
- Associate each example to a cluster by minimizing within-class variance
- Give each cluster S_{k} a prototype $\mu_{k} \in \mathbb{R}^{m}$ where $\mathrm{k}=1 \ldots \mathrm{~K}$
- Assign each example to a cluster S_{k}

K-means

- Data $\mathbf{x}_{\mathrm{i}} \in \mathbb{R}^{\mathrm{m}}$ which you want placed in K clusters
- Associate each example to a cluster by minimizing within-class variance
- Give each cluster S_{k} a prototype $\mu_{k} \in \mathbb{R}^{\mathrm{m}}$ where $\mathrm{k}=1 \ldots \mathrm{~K}$
- Assign each example to a cluster S_{k}
- Find prototypes and assignments to minimize

$$
L(S, \mu)=\sum_{k=1}^{K} \sum_{i \in S_{k}} \sqrt{\left(\mathbf{x}_{i}-\mu_{k}\right)^{2}}
$$

- This is an NP-hard problem, with many local minimum!

K-means algorithm

- Initialize the μ_{k} at random (typically using K-means++ initialization)
- Repeat until convergence:
- Assign each example to closest prototype

$$
\min _{k \in\{1 \ldots K\}} \sqrt{\left(\mathbf{x}_{i}-\mu_{k}\right)^{2}}
$$

- Update prototypes $\mu_{k}=\frac{1}{n_{k}} \sum_{i \in S_{k}} \mathbf{x}_{i}$

Hierarchical Agglomerative Clustering

- Algorithm
- Start with each example \mathbf{x}_{i} as its own cluster
- Take pairwise distance between examples
- Merge closest pair into a new cluster
- Repeat until one cluster
- Doesn't require choice of number of clusters
- Clusters can have arbitrary shape
- Clusters have intrinsic hierarchy
- No random initialization
- What distance metric to use?
- Here use Euclidean distance between cluster centroid (average of examples in cluster)

Hierarchical Agglomerative Clustering

C
 D

B

A
E

C
D

Hierarchical Agglomerative Clustering

A
E

Hierarchical Agglomerative Clustering

Hierarchical Agglomerative Clustering

Hierarchical Agglomerative Clustering

Hierarchical Agglomerative Clustering

[Parkes]

Jet Algorithms

- Sequential pairwise jet clustering algorithms are hierarchical clustering, and are a form of unsupervised learning
- Compute distance between pseudojets i and j

$$
d_{i j}=\min \left(k_{\mathrm{T} i}^{2 p}, k_{\mathrm{T} j}^{2 p}\right) \frac{\Delta_{i j}}{D} \quad \Delta_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2}
$$

- Distance between pseudojet and beam

$$
d_{i B}=k_{\mathrm{T} i}^{2 p}
$$

- Find smallest distance between pseudojets d_{ij} or d_{iB}
- Combine (sum 4-momentum) of two pseudojets if d_{ij} smallest
- If d_{i} is smallest, remove pseudojet i , call it a jet
- Repeat until all pseudojets are jets

Practical Advice

What To Use? So Many Choices

- Once you know what you want to do...

WHAT algorithm should you use?

- Linear model
- Nearest Neighbors
- (Deep?) Neural network
- Decision tree ensemble
- Support vector machine
- Gaussian processes
- ... and so many more ...

No Free Lunch - Wolpert (1996)

- In the absence of prior knowledge, there is no a priori distinction between algorithms, no algorithm that will work best for every supervised learning problem
- You can not say algorithm X will be better without knowing about the system
- A model may work really well on one problem, and really poorly on another
- This is why data scientists have to try lots of algorithms!
- But there are some empirical heuristics that have been observed...

Practical Advice - Empirical Analysis

- Test 179 classifiers (no deep neural networks) on 121 datasets http://jmlr.csail.mit.edu/papers/volume15/delgado14a/delgado14a.pdf
- The classifiers most likely to be the bests are the random forest $(R F)$ versions, the best of which (...) achieves 94.1% of the maximum accuracy overcoming 90% in the 84.3% of the data sets

From Kaggle

- For Structured data: "High level" features that have meaning
- Winning algorithms have been lots of feature engineering + random forests, or more recently XGBoost (also a decision tree based algorithm)
- Unstructured data: "Low level" features, no individual meaning
- Winning algorithms have been deep learning based, Convolutional NN for image classification, and Recurrent NN for text and speech

More general advice

- You will likely need to try many algorithms...
- Start with something simple!
- Use more complex algorithms as needed
- Use cross validation to check for overcomplexity / overtraining
- Check the literature
- If you can cast your (HEP) problem as something in the ML / data science domain, there may be guidance on how to proceed
- Hyperparameters can be hard to tune
- Use cross validation to compare models with different hyperparameter values!
- Use a training / validation / testing split of your data
- Don't use training or validation set to determine final performance
- And use cross validation as well!

Conclusions

- Machine learning uses mathematical and statistical models learned from data to characterize patterns and relations between inputs, and use this for inference / prediction
- Machine learning provides a powerful toolkit to analyze data
- Linear methods can help greatly in understanding data
- Complex models like NN and decision trees can model intricate patterns
- Care needed to train them and ensure they don't overfit
- Unsupervised learning can provide powerful tools to understand data, even when no labels are available
- Choosing a model for a given problem is difficult, but there may be some guidance in the literature
- Keep in mind the bias-variance tradeoff when building an ML model
- Deep learning is an exciting frontier and powerful paradigm in ML research

Useful Python ML software

- Anaconda / Conda \rightarrow easy to setup python ML / scientific computing environments
- https://www.continuum.io/downloads
- http://conda.pydata.org/docs/get-started.html
- Integrating ROOT / PyROOT into conda
- https://nlesc.gitbooks.io/cern-root-conda-recipes/content/index.html
- https://conda.anaconda.org/NLeSC
- Converting ROOT trees to python numpy arrays / panda dataframes
- https://pypi.python.org/pypi/root_numpy/
- https://github.com/ibab/root_pandas
- Scikit-learn \rightarrow general ML library
- http://scikit-learn.org/stable/
- Deep learning frameworks / auto-differentiation packages
- https://www.tensorflow.org/
- http://deeplearning.net/software/theano/
- High level deep learning package build on top of Theano / Tensorflow
- https://keras.io/

References

- http://scikit-learn.org/
- [Bishop] Pattern Recognition and Machine Learning, Bishop (2006)
- [ESL] Elements of Statistical Learning (2nd Ed.) Hastie, Tibshirani \& Friedman 2009
- [Murray] Introduction to machine learning, Murray
- http://videolectures.net/bootcamp2010_murray_iml/
- [Ravikumar〕 What is Machine Learning, Ravikumar and Stone
- http://www.cs.utexas.edu/sites/default/files/legacy files/research/documents/MLSSIntro.pdf
- [Parkes] CS181, Parkes and Rush, Harvard University
- http://cs181.fas.harvard.edu
- $\quad \mathrm{Ng} \rrbracket \mathrm{CS} 229, \mathrm{Ng}$, Stanford University
- http://cs229.stanford.edu/
- [Rogozhnikov] Machine learning in high energy physics, Alex Rogozhnikov
- https://indico.cern.ch/event/497368/
- [Fleuret] Francois Fleuret, EE559 Deep Learning, EPFL, 2018
- https://documents.epfl.ch/users/f/fl/fleuret/www/dlc/

Example

- Classifying hand written digits
- 10-class classification
- Right plot shows projection of 10 -class output onto 2 dimensions

3	6	8	1	7	9	6	6	9	1
6	7	5	7	8	6	3	4	8	5
2	1	7	9	7	1	2	8	4	5
4	8	1	9	0	1	8	8	9	4
7	6	1	8	6	4	1	5	6	0
7	5	9	2	6	5	8	1	9	7
2	2	2	2	2	3	4	4	8	0
0	2	3	8	0	7	3	8	5	7
0	1	4	6	4	6	0	2	4	3
7	1	2	8	7	6	9	8	6	1

Error Analysis

- Anti-spam classifier using logistic regression.
- How much did each component of the system help?
- Remove each component one at a time to see how it breaks

Component	Accuracy		
Overall system	99.9%		
Spelling correction	99.0		
Sender host features	98.9%		
Email header features	98.9%		
Email text parser features	95%		
Javascript parser	94.5%		
Features from images	94.0%		Removing text parser
:---:			
caused largest drop			
in performance			

Ensemble Methods

- Combine many decision trees, use the ensemble for prediction
- Averaging: $D(x)=\frac{1}{N_{\text {tree }}} \sum_{i=1}^{N_{\text {ree }}} d_{i}(x)$
- Random Forest, averaging combined with:
- Bagging: Only use a subset of events for each tree training
- Feature subsets: Only use a subset of features for each tree
- Boosting (weighted voting): $D(x)=\sum_{i=1}^{N_{\text {nee }}} \alpha_{i} d_{i}(x)$
- Weight computed such that events in current tree have higher weight misclassified in previous trees
- Several boosting algorithms
- AdaBoost
- Gradient Boosting
- XGBoost

Non-Linear Activations

- The activation function in the NN must be a non-linear function
- If all the activations were linear, the network would be linear: $\mathrm{f}(\mathrm{X})=\mathrm{W}_{\mathrm{n}}\left(\mathrm{W}_{\mathrm{n}-1}\left(\ldots \mathrm{~W}_{1} \mathrm{X}\right)\right)=\mathrm{UX}, \quad$ where $\mathrm{U}=\Pi_{\mathrm{i}} \mathrm{W}_{\mathrm{i}}$
- Linear functions can only correctly classify linearly separable data!
- For complex datasets, need nonlinearities to properly learn data structure

Linear Classifier

Non-linear Classifier

Neural Networks and Local Minima

- Large NN's difficult to train...trapping in local minimum?
- Not in large neural networks https:/arxiv.org/abs/1412.0233
- Most local minima equivalent, and resonable
- Global minima may represent overtraining
- Most bad (high error) critical points are saddle points (different than small NN's)

Weight Initializations and Training Procedures

- Used to set weights to some small initial value
- Creates an almost linear classifier
- Now initialize such that node outputs are normally distributed
- Pre-training with auto-encoder
- Network reproduces the inputs
- Hidden layer is a non-linear dimensionality reduction
- Learn important features of the input
- Not as common anymore, except in certain circumstances...
- Adversarial training, invented 2014
- Will potential HEP applications later

Layer L_{1}

ReLU Networks

- Sparse propagation of activations and gradients in a network of rectifier units. The input selects a subset of active neurons and computation is linear in this subset.
- Model is "linear-by-parts", and can thus be seen as an exponential number of linear models that share parameters
- Non-linearity in model comes from path selection

Convolutions in 2D

- Scan the filters over the 2D image, producing the convolved images

Max Pooling

Layer N

Max Pooling

Layer N+1

- Down-sample the input by taking MAX or average over a region of inputs
- Keep only the most useful information

Daya Bay

Daya Bay Neutrino Experiment

- Aim to reconstruct inverse β-decay interactions from scintillation light recorded in 8×24 PMT's
- Study discrimination power using CNN's
- Supervised learning \rightarrow observed excellent performance (97% accuracy)
- Unsupervised learning: ML learns itself what is interesting!

Jet-Images

Jet tagging using jet substructure

- Typical approach:

Use physics inspired variables to provide signal / background discrimination

- Typical physics inspired variables exploit differences in:
- Jet mass
- N-prong structure:
- 1-prong (QCD)
- 2-prong (W,Z,H)

○ 3-prong (top)

- Radiation pattern:
- Soft gluon emission
- Color flow

Jet tagging using jet substructure

- Typical approach:

Use physics inspired variables to provide signal / background discrimination

- Typical physics inspired variables exploit differences in:

- Jet mass

- N-prong structure:
- 1-prong (QCD)
- 2-prong (W,Z,H)
- 3-prong (top)
- Radiation pattern:
- Soft gluon emission
- Color flow

$$
65 \mathrm{GeV}<\mathrm{m}_{\mathrm{j}}<95 \mathrm{GeV}
$$

$$
\tau_{N}=\frac{1}{d_{0}} \sum p_{T, k} \min \left\{\Delta R_{k, a x i s-1}, \ldots, \Delta R_{k, a x i s-n}\right\}
$$

Pre-processing and space-time symmetries

Pre-processing steps may not be Lorentz Invariant

- Translations in η are

Lorentz boosts along z-axis

- Do not preserve the pixel energies
- Use p_{T} rather than E as pixel intensity
- Jet mass is not invariant under Image normalization

Pythia 8, $\sqrt{s}=13 \mathrm{TeV}$
$240<\mathrm{p}_{\mathrm{T}} / \mathrm{GeV}<260 \mathrm{GeV}, 65<$ mass $/ \mathrm{GeV}<95$

Restricted phase space

Restrict the phase space in very small mass and τ_{21} bins: Improvement in discrimination from new, unique, information learned by the network

Deep correlation jet images

Pythia 8, $\mathbf{W}^{\prime} \rightarrow \mathbf{W Z}, \sqrt{s}=13 \mathbf{T e V}$
$0.59<\tau_{21}<0.61$

Spatial information indicative of radiation pattern for W and QCD: where in the image the network is looking for discriminating features

Recurrent Neural Networks

Recurrent Neural Networks

- What if our data doesn't have a fixed size? How do we process a variable length set of inputs
- More specifically, what if our data is sequence like?

$$
x_{i}=\left\{x_{i}^{0}, x_{i}^{1}, \ldots, x_{i}^{T}\right\}=\left\{x_{i}^{t}\right\}_{t=0}^{T}
$$

- Natural language text
- time-series data, like financial data
- Ordered sets of particles, e.g. tracks in a jet

Recurrent Neural Networks

Recurrent Neural Networks

Recurrent Neural Networks

Recurrent Neural Networks

[0.98] \rightarrow Positive Sentiment

Sentiment Analysis

Recurrent Neural Networks

Recurrent Neural Networks

Recurrent Neural Networks

- In practice, a simple non-linearity is very
(forget gate)
(input gate) hard to deal with
- Hard to train
- Hard to retain information across long sequences
- Utilize Gating
- Long Short Term Memory (LSTM)
- Gated Recurrent Unit (GRU

$$
\begin{aligned}
f_{t} & =\operatorname{sigm}\left(W_{(\mathrm{xf})} x_{t}+W_{(\mathrm{h} \mathrm{f)}} h_{t-1}+b_{(\mathrm{f})}\right) \\
i_{t} & =\operatorname{sigm}\left(W_{(\mathrm{xi})} x_{t}+W_{(\mathrm{hi)}} h_{t-1}+b_{(\mathrm{i})}\right) \\
g_{t} & =\tanh \left(W_{(\mathrm{xc})^{x_{t}}}+W_{(\mathrm{h} \mathrm{c)}} h_{t-1}+b_{(\mathrm{c})}\right) \\
c_{t} & =f_{t} \odot c_{t-1}+i_{t} \odot g_{t} \\
o_{t} & =\operatorname{sigm}\left(W_{(\times \mathrm{o})^{x_{t}}}+W_{(\mathrm{ho})} h_{t-1}+b_{(\mathrm{o})}\right) \\
h_{t} & =o_{t} \odot \tanh \left(c_{t}\right)
\end{aligned}
$$

Figure 2: Long Short-term Memory Cell

Bottom Quark Decays

0.4 inches

collision point

typical jet from bottomquark

M. Strassler 2012

- Goal: Discriminate b-jets from non-b-jets
- Track based taggers: p (jet flavor |tracks in jet)
- Dimensionality too high for easy density estimation
- Often make naïve Bayes assumption that tracks independent!

RNN b-tagging

Fisher Discriminant

Fisher Discriminant

- Suppose our $\left\{\mathbf{x}_{\mathrm{i}}, \mathbf{y}_{\mathrm{i}}\right\}_{\mathrm{i}=1 \ldots \mathrm{~N}}$ is separated in two classes, we want a projection to maximize the separation between the two classes.

Fisher Discriminant

- Suppose our $\left\{\mathbf{x}_{\mathrm{i}}, \mathbf{y}_{\mathrm{i}}\right\}_{\mathrm{i}=1 \ldots \mathrm{~N}}$ is separated in two classes, we want a projection to maximize the separation between the two classes.
- Want means $\left(\mathbf{m}_{\mathrm{i}}\right)$ of two classes $\left(\mathrm{C}_{\mathrm{i}}\right)$ to be as far apart as possible \rightarrow large between-class variation

$$
\mathbf{S}_{B}=\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)^{T}\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)
$$

Fisher Discriminant

- Suppose our $\left\{\mathbf{x}_{\mathrm{i}}, \mathbf{y}_{\mathrm{i}}\right\}_{\mathrm{i}=1 \ldots \mathrm{~N}}$ is separated in two classes, we want a projection to maximize the separation between the two classes.
- Want means $\left(\mathbf{m}_{\mathrm{i}}\right)$ of two classes $\left(\mathrm{C}_{\mathrm{i}}\right)$ to be as far apart as possible \rightarrow large between-class variation

$$
\mathbf{S}_{B}=\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)^{T}\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)
$$

- Want each class tightly clustered, as little overlap as possible \rightarrow small within-class variation

$$
\mathbf{S}_{W}=\sum_{i \in C_{1}}\left(\mathbf{x}_{i}-\mathbf{m}_{1}\right)^{T}\left(\mathbf{x}_{i}-\mathbf{m}_{1}\right)+\sum_{i \in C_{2}}\left(\mathbf{x}_{i}-\mathbf{m}_{2}\right)^{T}\left(\mathbf{x}_{i}-\mathbf{m}_{2}\right)
$$

Fisher Discriminant

- Suppose our $\left\{\mathbf{x}_{\mathrm{i}}, \mathbf{y}_{\mathrm{i}}\right\}_{\mathrm{i}=1 \ldots \mathrm{~N}}$ is separated in two classes, we want a projection to maximize the separation between the two classes.
- Want means $\left(\mathbf{m}_{\mathrm{i}}\right)$ of two classes $\left(\mathrm{C}_{\mathrm{i}}\right)$ to be as far apart as possible \rightarrow large between-class variation

$$
\mathbf{S}_{B}=\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)^{T}\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)
$$

- Want each class tightly clustered, as little overlap as possible \rightarrow small within-class variation

$$
\mathbf{S}_{W}=\sum_{i \in C_{1}}\left(\mathbf{x}_{i}-\mathbf{m}_{1}\right)^{T}\left(\mathbf{x}_{i}-\mathbf{m}_{1}\right)+\sum_{i \in C_{2}}\left(\mathbf{x}_{i}-\mathbf{m}_{2}\right)^{T}\left(\mathbf{x}_{i}-\mathbf{m}_{2}\right)
$$

- Maximize Fisher criteria

$$
J(\mathbf{w})=\frac{\mathbf{w}^{T} \mathbf{S}_{B} \mathbf{w}}{\mathbf{w}^{T} \mathbf{S}_{W} \mathbf{w}} \rightarrow \mathbf{w} \propto \mathbf{S}_{W}\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)
$$

Comparing Techniques

10

Fisher Discriminant

Average Boosted W jet

Average quark / gluon jet

Plotted weights of Fisher Discriminant

Systematic Uncertainties

- We have learning a function $\mathrm{h}(\mathrm{x})$ to model y
- But we trained from simulation, what if simulation and data aren't exactly the same? How do we deal with systematic uncertainties?
- Not sure there is an "officially correct" answer here...
- Here are some potential paths

Systematic Uncertainties

- "Bottom up" approach
- Suppose we know the 1σ variation on the inputs x
- Estimate: $\Delta_{\mathrm{h}}(\mathrm{x}) \equiv \mathrm{h}\left(\mathrm{x}+\sigma_{\mathrm{x}}\right)-\mathrm{h}(\mathrm{x})$
$-\Delta_{\mathrm{h}}(\mathrm{x})$ as an approximation to the systematic uncertainty on $\mathrm{h}(\mathrm{x})$
- Essentially propagating the uncertainty through $\mathrm{h}(\mathrm{x})$
- Are we sure we captured all the possible variations?
- What if we have several variations σ^{i} that are correlated in a way we don't necessarily know?
- i.e. uncertainties from measuring τ 's and from electrons?
- What if $\mathrm{h}(\mathrm{x})$ computed some function of x which needs additional uncertainty?
- i.e. we calculate the response of individual sensors, but what if there can be correlations between nearby sensors?

Systematic Uncertainties

- A possible "Top Down" approach
- If possible, find a pure control sample in data of the object you want to classify
- Compare discriminant output distributions when applied on:
- data, $\mathrm{h}_{\mathrm{D}}=\mathrm{h}\left(\mathrm{x}_{\mathrm{D}}\right)$ with distribution $\mathrm{p}_{\mathrm{D}}(\mathrm{h})$
- simulation $\mathrm{h}_{\text {SIM }}=\mathrm{h}\left(\mathrm{x}_{\text {SIM }}\right)$ with distribution $\mathrm{p}_{\text {SIM }}(\mathrm{h})$
- Could consider difference of distributions as a systematic uncertainty
- Could compute calibration weights $\mathrm{W}(\mathrm{h})=\mathrm{p}_{\mathrm{D}}(\mathrm{h}) / \mathrm{p}_{\mathrm{SIM}}(\mathrm{h})$
- In HEP, often do this on the rate of events passing a threshold:

$$
W(h)=\int_{t}^{\infty} p_{D}(h) d h / \int_{t}^{\infty} p_{S I M}(h) d h=\epsilon_{D} / \epsilon_{S I M}
$$

- We can then apply all the known uncertainties σ_{x} to see how this variation of weights could have changed our predictions

Debugging Learning Algorithms

Debugging Learning Algorithms

- Is my model working properly?
- Where do I stand with respect to bias and variance?
- Has my training converged?
- Did I choose the right model / objective?
- Where is the error in my algorithm coming from?

Typical learning curve for high variance

- Performance is not reaching desired level
- Error still decreasing with training set size
- suggests to use more data in training
- Large gap between training and validtaion error
- Some gap is expected (inherint bias towards training set)
- Better: Large Cross-validation RMS, large performance variation in trainings

Typical learning curve for high bias

- Training error is unacceptably high
- Small gap between training and validation error
- Cross validation RMS is small

Potential Fixes

- Fixes to try:
- Get more training data
- Try smaller feature set size
- Try larger feature set size
- Try different features
- Did the training converge?
- Run gradient descent a few more iterations
- or adjust learning rate
- Try different optimization algorithm

Fixes optimization algorithm
Fixes optimization algorithm

- Is it the correct model / objective for the problem?
- Try different regularization parameter value Fixes optimization objective
- Try different model

Fixes optimization objective

- You will often need to come up with your own diagnostics to understand what is happening to your algorithm

