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Abstract

Part I - Studies on Razor Trigger for Simplified Dark Matter Models The Standard
Model of particle physics is proven to be a very successful model, however it cannot explain all the
observed physical phenomena. Dark matter was hypothesized in order to explain some of these
phenomena, specifically the observed anomalies at di↵erent astrophysical length scales, and it is
one of the keys to understand the physics beyond the Standard Model. If dark matter interacts
non-gravitationally with Standard Model particles, it could be produced at the LHC, however it
would be invisible to the detectors. Searches for dark matter in the ATLAS experiment at Run-1
have focused until recently on missing transverse energy signals using the e↵ective field theory.
However, e↵ective field theory has limitations at the LHC’s energy reach and simplified dark
matter models have been proposed to overcome these limitations. The so-called razor trigger
is an ATLAS Run-2 trigger. The main goal of the razor trigger is to improve the acceptance
for analyses which cannot rely on large missing transverse energy. In this thesis, we studied the
razor trigger performance using simplified dark matter model samples at 8 TeV center-of-mass
energy with the ATLAS detector.

Part II - Studies on Boosted Top Jet Identification with a Deep Learning Algorithm
The top quark is the heaviest fundamental particle of the Standard Model. Being a unique
particle, top quark plays an important role at studying the Standard Model and constraining
models of new physics. LHC, with its designed luminosities and collision energies, is a top quark
factory and processes involving top quark can be studied in great accuracy. Hadronically decaying
boosted top quarks are particularly interesting for new physics searches as the all-hadronic decay
channel of the top quark has the highest branching ratio and the signal to background ratio for
such searches improves at high energies. However, conventional particle identification methods
are not successful at identifying top quarks at such high energies as the decay products of the
boosted top quark are highly collimated. Therefore, dedicated boosted techniques were developed
and the resulting substructure variables are used to identify boosted top quarks. Combining the
gained information from substructure analyses by using novel techniques can improve the top
tagging performance. Deep neural networks are the state-of-the-art machine learning tools which
extract more complex features of the input. In this thesis, we studied the performance of top
tagging with a deep learning algorithm using simulated samples at 14 TeV center-of-mass energy
with the ATLAS detector.
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Chapter 1

The Standard Model

Our current understanding of particle physics is embodied in the Standard Model [1]. The Stan-
dard Model provides information about fundamental particles and their interactions in terms of
particle properties and particle exchange between them [2]. In the Standard Model, the matter
is made up of two types of particles. These two types of particles are fermions and bosons. In
addition, there exists a corresponding antiparticle for each particle. Fermions have half integer
spin whereas bosons have integer spin. The fundamental fermions of the Standard Model are
quarks and leptons. The fundamental bosons of the Standard Model are the gauge bosons and
the Higgs boson. Gauge bosons are the force carriers of the Standard Model and four di↵erent
gauge bosons are responsible of three di↵erent interactions. These three interactions are strong,
electromagnetic and weak interactions 1. At least one spin-0 particle was postulated to be in
the Standard Model, which was the only missing piece of it until recently. The Higgs boson, a
spin-0 particle, was postulated with the Higgs field being responsible for the masses of the fun-
damental particles [3], [4] and a new particle compatible with the Standard Model Higgs boson
was discovered in 2012 by the ATLAS and CMS collaborations [5].
The precision tests of the Standard Model and the discovery of the Higgs boson validate the
Standard Model. Although the Standard Model is very successful, it cannot answer all the
questions in particle physics and physics beyond the Standard Model attempts to explain the
observations which cannot be explained by the Standard Model. Some of the topics that need ex-
planation beyond the Standard Model are neutrino oscillations, CP violation, matter-antimatter
asymmetry in the Universe, existence and nature of dark matter.

1Gravity, being the weakest of all four interactions in nature, is not included in the Standard Model.
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Chapter 2

ATLAS Experiment

2.1 LHC

The Large Hadron Collider (LHC) [6] at CERN is a two-ring superconducting hadron accelerator
and collider installed in a 26.7 km tunnel located underground near Geneva. It is designed with
the aim of revealing physics beyond the Standard Model by reaching high center-of-mass energies
in collisions which have never been reached in colliders. In order to reveal physics beyond the
Standard Model, the LHC is designed to collide proton beams with a centre of mass energy of
14TeV and an unprecedented luminosity of 1034 cm�2

s

�1. In addition to proton beams, it is
designed to collide heavy ions (Pb) with an energy of 2.8TeV per nucleon and a peak luminosity of
1027cm�2

s

�1. Two counter rotating beams are injected into the LHC from the SPS accelerator,
afterwards the ejected beams are accelerated while they move around the LHC ring. Finally
the beams are collided at four interaction points, corresponding to the positions where four
experiments are located. The four experiments are ATLAS, CMS, LHCb and ALICE.
During Run-1, which took place between 2009 and 2012, the LHC had successfully delivered
proton-proton collisions at a center-of-mass energies of 7 TeV(in 2011) and 8 TeV(in 2012). The
LHC also had delivered lead-lead and proton-lead collisions with a per-nucleon center-of-mass
energies of 2.76 TeV and 5.02 TeV respectively. In February 2013, the Long Shutdown 1 of the
LHC began. After the Long Shutdown 1, in June 2015 the LHC Run-2 successfully started to
deliver proton-proton collisions with a center-of-mass energy of 13 TeV.

2.2 The ATLAS Detector

The ATLAS experiment is one of the two general-purpose, high-luminosity experiments of the
LHC [7]. The ATLAS detector [8] is forward-backward symmetric with respect to the interac-
tion point. It has cylindrical geometry and it covers almost the entire solid angle around the
interaction point [9]. It has the following four main constituents.

• Inner detector is responsible of pattern recognition, momentum and vertex measurements
for charged particles, and electron identification. It is immersed in a 2 T solenoidal field.

• Calorimeter is responsible of measurement of energy carried by the particles. It consists of
distinct parts dedicated to electromagnetic and hadronic calorimeters. Calorimeter depth
is chosen carefully so that the calorimeters provide good containment for electromagnetic
and hadronic showers.

• Muon spectrometer is responsible of identification and measurement of momenta of the
muons with high resolution. The muon spectrometer defines the overall dimensions of the
ATLAS detector.

2



• Magnet system is responsible of bending charged particles for momentum measurement.
It features a hybrid system that consists of four sub-systems(1 central solenoid, 1 barrel
toroid, 2 end-cap toroids).

The detector layout is shown in Figure 2.1.

Figure 2.1: Cut-away view of the ATLAS detector [8]

2.2.1 Trigger System

One of the most challenging aspects of a general-purpose detector that captures high-luminosity
proton-proton collisions is the trigger system. In the ATLAS detector, e�cient triggering with
low transverse momenta thresholds on electrons, photons, muons, tau leptons, jets and high
flexibility on tagging jets are the criteria that needs to be fulfilled in order to provide high
data-taking e�ciencies for most physics processes of interest at the LHC [8].

In order to operate at the designed luminosity, LHC has a 40 MHz bunch crossing rate. The
ATLAS trigger system is designed to reduce this input rate to an output rate of about 0.5-1
KHz for recording and o✏ine processing [9]. The system has three levels, which are: the first
level(L1), the second level(L2) and the third level (Event Filter,EF) triggers. The second level
and the third level are called the High Level Trigger (HLT) collectively. The triggers are based
on identifying combinations of candidate physics objects. In addition, there are triggers for
inelastic proton proton collisions and triggers based on global event properties such as summed
transverse energy and missing transverse energy.

The Level 1 Trigger is a hardware based system, it uses the information from the calorimeter
and muon subdetectors. Its decision is formed by the Central Trigger Processor (CTP) based
on information from the calorimeter trigger towersand dedicated triggering layers in the muon
system. In addition to selecting the events which will be seeded to HLT, the L1 triggers also
identify Regions of Interest (RoIs) within the detector to be investigated by the HLT. The High
Level Trigger is a software based system and it uses the information from all subdetectors,
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including inner detector hits, full information from the calorimeter and data from the precision
muon detectors. The HLT selection is based on features reconstructed in these systems. Short
execution time is a crucial criteria for the HLT algorithms, as the timing constraints need to be
satisfied. A schematic of the ATLAS trigger system is shown in Figure 2.2.

Figure 2.2: Schematic of the ATLAS trigger system [9]

In the first part of this thesis, we are interested in events which involve jets and missing en-
ergy. Specifically, the events selected by missing transverse energy(MET or E

miss

T

) trigger and
jet trigger are of interest. Here we provide brief information on these two trigger constituents. A
summary of the performance studies that have been made for jet trigger and missing transverse
energy trigger with the 7 TeV early LHC collision data can be found in [10].

Jet trigger Jets are the most common objects produced at the LHC. The jet trigger system of
the ATLAS experiment is fundamental as jet triggers are the primary means for selecting events
containing jets with high transverse momentum and physics analysis topics such as QCD, top
quark physics, searches for SUSY, exotic models strongly depend on the jet trigger [11], [12].

Missing transverse energy trigger The weakly interacting particles which are produced
at the LHC, such as neutrinos, escape the detectors without leaving a sign. Therefore they
cannot be identified by none of the particle identification techniques which are used to identify
physics objects such as leptons or jets resulting from hadronized particles. Instead, they are
inferred by the significant momentum imbalance transverse to the beamline and the observable
is referred as the missing transverse energy. Missing transverse energy triggers [13] are based
on calorimetric measurements and they are used to select events with significant transverse
momentum imbalance. Many of the beyond the Standard Model searches involve hypothetical
weakly interacting particles [14]. Therefore, MET triggers have been used in searches for new
phenomena such as processes involving new weakly interacting particles including dark matter
[15], [16].
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Chapter 1

Theoretical Introduction

1.1 Dark Matter

Observations in large astrophysical systems with di↵erent scales indicate that the luminous mat-
ter is insu�cient to account for the observed gravitational e↵ects. Di↵erent hypotheses have been
formulated to understand the nature of the unexpected observations. One of these approaches
suggest that there exists a large amount of dark matter in the Universe. Fist suggestion for
the dark matter which fits our current understanding was made by F. Zwicky. In 1933, after
observing the Coma Cluster of galaxies F. Zwicky concluded that there must be invisible or dark
matter in the Universe [17]. Another approach suggest that our understanding of the laws of
gravitation and the theory of general relativity needs to be modified and the existence of dark
matter could be avoided as M. Milgrom discusses in Reference [18]. Currently, the studies are
focused mostly to the former approach and there is great e↵ort in the search of dark matter as
it is one of the greatest indications of physics beyond the Standard Model.
Additional interesting observations, which could be indicative of the existence of dark matter,
come from the study of the positron fraction in the Cosmic Rays. Positron excess in the GeV
range has been observed by PAMELA [19], FERMI [20] and AMS-02 [21]. Di↵erent scenarios,
which include new astrophysical sources and the dark matter annihilation, have been examined
to study the origin of the observed excess, studies resulted in limits in dark matter annihila-
tion [22]. AMS-02 recently published the results of the 10.9 million positron and electron events.
The observations showed that above ⇠ 200 GeV, the positron fraction no longer exhibits an in-
crease with energy, which requires collection of more data in higher energies to study the origin
of this behavior [23].

1.1.1 Evidence of Dark Matter

Several anomalies at di↵erent astrophysical length scales can be interpreted as evidence of dark
matter [24] .

• Evidence from the galactic scale
In 1970 a study on rotation of the Andromeda galaxy was presented by V. C. Rubin and
Jr. W. K. Ford, where the rotational velocity curve of Andromeda showed a slow fall in the
outer regions, di↵erent than our galaxy [25]. In 1980 a publication of a study on rotational
properties of Sc galaxies 1 followed, which was conducted by V. C. Rubin, Jr. W. K. Ford
and N. Thonnard. During their study, they observed that neither high nor lower luminosity
Sc galaxies have falling rotation curves, although a fall in the rotation curves was expected
after certain distances from the center of the galaxy, following the Keplerian decline. The
study led to the conclusion that Sc galaxies must have significant mass located beyond the
optical image [26]. This study had a great impact on astronomers to be convinced that

1One class of spiral galaxies.
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most of the matter in the Universe is dark and the dark matter is clumped around the
galaxies. The e↵ect of gravitational lensing also show evidence for dark matter in galaxies.

Figure 1.1: Rotation curve of NGC 3198 [27]

• The scale of galaxy clusters
As mentioned previously, first evidence of dark matter in our current understanding orig-
inated from the observation of dispersion of velocities in the Coma cluster. F. Zwicky
discussed the observed dispersion of velocities under di↵erent considerations and he in-
ferred the presence of large amount of dark matter [17].

• Cosmological scales
Cosmic Microwawe Background (CMB) radiaton is one of the predictions of the Big Bang
model and it was first observed in 1965 by Arno Penzias and Robert Wilson [28]. CMB
temperature distribution over all the sky is very uniform as it was predicted by the Big
Bang model. However, there are very small fluctuations in the temperature distribution and
these fluctuations give information about the origin, evolution, and content of the Universe.
Full mission Planck observations of temperature and polarization anisotropies of the CMB
radiation data gives the most precise results on the cosmological parameters which were
published by ESA and the Planck collaboration. The Planck collaboration determined the
parameters for the standard spatially-flat six-parameter ⇤CDM cosmology, by analyzing
the Planck temperature data combined with Planck lensing. The analysis results in a
matter density parameter ⌦

m

= 0.308± 0.012 2 where the matter content is dominated by
the cold dark matter 3 [29].

1.1.2 Dark Matter Candidates and Searches

The studies on dark matter predict the dark matter to be non-baryonic, non-relativistic, stable
and electrically neutral [30]. There are several candidates which satisfy the dark matter criteria.
Some candidates of dark matter are: sterile neutrinos, axions, weakly interacting massive parti-
cles (WIMPs), superheavy dark matter(WIMPzillas). Amongst these candidates, WIMPs have
been widely studied.

WIMPs are particles which have masses between approximately 10 GeV and a few TeV, and
with interaction strength in the order of the weak interaction. These two features with addition
of the correct abundance make WIMPs good dark matter candidates [31]. WIMPs as dark
matter candidates are considered to be produced in the hot early Universe and then annihilated
in pairs. Due to this scenario, the interactions of WIMPs with Standard Model particles kept
them in thermal equilibrium at the high temperatures in the early Universe. As the Universe

2Parameter in 68 % confidence limit.
3⌦bh

2 = 0.02226± 0.00023, ⌦ch
2 = 0.1186± 0.0020 in 68 % confidence limit.
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expanded and cooled, the rate of formation and annihilation eventually became too low, and the
WIMP abundance froze out [30]. The WIMPs which survive to the present are known as thermal
relics. Such particles are generically predicted in models of physics beyond the Standard Model,
including models with supersymmetry or extra spatial dimensions [32]. Some of the weakly
interacting massive particles which are predicted in physics beyond the Standard Model are:

• Supersymmetric (SUSY) candidates such as neutralinos, sneutrinos, gravitinos, axinos,

• Dark matter from Little Higgs models,

• Light scalar dark matter,

• The lightest Kaluza-Klein particle in extra dimensions.

Dark Matter Searches

Although the e↵ects of dark matter’s gravitational interaction with baryonic matter have been
observed by di↵erent experiments, non-gravitational interaction of dark matter with particles
has not been observed yet. Consequently, whether the dark matter interacts with other particles
non-gravitationally or not is still an unanswered question. In order to detect and understand the
nature of the dark matter, the e↵ort should include di↵erent sets of experiments so that possible
interactions with di↵erent particles can be spanned. The three main groups of such experiments
are direct searches, indirect searches and collider searches. The direct searches of dark matter
are looking for the elastic scattering of target nucleus by the dark matter particles traveling in
the Universe. These searches are mainly carried out in the underground detectors, in order to
avoid the background. The indirect searches of dark matter are searching for the annihilation
products of dark matter. Observations of gamma ray photons and cosmic rays by telescopes,
satellites, neutrino satellites are good means of studying dark matter indirectly. The collider
searches are based on the assumption that the dark matter interacts with the Standard Model
particles and therefore can be produced at high energy collisions.

WIMP Dark Matter Searches at the LHC and ATLAS

If the dark matter interacts non-gravitationally with the Standard Model particles and if it is
su�ciently light, dark matter particles should be produced at the LHC. As the WIMPs are
neutral, non-baryonic, stable and weakly interacting, the produced WIMP dark matter would
not be visible at the detectors. Therefore, the missing energy signals are the key to search for the
dark matter signals at the particle colliders. At the ATLAS experiment many of the WIMP dark
matter searches are using the Mono-X events. Mono-X events consists of a particle X and the
consequent missing energy, where the X stands for photons, jets or a decaying boson. Examples
of such studies of the ATLAS collaboration can be found in [33], [15] and [34] respectively. There
are also studies which are looking for mono-lepton events, for example [35]. In this project, we
focused to events where the dark matter pair production is accompanied by a jet,

pp ! �+ �̄+ jet

where � represents the dark matter particle. The mono-jets signals at the LHC have been
extensively studied in the scope of E↵ective Field Theory(EFT) which resulted in constraints on
the models [36], [16], [34], [15].

In the EFT framework at the colliders, WIMP is the only new particle that can be produced
within the LHC’s energy reach. The EFT of dark matter describes the WIMP pair production
accompanied by a SM particle radiation, where the partons interact via a heavy mediator which
is heavier than the typical momentum exchanged in the process and cannot be produced directly
at the LHC [37], [16]. In this scenario, the heavy mediator can be integrated out and the process
can be described by contact operators. However, this approach has limitations at the LHC as the
energies involved can be very high and the processes can occur at energies beyond the validity
of the EFT itself [38]. Therefore, the validity of EFT has been studied4 and the simplified dark

4See, for example References [16], [38], [39], [40].
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matter models have been proposed and studied where a light mediator is introduced, rather than
being integrated out [16], [41].

1.1.3 Simplified Dark Matter Models

The simplified dark matter model samples which we used in this study are based on the Ref-
erence [16] where the dark matter is assumed to be a Dirac fermion �. In the framework of
simplified dark matter model, a light propagating Z’ like particle is introduced to mediate the
interaction of matter and dark matter. The parameters of such an interaction include the dark
matter mass(m

�

), mediator mass(m
M

) and the couplings of the mediator to the Standard Model
particles(g

�

) and the dark matter (g
SM

). As these two couplings are in principle constrained by
m

M

and the mediator width(�), � is used to tag the samples.
LHC Run-2 is reaching very high energies, consequently the possible limitations of EFT

are becoming more significant. In addition to overcoming the limitation due to high energies,
the comparison studies on the EFT and the simplified dark matter models suggest possible
improvements by the usage of simplified models [16]. Recently the analyses which use the
simplified models have gained momentum [41]. Therefore, we studied the razor trigger for
simplified dark matter models.

SM

SM

�

�

ISR

(a) EFT

Mediator

SM

SM

�

�

ISR

(b) Simplified Model

Figure 1.2: Feynman diagrams for mono-jet events where the jet is an ISR particle
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Chapter 2

Razor Trigger

Razor trigger in the ATLAS Experiment is dedicated to exotics searches and it is based on the
super razor variables [42]. The idea behind the razor trigger was to implement a new trigger to
improve the acceptance for analyses that cannot rely on large missing transverse energy or very
high transverse momentum jet selection and to improve the event selection flexibility compared
to Run-1 in the ATLAS experiment. Razor triggers by the CMS collaboration has been used
successfully in analyses such as Reference [43].

2.1 Motivation

As emphasized previously, searches for the phenomena beyond the Standard Model which involve
new weakly interacting particles in general use the missing transverse energy triggers. However,
the searches depending on the missing transverse energy have limitations. Not only measuring
the missing transverse energy is very challenging, but also interpreting a signal with missing
transverse energy is very challenging as most observables related to detailed features of the
events are missing [44]. As a result of these, there have been strong e↵orts to interpret these
signals by development of kinematical variables [14], [45]. Razor variables and the super razor
variables are such kinematical variables and the super razor variables are used as selection criteria
at the high level trigger of the razor trigger in ATLAS.

2.2 Razor Kinematical Variables

2.2.1 Razor Variables

Two kinematical variables, M
R

and M

R

⇤ , have been introduced in Reference [14] by Christopher
Rogan to distinguish new massive strongly interacting particles from QCD background, which
were predicted to be helpful to also reduce the dominant electroweak background Z(⌫⌫)+di-jets.
These variables’ distributions contain information about the masses of the pair produced particles
and the weakly interacting particles resulting from produced particles’ decays. Additionally, the
dimensionless variables R and R

⇤ have been introduced, which can be used to select interesting
events in the presence of large backgrounds.
The variable M

R

is defined by considering the following process, which is show in figure 3.1. Two
massive particles S1 and S2 (both with mass M

S

) are produced by a hard partonic subprocess
in a hadron hadron collision, the decay of these massive particles into respectively Q1,�1 and
Q2,�2 follow. The particles S

i

’s decay products Q

i

are massless, stable particles which can be
detected by the detector, whereas �

i

are massive (with mass m
�

), stable particles which escape
the detector without leaving a sign.

Di↵erent reference frames, di↵erent particle pairs’ center of mass frames, the individual par-
ticles’ rest frames and the lab frame, are used to get more information about the system. The
extracted information from these reference frames, helps to reduce the missing degrees of freedom
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Figure 2.1: Z2 symmetry motivated event signature [14]

in the event. Although in this section the considered process involves the visible decays each
consist of a single e↵ectively massless particle, the decays may include more than one visible
particle. In that case, the visible objects are grouped into two visible objects called megajets by
summing the visible decay products’ four momenta.

Figure 2.2: The three sets of frames relevant to the razor reconstruction [42]

If it was possible to reconstruct the rest frames of the S

i

decays, the corresponding energies
(E

i

) of the visible particles Q
i

in the rest frames of the S

i

’s decays would be given by

2E1 = 2E2 =
m

2
s

�m

2
�

m

s

= M�

where M� is the mass splitting. However, as at least one of the decay products escape the
detector, there is not enough information to reconstruct the decay frames. The approach of
the razor is to construct variables based on assumptions to approximate reference frames. One
of the assumptions is, the heavy particles are generally produced near the threshold. This
assumption results in the approximation that the CM of the hard process is also the decay
frames of the particles S

i

. Consequently, we can move from the laboratory frame to the CM
frame by finding the longitudinal boost to a reference frame where Q

i

have equal and opposite
z-component of momentum(qz

i

). This reference frame is called the razor frame and the relevant

boost is �

L

= q

z

1+q

z

2
E1+E2

, where E

i

are the energies of the decay products. Just like in the in the
rest frames of the S

i

’s decays, the energies of the particles in this razor frame are expected to
be 2E

R1 ⇠ 2E
R2 ⇠ M�.
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The variable M

R

, which carries information about the mass splitting, is a longitudinally boost
invariant mass defined in the R-frame as

M

2
R

= (E1 + E2)
2 � (qz1 + q

z

2)
2
.

A second mass variableMR

T

, the transverse mass term, is defined by using the visible and invisible
transverse momenta in the event such that

(MR

T

)
2
=

1

2
[Emiss

T

(q1T + q2T )� ~

E

miss

T

(~q1T + ~q2T )].

The dimensionless variable that is used with M

R

to distinguish the signal from the background
is the ratio of these two mass terms,

R

2 = (
M

R

T

M

R

)2.

The assumptions involved in defining the R-frame, M
R

and R variables may not always hold.
The studies show that the useful properties of the variable M

R

are robust against considered
variations [14]. However, some deviations from the assumptions related to the reference frames
may result in unphysical boosts, which are greater than 1, resulting in an ill defined R-frame
and M

R

. Therefore, the variables M

⇤
R

and R

⇤ are introduced by using the always well defined
R

⇤-frames1.
There have been studies 2 that used razor variables. These studies showed that the distri-

bution of razor variables for signal and the Standard Model background samples show di↵erent
characteristics, leading to good discrimination powers. For example the study on razor variables
and dark matter parameter space at the LHC reported in [47], used razor variables with the ob-
jective to discriminate the kinematics of beyond the Standard Model heavy pair production from
the Standard Model backgrounds without any strong assumptions about the missing transverse
energy spectrum or the details of the underlying decay chain. This study has showed that the
signal e�ciency was improved by the usage of razor variables which resulted in an improvement
of about 40% in the direct detection cross section.

2.2.2 Super Razor Variables

The super razor variables [42], which contain information about the ratio of mass scales of the
particles in the event, are introduced as improvements to the razor variables by introducing an
additional class of visible particles to the objects Q

i

. The additional class of particles are the
particles that may come from the initial state radiation (ISR) or di↵erent processes irrelevant to
the heavy particle decays. Introducing this class of particles results in a shift of the production
frame by an additional boost that was not taken into account by the original longitudinal razor
boost. In this case, the boost to the razor frame R is built by the summation of the longitudinal
boost(~�

L

) and the additional boost(~�
R

).
~

J is defined such that it is the sum of the momenta of all particles in this class

~

J

T

= � ~

E

miss

T

� ~q1T � ~q2T

and the ~

�

R

is constructed as

~

�

R

=
{� ~

J

T

, p

R

z

}q
| ~J

T

|2 + |pR
z

|2 + ŝ

R

where ŝ

R

is the approximate center-of-mass energy. ŝ
R

is constructed based on the assumptions
that the invariant mass of the visible system is equal to the invariant mass of the invisible system
and that the constructed variables do not depend on the unknown p

R

z

.

1For details please see Reference [14].
2See References [46], [47].
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ŝ

R

4
=

1

2
(M2

R

+ ~

J

T

(~q1 + ~q2) +M

R

q
M

2
R

+ | ~J
T

|2 + 2 ~J
T

(~q1 + ~q2)).

The variable ŝ

R

carries information about the mass splitting M�, just like the old razor
variable M

2
R

, and the pair production scale
p
ŝ.

Next, the approximate boost to the decay frames of the S

i

particles ~

�

R+1 is constructed. As
the two decay frames have equal and opposite boosts from the pair production frame, ~�

R+1 is
defined as

~

�

R+1 =
~q

R1 � ~q

R2

E

R1 + E

R2

where ~q

Ri

are the 4-momenta of Q
i

in the razor frame R so that the boost has the correct sym-
metry.

A variable which approximates the M� for signal events is defined by using the ŝ

R

and the
Lorentz factor �

R+1 associated with the boosts ~

�

R+1

M

R

� =

p
ŝ

R

2�
R+1

.

Studies which compares the true values and the approximated values and how the variables can
be used to distinguish signal and background can be found in Reference [42].

In addition to the mass variables, two variables ��

�

R

and |cos✓
R+1| related to the kinematic

angles are introduced in order to capture more information about the event. In this study we have
not used the angle variables and only their physical meanings are given for completeness. ��

�

R

is the azimuthal angle between the razor boost ~

�

R

and the sum of visible momenta calculated
in the razor frame R, it carries information about ratio of masses of the pair produced particles
and their daughters. |cos✓

R+1| is a dimensionless variable that carries information about the
energy di↵erence between two visible particles.

The super razor variables M

R

� , ŝ
R

, ~

�

R

, ~

�

R+1, ��

�

R

and |cos✓
R+1| can be thought of as a

kinematic basis. Excluding the explicit requirements on MET and making selections based on
this kinematic basis can help to increase sensitivity to models with small values of M�.

2.3 Razor Trigger

The razor trigger that we studied uses two super-razor variables which are ŝ

R

and �

R+1 in
their forms used to define M

R

� . If we look at the two dimensional distributions of
p
ŝ

R

and
1

�

R+1
for signal and background, the shapes of the distributions are expected to be di↵erent for

WIMP pair production signals and the Standard Model backgrounds. A study carried out by
the Harvard group has shown that this is the case for several pair production events such as
di-squark production with direct decays to quarks and the lightest supersymmetric particles,
the dark matter pair production modeled by the E↵ective Filed Theory through D5 operator.
Following the observation of the two dimensional

p
ŝ

R

and 1
�

R+1
distributions of the simulated

WIMP pair productions with a center-of-mass energy of 8 TeV and the collected data at the
same energy, the Harvard group suggested a hyperbolic razor trigger on this distribution. The
razor trigger applies a hyperbolic cut on the

p
ŝ

R

and 1
�

R+1
distribution at the HLT which is

seeded by di↵erent first level jet and missing transverse energy requirements. The hyperbolic
cut is in the following form,

⇧ = (
p
ŝ

R

+ C2)(
1

�

R+1
+ C2)

where the parameters ⇧, C1 and C2 can be tuned.
Promising results of the studies motivated the performance studies of this razor trigger on the
dark matter pair production signals based on simplified dark matter models.
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Chapter 3

Razor Trigger for Simplified Dark
Matter Models

In this project, we studied the performance of the razor trigger on dark matter pair produc-
tion signals based on simplified dark matter models with a Z’ like mediator which couples the
Standard Model particles to the dark sector. In order to do so, we used the corresponding
simulated MC12 mono-jet samples with a center-of-mass energy of 8 TeV1. This set of samples
covers di↵erent dark matter and mediator mass (m

�

and m

M

respectively) points. In addition
to di↵erent mass points, for each mass point two di↵erent mediator widths(�) are covered. Vec-
tor coupling scenario is covered for each mass point whereas axial coupling scenario is covered
for selected mass points. In addition, the samples were produced with two di↵erent matching
scale cuts(QCUT80 and QCUT300) which we combined according to the leading jet p

T

in the
event2 for this analysis. The generator used for the simulations was MadGraph, Pythia was
used for parton showering and hadronization. The paper that presents the theories and corre-
sponding models can be found in Reference [16]. The trigger information is retrieved from the
simulated samples, skimmed trigger ntuples are produced from SUSY D3PDs, razor variables
are constructed at the HLT by using Harvard group’s trigger code [49] with minor changes. In
this thesis, we focus to the samples with

p
s = 8TeV although we also studied several samples

with
p
s = 14TeV . We observed that in 14 TeV samples, we loose sensitivity as large fraction

of the phase-space we were hoping to gain is not included in these samples. The reason of the
loss in 14 TeV samples is, in 14 TeV samples there is a minimum leading parton p

T

requirement,
which is set to be 250 GeV. This requirement results in an enhanced leading jet p

T

and MET
distribution relative to an inclusive sample. On the contrary, 8 TeV samples do not have this
strong generator-level requirement. Therefore, the results obtained by using 8 TeV samples are
expected to be more indicative of potential gains.

A summarized list of the 52 QCUT-combined samples’ properties is given below:

• Vector coupling: � = {W3, W8⇡}; m
�

={50,400}GeV,
m

M

={50,100,300,600,1000,3000,6000,10000,30000}GeV

• Axial coupling: � = {W3, W8⇡}; m
�

={50,400}GeV,
m

M

={50,100,300,600}GeV

The full list of used samples is presented in Appendix A.

During this project, two di↵erent razor HLT parameter sets3 acting on several possible Run-
2 L1 seeds4 were compared with the other MET and jet triggers. The razor triggers that we

1These samples include some of the samples which were used in recent sensitivity studies, see Reference [48].
2If the leading parton pT is below 350 GeV the events are taken from the QCUT80 samples, if it is above 350

GeV events are taken from QCUT300 samples.
3
c1, c2, ⇧

4Some of the considered L1 seeds were 2J15 XE55, 2J10 XE60, XE70, 4J20.
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studied were optimized taking into account rate(⇠ 35 Hz for 2 ⇥ 1024cm�2
s

�1), background
rejection and signal e�ciency studies for several processes. Two razor triggers resulting from
two di↵erent parameter sets acting on L1 seeds were ProdR200 L1 with c1 = 85, c2 = 0.048,
⇧ = 200 and ProdR170 L1 with c1 = 200, c2 = 0, ⇧ = 170. We analyzed the promising
ProdR200 L1 , ProdR170 L1 with 2J15 XE55 and XE70 L1 seeds in more detail and compared
these triggers with the favored MET trigger xe100 XE70. We observed that although the two
event filters(ProdR200, ProdR170) acting on the same L1 seed gave very similar results, event
selection based on ProdR170 L1 resulted in a slightly better signal e�ciency. For simplicity,
only the results of ProdR170 L1 are presented here.

3.1 Razor Variables

In this section, two dimensional distributions of the variables
p
ŝ

R

, 1
�

R+1
and the hyperbolic

cut corresponding to the razor ProdR170 5 are presented for two di↵erent samples where 2 jets
with p

T

> 30 GeV are required6. Two di↵erent mass points are chosen as examples of samples
with vector coupling and samples with axial coupling. Although the distribution of the variables
di↵er depending on the m

�

, m
M

, � and slightly on the interaction type, in general the razor
accepts most of the interesting events in the

p
ŝ

R

, 1
�

R+1
phase space. We observed that when

the di↵erence between the dark matter mass and the mediator mass is smaller, the distribution
is populated near smaller values of

p
ŝ

R

and near larger values of 1
�

R+1
as expected.
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Figure 3.1: 2D Razor variables distribution for a vector coupling sample, ProdR170: c1 = 200,
c2 = 0, ⇧ = 170

5Without any L1 seed requirement.
6Razor variables are defined when there are at least 2 jets with pT > 30 GeV in the event.
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Figure 3.2: 2D Razor variables distribution for an axial coupling sample, ProdR170: c1 = 200,
c2 = 0, ⇧ = 170

3.2 Trigger Overlaps for the Signal Samples

Trigger overlap tables show what fraction of the events each Run-2 trigger can uniquely select
relative to other triggers. Trigger overlaps which are presented in this section only consider
the events which satisfy the criteria of having minimum 2 jets with p

T

� 30 GeV and show
percentage of events(z ⇥ 100) which fail Trigger X and pass Trigger Y.

z =
N

Y,filtered

N

filtered

where N

filtered

represents total number of events which satisfy the criteria of having minimum
2 jets with p

T

� 30 GeV and N

Y,filtered

represents number of events which fail trigger X, pass
trigger Y in addition to satisfying the same criteria as N

filtered

. As an example, trigger overlaps
of two chosen samples from the previous section are shown in the below figures.
We observed that the triggers ProdR170 2J15 XE55 7 and xe100 XE70 8 unique events relative
to other razor and MET triggers from the signal samples. In particular, ProdR170 2J15 XE55
selects up to 12% unique signal events relative to all jet and MET triggers, xe100 XE70 selects
up to 14% unique signal events relative to ProdR170 2J15 XE55 trigger where only the filtered
events are considered. Therefore, ProdR170 2J15 XE55 appeared to be the favorable razor
trigger for simplified dark matter model signals. In addition, studies by other groups showed
that due to its desirable background rejection, signal e�ciencies and rate of ProdR170 2J15 XE55
for several other processes, ProdR170 2J15 XE55 was a good candidate.

7Trigger ProdR170 2J15 XE55 is the razor trigger which denotes 2 jets with the transverse energy threshold
of 15 GeV accompanied with MET with the 55 GeV threshold at level 1, and with the HLT razor configuration
ProdR170.

8Trigger xe100 XE70 is the MET trigger which denotes MET trigger at level 1 with 70 GeV threshold,
confirmed at high level trigger with 100 GeV threshold.
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Figure 3.4: Trigger overlap for an axial coupling sample
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3.3 Trigger E�ciencies

In previous sections we observed that the razor trigger ProdR170 2J15 XE55 selects unique
events compared to other triggers, including MET triggers which most of dark matter searches
in the ATLAS experiment use. In order to study e�ciency gained by adding razor trigger
to the proposed Run-2 trigger menu, we studied the signal e�ciencies of two promising trig-
gers: xe100 XE70 and ProdR170 2J15 XE55. As it was expected, we observed that razor
trigger selects fewer number of events compared to MET trigger. Therefore, considering that
razor trigger selects unique events relative to MET trigger, we studied the trigger e�ciency
of the MET alone (xe100 XE70 ) and the ’OR’ combination of the razor and MET triggers
(ProdR170 2J15 XE55kxe100 XE70). We calculated these trigger e�ciencies separately for our
52 samples. However, for simplicity, here only the trigger e�ciencies of samples with a vector
coupling and with the mediator width � = m

M

/3 are presented. These samples are chosen to
be presented as the vector coupling samples have higher number of mass points compared to
axial coupling samples and the e�ciency gains of the samples with di↵erent couplings, mediator
widths are only slightly di↵erent.

3.3.1 Trigger E�ciency

E�ciency of each trigger is defined as

✏

trigger

=
N

trigger

N

total

where N
total

represent the total number of events in the sample and N

trigger

represents the num-
ber of events which pass a specific trigger or pass at least one of the two triggers, xe100 XE70 and
(ProdR170 2J15 XE55kxe100 XE70) respectively. The errors on the e�ciencies are calculated
by error propagation as presented here.

�

2
✏

trigger

= �

2
N

trigger

⇣
@✏

trigger

@N

trigger

⌘2
+ �

2
N

total

⇣
@✏

trigger

@N

total

⌘2

�

✏

trigger

=

s

�

2
N

trigger

1

N

2
total

+ �

2
N

total

N

2
trigger

N

4
total

The samples that we used had event weights, consequently N

trigger

, N
total

are the weighted total
number of events and corresponding errors are given by

�

N

total

=
qX

w

2
i

,

�

N

trigger

=
qX

w

2
i,trigger

where w

i

and w

i,trigger

are the relevant event weights. As we are interested in events with
minimum two jets with the razor approach and super razor variables are only defined for events
which involve minimum 2 jets with p

T

� 30 GeV, it is fair to compare the e�ciencies with a
filter imposing this condition. In this case, the e�ciency is defined as

✏

trigger,filtered

=
N

trigger,filtered

N

filtered

with the errors defined accordingly. Resulting e�ciencies and relative errors are presented in
tables below.
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Table 3.1: Vector coupling, � = m

M

/3,
p
s = 8TeV

E�ciency of (xe100 XE70) [%]
m

M

[GeV] m

�

[GeV]
50 400

50 33.7± 0.5 48.7± 0.6
100 31.7± 0.5 49.2± 0.6
300 42.1± 0.5 52.6± 0.6
600 47.1± 0.6 52.3± 0.6
1000 51.0± 0.6 53.2± 0.6
3000 50.8± 0.6 55.0± 0.6
6000 49.3± 0.6 55.0± 0.6
10000 49.2± 0.6 55.0± 0.6
30000 49.2± 0.6 54.7± 0.6

Table 3.2: Vector coupling, � = m

M

/3,
p
s = 8TeV

E�ciency of (ProdR170 2J15 XE55kxe100 XE70)[%]
m

M

[GeV] m

�

[GeV]
50 400

50 39.5± 0.5 53.0± 0.6
100 37.5± 0.5 53.6± 0.6
300 46.8± 0.6 56.9± 0.6
600 51.5± 0.6 56.7± 0.6
1000 55.3± 0.6 57.1± 0.6
3000 55.3± 0.6 58.7± 0.7
6000 54.0± 0.6 59.0± 0.7
10000 53.8± 0.6 59.3± 0.7
30000 53.8± 0.6 59.1± 0.7

Table 3.3: Vector coupling, � = m

M

/3,
p
s = 8TeV , Filter: 2 jets with p

T

� 30 GeV
E�ciency of xe100 XE70[%]

m

M

[GeV] m

�

[GeV]
50 400

50 38.8± 0.8 55.3± 0.9
100 35.8± 0.8 56.2± 0.9
300 48.5± 0.9 60.7± 1.0
600 55.0± 1.0 60.3± 1.0
1000 57.7± 1.0 59.8± 1.0
3000 56.9± 1.0 62.3± 1.0
6000 56.9± 1.0 62.5± 1.0
10000 56.1± 0.9 64.0± 1.0
30000 56.0± 0.9 61.7± 1.0
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Table 3.4: Vector coupling, � = m

M

/3,
p
s = 8TeV , Filter: 2 jets with p

T

� 30 GeV
E�ciency of (ProdR170 2J15 XE55kxe100 XE70)[%]

m

M

[GeV] m

�

[GeV]
50 400

50 52.3± 1.0 64.3± 1.0
100 49.6± 0.9 65.4± 1.0
300 59.8± 1.0 70.1± 1.1
600 65.1± 1.1 70.0± 1.1
1000 67.3± 1.1 68.7± 1.1
3000 67.2± 1.1 70.8± 1.1
6000 67.3± 1.1 71.4± 1.1
10000 66.3± 1.1 72.3± 1.1
30000 66.2± 1.1 71.3± 1.1

3.3.2 Trigger Turn-On Curves

Trigger e�ciencies depend on constituents and physical properties of events. It is important to
identify which o✏ine conditions result in a stable trigger e�ciency as it is essential for physics
analyses to use triggers in regions where the triggers have stable e�ciencies. Trigger turn-on
curves show the trigger e�ciency dependence on the related variables and they are used to
identify the points where trigger e�ciency reaches a plateau. In other words, they are used
to determine the o✏ine cuts imposed on events that pass the trigger. The MET trigger turn
on is studied against the same quantity reconstructed o✏ine while the razor trigger turn on is
studied against

p
ŝ

R

, 1
�

R+1
. The desired trigger e�ciency plateau is at 99% e�ciency for MET

and 93% 9 for razor trigger. Statistics of 52 samples were not su�cient to study the trigger
turn-ons individually. Fortunately, trigger turn-on curves for individual samples showed similar
characteristics and we combined the 52 samples with respect to their cross sections in order to
have higher statistics and evaluated turn-on curves with the combined sample. After identifying
the trigger turn-ons globally, we cross checked and confirmed that the global turn-on curve
models well the individual samples’ turn-on curves.
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Figure 3.5: E�ciency of xe100 XE70

MET trigger curve for all events reaches the 99% e�ciency plateau at Emiss

T

= 200GeV . As

9Due to Gaussian distribution, 93% e�ciency in 2D corresponds to 99% e�ciency in 1D.

20



we studied the combination of MET and razor triggers, MET trigger turn-on is also evaluated
for events where the razor variables are not defined due to the condition of having 2 jets with
p

T

� 30GeV in the event and it behaves similar to global turn-on curve, please see Appendix B
for this turn-on curve.
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Figure 3.6: E�ciency of (ProdR170 2J15 XE55kxe100 XE70) and the resulting hyperbolic o✏ine
cut at 230 = (

p
ŝ

R

� 170) + ( 1
�

R+1
)

Razor trigger e�ciency per bin in ŝ

R

, 1
�

R+1
space is shown in the figure above. We observed

that the trigger turn-on curve follows an hyperbolic distribution. We followed the following
empirical approach to parametrize the trigger turn-on curve in two dimensions:

1. Impose thresholds on 1
�

R+1
,

2. Evaluate 1D e�ciency and ine�ciency curves in ŝ

R

bins where the events pass the imposed
thresholds on 1

�

R+1
,

3. Retrieve the points which reaches %99 e�ciency,

4. Fit the retrieved points to a hyperbolic function p0 = (
p
ŝ

R

+ p1)(
1

�

R+1
+ p2), fix p2 to 0

in order to decrease the number of free parameters.

We observed that the e�ciency reaches a plateau where the function is 230 = (
p
ŝ

R

�170)+( 1
�

R+1
)

Please see Appendix B for more details and the related figures.

3.3.3 Trigger E�ciency at the Plateau

Following the trigger turn-on curves, o✏ine cuts which let us work in the trigger e�ciency
plateau region were defined as y � 230 for the razor trigger where y = (

p
ŝ

R

� 170) + ( 1
�

R+1
)

and as Emiss

T

> 200 GeV for the MET trigger. These o✏ine cuts could be imposed on the ’OR’
combination of the triggers ProdR170 2J15 XE55 and xe100 XE70 in several ways. We studied
the following o✏ine cut combinations.

1. Razor trigger o✏ine cut condition is imposed on the trigger combination
(ProdR170 2J15 XE55kxe100 XE70) resulting in selection (ProdR170 2J15 XE55kxe100 XE70)

off
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2. Razor trigger o✏ine cut condition is imposed on ProdR170 2J15 XE55 and MET trigger
o✏ine cut condition is imposed on xe100 XE70, resulting in (ProdR170 2J15 XE55)

off

,
(xe100 XE70)

off

respectively and the combined ’OR’ selection
{(ProdR170 2J15 XE55)

off

k(xe100 XE70)
off

}
3. If the razor variables are defined, razor trigger o✏ine cut condition is imposed on the filtered

trigger combination. If the razor variables are not defined, MET trigger o✏ine condition
is imposed on xe100 XE70. Resulting in (ProdR170 2J15 XE55kxe100 XE70)

filter,off

,
(xe100 XE70)

no razor,off

respectively and the combined ’OR’ selection
{(ProdR170 2J15 XE55)

filter,off

k(xe100 XE70)
no razor,off

}
We observed that o✏ine cut 2 is the one which results in the maximum e�ciency gain at the
plateau and consequently, results presented here are based on {(ProdR170 2J15 XE55)

off

k(xe100 XE70)
off

}.
Please keep in mind that, we didn’t consider the background rejection of the trigger as this study
is focused to signal e�ciency of the trigger. However, in order to have a final decision on which
o✏ine cuts to apply, the background rejection of the trigger must be considered.

Table 3.5: Vector coupling, � = m

M

/3,
p
s = 8TeV

E�ciency of (xe100 XE70) at the Plateau [%]
m

M

[GeV] m

�

[GeV]
50 400

50 6.8± 0.2 21.7± 0.3
100 5.2± 0.2 22.4± 0.3
300 11.6± 0.2 23.5± 0.3
600 17.1± 0.3 22.8± 0.3
1000 21.0± 0.3 23.4± 0.3
3000 20.2± 0.3 25.0± 0.4
6000 19.7± 0.3 25.3± 0.4
10000 19.7± 0.3 25.3± 0.4
30000 19.8± 0.3 24.9± 0.4

Table 3.6: Vector coupling, � = m

M

/3,
p
s = 8TeV

E�ciency of (ProdR170 2J15 XE55kxe100 XE70) at the Plateau [%]
m

M

[GeV] m

�

[GeV]
50 400

50 9.5± 0.2 24.7± 0.4
100 7.6± 0.2 25.7± 0.4
300 14.9± 0.3 26.8± 0.4
600 20.6± 0.3 26.1± 0.4
1000 24.1± 0.4 26.6± 0.4
3000 23.6± 0.3 28.3± 0.4
6000 23.2± 0.3 28.4± 0.4
10000 22.9± 0.3 28.7± 0.4
30000 23.1± 0.3 28.4± 0.4
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Table 3.7: Vector coupling, � = m

M

/3,
p
s = 8TeV , Filter: 2 jets with p

T

� 30 GeV
E�ciency of xe100 XE70 at the Plateau [%]

m

M

[GeV] m

�

[GeV]
50 400

50 10.0± 0.3 28.1± 0.5
100 7.4± 0.3 28.8± 0.6
300 16.1± 0.4 31.4± 0.6
600 23.7± 0.5 30.9± 0.6
1000 27.7± 0.6 30.7± 0.6
3000 26.2± 0.5 32.2± 0.6
6000 26.9± 0.6 34.0± 0.6
10000 26.8± 0.6 33.9± 0.6
30000 26.9± 0.6 32.8± 0.6

Table 3.8: Vector coupling, � = m

M

/3,
p
s = 8TeV , Filter: 2 jets with p

T

� 30 GeV
E�ciency of (ProdR170 2J15 XE55kxe100 XE70) at the Plateau [%]

m

M

[GeV] m

�

[GeV]
50 400

50 16.2± 0.5 34.6± 0.6
100 13.1± 0.4 35.8± 0.7
300 23.9± 0.6 38.8± 0.7
600 31.6± 0.6 38.3± 0.7
1000 34.6± 0.7 37.9± 0.7
3000 33.9± 0.7 39.6± 0.7
6000 34.7± 0.7 40.8± 0.7
10000 33.8± 0.7 41.3± 0.7
30000 34.2± 0.7 40.5± 0.7
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Chapter 4

Conclusions

We studied the signal e�ciency of the proposed razor triggers for simplified dark matter model
samples by comparing the razor trigger and MET trigger combined e�ciency
(ProdR170 2J15 XE55kxe100 XE70) with the only MET trigger xe100 XE70 e�ciency. We ob-
served that the razor trigger selects unique events relative to the MET trigger and the addition
of the razor trigger results in a gain. The average gain without the o✏ine cut applied is ap-
proximately 5% where all events are considered and approximately 10% where only the events
with minimum 2 jets which satisfy p

T

> 30 GeV are considered. The average gain at the 99%
e�ciency plateau is approximately 3% where all events are considered and approximately 7%
where only the events with minimum 2 jets which satisfy p

T

> 30 GeV are considered.
This study is focused to MC12 signal samples with 8 TeV center-of-mass energy. The reason
for focusing to 8 TeV samples is the sensitivity loss due to the minimum leading parton p

T

re-
quirement in the 14 TeV MC12 samples. Please also note that we carried out and completed the
study before the final decision on the razor trigger was made. Therefore, the results presented
here are only indications of potential gains and a study with final razor triggers, new 14 TeV
samples is required to have a final conclusion.
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Part II

Studies on Top Jet Identification
with a Deep Learning Algorithm
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Chapter 1

Theoretical Introduction

1.1 Top Quark

Fundamental fermions of the Standard Model are categorized into groups by the types of interac-
tions that they experience [1]. Quarks are one of the two fundamental fermions of the Standard
Model, they carry non-integer electric charge and they are the only fermions that carry the
color charge1. Consequently, they are the only fermions which experience strong interaction in
addition to weak and electromagnetic interactions. Due to color confinement of QCD, particles
which carry color charges are not observed individually but observed in hadrons such as proton.
Although they can’t exist individually in nature, quarks and gluons can be produced freely at
colliders. The top quark is one of the six quarks of the Standard Model and its discovery in
proton-proton collisions was announced in 1995 by Fermilab [50], [51]. Since its discovery, the
properties of the top quark are studied in detail 2. The top quark is the heaviest fundamental
particle of the Standard Model with 173 GeV mass [55] and it carries +2/3 electric charge in
addition to the color charge. Hence, top quark is very di↵erent than the other quarks. It is
heavier than the W boson of the Standard Model, and it decays by first order weak interaction,
corresponding to a very short lifetime, via

t ! W

+ + q

where q stands for down(d), strange(s), bottom(b) quarks and where the W boson then decays
to a quark, antiquark pair or lepton accompanied by a neutrino [2] via

W

+ ! l̄ + ⌫ ,

W

+ ! q̄ + q

0
.

The decay mode with a W boson and a b quark is the only significant decay mode with a
branching ratio of 99% and the relevant Feynman diagrams are shown below.

W

t

b

⌫

l

W

t

b

q

0

q

Figure 1.1: Feynman diagrams of significant top quark decays

QCD is the dominant process at the hadron colliders and the collisions at the LHC produce
many quarks and gluons. Collision energies at LHC result in both high top pair production and

1Color charge is the QCD equivalent of the electric charge of QED.
2For examples of such studies please see References [52], [53], [54], [55].
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high single top quark production cross sections. Therefore, with its designed luminosities, LHC
is a true top quark factory and processes involving top quark can be studied in great accuracy.
Being a unique particle, top quark plays an important role at studying the Standard Model
and constraining models of new physics. In particular, it has a special role in the context of
electroweak symmetry breaking within and beyond the Standard Model [56].
Precise measurement of the top quark mass(m

t

) and mass di↵erence between top and antitop are
very important to test the Standard Model as the former is a fundamental parameter of the Stan-
dard Model and latter is a test of the CPT invariance [57]. Some other tests of Standard Model
with top quarks are on W polarization in top quark decays, perturbative QCD, chiral anoma-
lies, flavor changing neutral currents, top-Higgs Yukawa coupling [58]. In addition to studying
and testing the Standard Model, top quark plays an important role both as background and as
the associated particle in various beyond the standard model searches. Supersymmetry(SUSY)
is one of these extensions of the Standard Model. In SUSY searches at hadron colliders, the
top quark plays an important role as top quark production is a dominant background for such
searches and top quark can also be part of the signal, as the decay product of third generation
squarks [59]. Other important beyond the standard model searches are tt̄ resonances [60], vector
like quarks [61], invisible exotic particles [62] searches.
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Chapter 2

Top Tagging in ATLAS
Experiment

Top quark is produced predominantly in hadron-hadron collisions through strong interaction
and it decays rapidly. Identifying top quark by conventional particle identifications techniques
fail at high energies as the decay products of top quark are highly collimated at such energies.
In identifying the semi-leptonically decaying top quarks, one su↵ers from a lower branching
ratio compared to hadronically decaying top quarks and the lepton isolation with respect to the
b jet makes identification of semi-leptonic decaying top quarks challenging. Top tagging is a
relatively recent approach to identify boosted hadronically decaying top quarks, which avoids
reconstructing individual top decay products and instead uses large-R jets to reconstruct the
entire top decay chain.

2.1 Jets in ATLAS Experiment

Quarks and gluons produced at the LHC are not what we observe in the LHC detectors due to
color confinement and hadronization [63]. The gluon and quarks(except the top quark) hadronize,
forming baryons and mesons which afterwards decay in many stages. Due to the high energy of
the initially produced partons, decay products of the formed hadrons are highly boosted together
and they form jets. Therefore, each parton1 at the ATLAS detector is observed as a jet and the
jets’ measured properties can be linked to corresponding partons. Jets deposit large amount of
energy to the calorimeters and they are usually defined by the jet recombination algorithms such
as Cambridge-Aachen(C/A) [64], [65] and anti-k

T

[66], amongst which anti-k
T

is the default jet
recombination algorithm in ATLAS.

Di↵erent than the other quarks, produced top quarks at the LHC decay in the ATLAS
detector before hadronization, due to the short lifetime of the top quark. As it was emphasized
before, the top quark almost exclusively decays through the single mode t ! W

+ + b

2. Hence,
top quark is not observed as a jet but its decay products’ signatures, specifically a b jet and
decay products of W are observed.

2.1.1 Large Radius Jets

The center-of-mass energy of the LHC collisions has reached an unprecedented energy in the
TeV scale. Such collision energies produce large samples of heavy particles with a transverse
momentum that exceeds their rest mass, resulting in very high Lorentz boosts. Decay products
of such boosted heavy particles are highly collimated at the detectors that classical reconstruc-
tion algorithms which rely on a one-to-one jet-to-parton assignment are often not successful, in
particular for hadronic decays of such boosted objects [69]. Some examples of these decays are

1Except top quark.
2For recent related measurements please see References [67], [68].
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W,Z bosons’ and top quark’s hadronic decays. Consequently, techniques have been developed
to overcome the limitations arising from these boosted objects at the LHC. In the context of
large radius(large-R or fat) jets, jets are reconstructed with a larger radius parameter in order to
capture the energy of the complete hadronic decay in a single jet. The substructure information
of these large-R jets is used to identify heavy boosted object among the abundant jet production
at the LHC.
In addition to reaching unprecedented energies, LHC is reaching high-luminosity phase and
these two together increase number of pile-up events per bunch crossing. Therefore, dedicated
jet grooming techniques have been developed to separate QCD jets from jets of boosted object
decays and remove the pile up, soft radiation contamination in order to see the substructure of
the large-R jets clearly in such environments.

2.2 Jet Substructure

As it was presented in the previous section, jet grooming techniques and jet substructure analysis
is used to identify decay product jets in a large-R jet. In the ATLAS experiment three grooming
techniques are used: filtering [70], trimming [71] and pruning [72]. Brief information about
trimming is given below as trimmed large-R jets were used in this project.

Trimming The trimming procedure uses the constituents of the large anti-k
T

jet formed with
the large radius R and reclusters its constituents into smaller jets(subjets) with radius R

sub

by
using the k

T

algorithm. The ratio of the pi
T

of subjets to the p
T

of the large jet(pjet
T

) f = p

i

T

/p

jet

T

,
is used as a selection criterion. If the ratio f is smaller than a chosen value f

cut

, the subjet is
rejected. The subjets which pass the selection criterion are recombined into a groomed jet. The
trimming process is shown figuratively below.

Figure 2.1: Trimming [73]

2.2.1 Substructure Variables

Substructure variables provide information about the characteristics and the substructure of the
large-R jets. Boosted object tagging algorithms use di↵erent variables depending on the problem.
Substructure variables which are generally used for top tagging in ATLAS experiment [74] are
the trimmed mass of the large-R jet, N-subjettiness, k

T

splitting scales.

Trimmed mass The mass of the trimmed jet is more pile-up and radiation safe compared to
mass of the large-R jet without trimming. In addition, it provides good discrimination between
hadronic top quark jets and QCD jets. Therefore, it is used in top tagging algorithms.

k

T

Splitting scales The k

T

sequential recombination algorithm’s splitting scales are deter-
mined by clustering objects together according to their distance from each other. The substruc-
ture variables which are used for top tagging are determined by reclustering the constituents of
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the trimmed large-R jet with the k

T

algorithm and are defined by
p
d

ij

= min(p
Ti

, p

Tj

)⇥�R

ij

where �R

ij

is the distance between two subjets in (⌘,�) space and p

Ti

,p
Tj

are transverse mo-
menta of these two subjets. The k

T

splitting scales give information about the last recombination
steps and whether last recombination steps merge the decay products of massive particles.

N-subjettiness N-subjettiness variables are observables related to the subjet multiplicity.
Each ⌧

N

is a measure of how well jets can be described as containing N or fewer subjets. ⌧
N

are
defined by

⌧

N

=
1

d0

X

k

p

Tk

⇥�R

min

k

, d0 ⌘
X

k

p

Tk

⇥R

where R is the jet radius parameter in the exclusive k

T

algorithm, p
Tk

is the p

T

of constituent
k and �R

min

k

is the distance from constituent k to the axis of the closest subjet 3.
Ratios of ⌧

N

,

⌧

NM

=
⌧

N

⌧

M

are also generally used in order to discriminate hadronic top jets from QCD jets as they give
information about how likely the large-R jet has N or M subjets.

Top tagging by using substructure variables in the ATLAS experiment is proven to be suc-
cessful during Run-14. In particular, tagging algorithms which use set of substructure variables
perform very well. There has been interest in combining gained information from substructure
analyses in more complex ways in order to provide a better discriminant for boosted top quarks.
In addition to existing algorithms, several multivariate analysis(MVA) based taggers are being
studied. Some of these taggers use Toolkit for Multivariate Analysis(TMVA) [75] methods such
as boosted decision trees, neural networks. In this project, we studied the performance of a deep
neural network top tagger.

2.3 AGILEPack Deep Learning Framework

Machine learning techniques are used in di↵erent branches of science to handle complex problems
and large datasets. There has been great interest in machine learning over the past decade
which has led to highly optimized advanced algorithms. In particular, deep neural networks are
studied extensively and now they are considered to be the state of the art tools which extract
more complex features of the input.
As high energy physics requires analysis of huge amount of data, application of machine learning
techniques can be useful at many di↵erent levels. There have been studies on applications of
neural networks in high energy physics5 and flavor tagging algorithms based on neural networks
are already being used in the ATLAS experiment [78]. It was shown that deep learning algorithms
improve the discrimination between signal and background in physics analysis [79], however the
usage of deep neural networks are not yet common in high energy physics. The AGILEPack
deep learning framework applies modern deep learning techniques at a di↵erent level, which
is the particle identification at the ATLAS experiment. Top tagging algorithms based on a
previous version of AGILEPack were studied during Run-1 and showed significant performance
improvements.

2.3.1 Neural Networks

A standard neural network (NN) consists of simple, connected processors that are called neurons
[80] and the basic units of neural networks are defined by the activation functions acting on

3The axes within the jet are defined by exclusive kT clustering algorithm.
4See Reference [74] for studies on the performance of used top tagging algorithms.
5See References [76], [77] for examples.
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each neuron(f (i)()). Each neuron in the input layer is connected to the following layer’s neurons
by weights(W0) and biases(b0) of the neural network. Recursively, for each middle layer, the
neurons are connected to following middle layer’s neurons and the output of the current layer
is received as input at the following layer, finally reaching the last layer (output layer) of the
neural network. For any layer i, this can be shortly represented by

a(i+1) = f

(i)(W
i

a(i) + b

i

)

where a(i) is the input received at layer i, (W
i

, b

i

) are neural network’s weights and bias, f (i) is
the activation function of layer i, a(i+1) is the output delivered to layer i+1.
Several properties which characterize neural networks are presented below.

• Problem type: classification or regression
Neural networks can be used for two di↵erent problems which are predicting a continuos
valued output or predicting a discrete valued output. Former is called the regression
problem, the second is called the classification problem. Top tagging is a classification
problem as we want to predict if a large-R jet is a top quark (1 ) or not (0 ). Therefore,
the neural networks we use for top tagging are classifiers.

• Learning procedure
If the neural network is trained to find weights which make the neural net map to the
desired values (target) by minimizing the error between the output and the target, the
training procedure is called supervised learning. Whereas, if no information about the
target is used during the training, the training procedure is called unsupervised learning.
Unsupervised learning [81] can be used as a first step (unsupervised pre-training) for the
neural network’s actual training via supervised learning.

• Architecture
Architecture of a neural network defines how many hidden layers it has, and how many
neurons each layer consists of. Neural networks are categorized in two groups depending
on how many hidden (middle) layers they have. Shallow networks have few hidden layers,
whereas deep networks have many hidden layers. Definitions of few and many hidden
layers are not strictly defined as they are changing fast in time following the fast evolving
machine learning techniques and tools. In this study we used a neural network with 3
hidden layers and we refer to it as a deep network.

Deep Networks and Backpropagation Algorithm

Deep networks which are trained with supervised learning generally use backpropagation algo-
rithms. Backpropagation algorithm uses the method of gradient descent. A backpropagation
algorithm consists of two steps which is the feedforward step and the backpropagation of errors.
The backpropagation algortihm can be represented by the following mapping and error minimiz-
ing steps.
The goal of the algorithm is to map the input layer represented by the vector x to the target t
by the Neural Network N :

x
N�! t

where N is
a(i+1) = f

(i)(W
i

a(i) + b

i

)

applied recursively at each layer at the feedforward step. The neural network’s output results in
y ⌘ H(x,N ) with the hypothesis H. As the neural network cannot map the input to the target
perfectly, the mapping results in an error E(t,y), which the neural network tries to minimize. In
order to minimize the error, the algorithm first calculates the gradient of a cost function(@�/@✓)6

with respect to all the weights of the network. The gradient is then used to update the weights

6Cost function � is a chosen function of y and t, which gives information about the resulting cumulative error
of up-to-now considered training instances.
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aiming to minimize the cost function. Let us refer to the set of weights at time step t (W
t

, b

t

)
as ✓

b

, then the update rule of a generic network is

✓

t+1 = ✓

t

+�✓

t

with

�✓

t

= (µ� 1)�
@�

@✓

t

+ µ�✓

t�1

where �, µ are the training hyper-parameters, called the learning rate and the momentum respec-
tively. The learning defines the step size of the update, and the addition of the momentum helps
neural network to be more resistant to noise in the training sample. These hyper-parameters of
the neural network need to be optimized depending on the problem and the statistics in order to
achieve the best training of the neural network. Another important parameter, which in general
is embedded in the cost function, is the regularizer. The regularizing term is a function of the
regularizer and the training weights, it is added to the cost function in order to avoid very large
weights and consequently overfitting.
Other variables of a training procedure are the number of epochs, which defines the number of
passes over each event and the mini batch size which is the number of events to be considered
before the algorithm updates the gradient.

In summary, the performance of a neural network strongly depends on the architecture, basic
units of the neural network and hyper-parameters, regularizer, number of epochs, mini batch
size of the training procedure.

Figure 2.2: Example of a Deep Network

2.3.2 AGILEPack Deep Learning Framework

Algorithms for Generalized Inference, Learning, and Extraction Package(AGILEPack) is a C++
framework for deep learning which is designed for HEP purposes by Luke de Oliveira [82]. AG-
ILEPack includes rectified linear units, sigmoid units and linear units as basic units. Like many
other deep networks, AGILEPack uses a backpropagation algorithm.
The top tagging algorithm which is provided by the AGILEPack framework is called AGILETop-
Tagger. A previously studied AGILETopTagger was the result of an unsupervised pretraining
followed by a supervised training, by stacked denoising autoencoders. The unsupervised pre-
training helped the neural network to be optimized to avoid getting stuck in a local extremum.
The AGILEPack version that we used in this project is a new version of AGILEPack and it
makes use of a recent, well studied optimization algorithm called Adam: A Method for Stochas-
tic Optimization [83]. In addition, the rectifier linear units are recently included in AGILEPack,
which helps networks to be trained e�ciently without unsupervised pretraining. Therefore, only
supervised learning with the new version of AGILEPack is used.

Training weights c

w

are used in AGILEPack to define how much each jet updates the neural
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network weights by acting as a coe�cient to the learning rate, resulting in an e↵ective step size
by

� ! �

eff = c

w

� ) �✓

t

! �✓

eff

t

.

Choosing the optimal set of training weights is important as aggressively varying training steps
would harm the training of a deep learning network.

Adaptive Moment Estimation(Adam): A Method for Stochastic Optimization [83]
Adam is an algorithm for first order gradient based optimization of stochastic cost functions,
based on adaptive estimates of lower order moments. The method is aimed towards machine
learning problems with large datasets or high dimensional parameter spaces. It only requires
first order gradients and it computes individual adaptive learning rates for di↵erent parameters
(✓ : (W, b)) from estimates of the first and second moment of the gradients. It naturally performs
a form of step size annealing and it adjusts the two important training hyper-parameters: learning
rate and momentum. Adam was tested on di↵erent machine learning problems and it provides
good default settings for its hyper-parameters.
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Chapter 3

Top Tagging with AGILEPack
Deep Learning Framework

In this project we used simulated signal and background samples to study the performance of
AGILETopTaggers. The usage of MC simulations, rather than the collected data, is necessary for
purely supervised learning because the neural network needs to be trained with labeled large-R
jets and it is challenging to extract a pure set of top quarks from data.

Samples In order to study the identification of high transverse momentum(boosted) top quarks
with AGILEPack, we used the anti-k

T

large-R jets with large radius parameter R = 1.0, subjet
radius parameter R

sub

=0.3 and f

cut

= 5% trimming. The trimmed anti-k
T

jets were geomet-
rically matched with the condition �R  0.75 and they satisfied the criteria p

T

> 300 GeV,
|⌘| < 2. We used the corresponding jets from signal and background MC12 samples with a
center-of-mass energy of 14 TeV. The signal sample that we used was Z 0 ! tt̄, the background
samples we used were JZ3W, JZ4W dijet samples 1. We applied the following pre-processing to
this set of jets before training and testing the neural network. First, we prepared a full work-
ing sample by picking equal number of signal and background jets which satisfied the criteria
300 < p

T

< 1000 GeV2. It is important to train the neural network with equal number of sig-
nal and background jets to avoid biases which may occur during the training due to statistical
di↵erences in samples. Afterwards, in order to train and test the neural network in separate
samples, we used 70% of the total number of jets for training and 30% of the total number of
jets for testing in each sample(resulting in total ⇠ 590000 training and ⇠ 250000 testing jets).
It is important to point out that it is not always possible to construct all substructure variables
with meaningful values, consequently there are some jets which carry unphysical substructure
variables. These jets need to be taken care of during training and testing. In our samples, this
was a small fraction of jets and we never included these jets in the training samples whereas we
included them in the testing sample and introduced them as a source of ine�ciency. As a last
step of the pre-processing, we calculated the testing and training weights of the samples3. Test-
ing sample weights were calculated by combining the background samples’(JZ3W and JZ4W)
MC event weights with respect to their cross sections and filter e�ciencies and fitting the signal
sample’s(Z’) p

T

distribution to the resulting combined p

T

distribution of QCD background. The
1D reweighting of the signal sample to the background sample makes sure that the results on
the performance won’t be dependent on a particular signal shape. Resulting weighted number
of testing jets were ⇠ 5450000. Training sample weights(c

w

) were calculated by applying several
di↵erent reweightings as the optimal set of training sample weights were an open question. It is
important to emphasize here that, di↵erent than the testing weights, the training weights don’t
a↵ect the statistics of the training sample. Instead, they a↵ect the update rule of the training

1The initial samples were provided by Johannes Erdmann and Lily Asquith.
2We imposed this additional criteria to avoid very small or large weights.
3During the reweighting of the testing and the training samples, total number of weighted signal and back-

ground jets are kept equal.
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procedure. Therefore, the e↵ects of training with di↵erent reweighting scenarios were studied in
this project.
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Figure 3.1: Testing weights for signal and background
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Figure 3.2: p
T

distributions of signal and background

Training Top tagging with AGILEPack is based on the substructure variables. The choice of
the input variables are crucial for the deep learning algorithm as noise or any artificial properties
in the input variables of simulated samples can harm the deep learning algorithm. Therefore, it
is very important to use well defined and safe variables which provide good discrimination. We
used the variables:

• Trimmed mass

• k

T

splittings:
p
d12,

p
d23,

p
d34

• N-subjettiness: ⌧1, ⌧2, ⌧3, ⌧21, ⌧32
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which provide an input layer with 9 neurons. Next, the architecture of the deep network should be
defined by considering the number of inputs, statistics and the complexity of the input variables.
The neural network was trained to predict if the jet under consideration was a top quark or a jet
from the QCD background, which is represented by a single neuron at the output layer. Once
the input layer size and the output layer size are defined by the user, AGILEPack suggests a
heuristic architecture if the architecture is not defined by the user. Throughout this project,
we used the architecture suggested by AGILEPack which was a neural network with 3 hidden
layers. The hidden layers had 10, 6, 2 neurons respectively. The hyper-parameters were set to
default values suggested by Adam(↵ = 0.001, �1 = 0.9, �2 = 0.999, ✏ = 10�8), which adjusts
the learning rate and momentum by computing individual adaptive learning rates for di↵erent
parameters4. In addition, we trained the neural network with the regularizer=0.000001 in order
to avoid overfitting. As it was mentioned before, only supervised learning is used for training
in this project as recent studies showed that unsupervised learning is not needed if the neural
network is well optimized. We chose the number of supervised epochs to be 20 . The mini batch
size was chosen after comparing the performance of the neural networks trained with 1, 5, 10
mini batch sizes. The neural network trained with batch size 1 performed slightly better and
the mini batch size was fixed to 1 for the results presented here. Neural networks studied in this
project are always trained in the p

T

range 300 < p

T

< 1000 GeV, and ⌘ range |⌘| < 2. Training
in p

T

, ⌘ bins were not possible due to low statistics.

Performance evaluation After freezing the architecture, hyper paramaters and the training
procedure, we studied the performance of the taggers in terms of background rejection(1/✏

b

)
and signal e�ciency(✏

s

). Background rejection 1/✏
b

, is defined as the ratio of total number
of background jets in the testing sample to number of background jets which pass the signal
selection criteria. Signal e�ciency is defined as the the ratio of number of signal jets which pass
the selection criteria to total number of signal jets in the testing sample and the chosen range.

1

✏

QCD

=
N

QCD

total

N

QCD

tagged

, ✏

t

=
N

top

tagged

N

top

total

The jets with unphysical substructure variables were only included in N

QCD

total

and N

top

total

as they
were always rejected. This rejection had a very small e↵ect on our samples as the total weighted
number of jets didn’t change significantly5.

3.1 Training Statistics

Deep neural networks are designed to be trained with at least half a million jets and they achieve
their best performance with millions of events. We had limited statistics with the samples that
we used(⇠ 590000 training jets). Hence, we first studied the neural network’s performance de-
pendence on the training statistics in order to make sure that the neural network is reaching
a stable performance with our training samples. In order to study the dependence on training
statistics, while varying the training sample size, we used a common sample 6 to test the perfor-
mance of each neural network and compared their performances. The training sample sizes that
we used are shown in Table 3.1. We compared the performance of neural networks which were
trained with and without training weights7. The results are shown in Figure 3.3 and Figure 3.4.

We observed that the neural network which was trained with the least number of jets performs
worst, and the neural network which was trained with the greatest number of jets performs best
in general, although we see some irregularities in the performance of neural networks.
If the neural network is trained without weights, the neural network’s performance is not always

4We also tested the performance with several di↵erent learning rates and the default value given by Adam
indeed performed better.

5After this rejection, total weighted number of jets in signal reduces to 2724250 from 2724760, whereas in
background reduces to 2715590 from 2724760

6With 254400(unweighted) testing jets
7The training weights which are based on (norm mcevt)0.8 will be explained in the next section.
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Table 3.1: Training samples
Number of jets

Sample 1 74200
Sample 2 148400
Sample 3 222600
Sample 4 296800
Sample 5 371000
Sample 6 445200
Sample 7 519400
Sample 8 593600
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Figure 3.3: Performance comparison of neural networks which were trained with di↵erent sample
sizes and trained without training weights

improved with increasing the number of training jets until it reaches a certain value. The
performance di↵erence between training Sample 7 and Sample 8 appears to reach a more stable
performance. However, in order to have a final conclusion we would need to test the performance
with at least one other sample which has higher statistics than sample 8.
If the neural network is trained with weights, the neural network’s performance is not always
improved with increasing the number of training jets, however the di↵erence in the performance
decreases when the training samples have equal or greater than 445200 jets.
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Figure 3.4: Performance comparison of neural networks which were trained with di↵erent sample
sizes and with training weights based on (norm mcevt)j with j = 0.8

3.2 Training Weights

As it was mentioned earlier, training weights a↵ect how e↵ectively each jet updates the neural
network’s weights and biases. Optimal set of training weights would be a good proxy for the
testing sample, avoid biases and would not use extremely small or large weights. We studied the
e↵ect of the training weights by comparing the performance of the neural networks which were
trained with di↵erent set of training weights but with the same sample and training procedure.
The set of training weights we studied had di↵erent prioritized goals amongst the above features
of an optimal set. We compared the performances of the neural networks trained with the
following weights.

• No weight Training a neural network without applying training weights and comparing
it with the other neural networks is crucial to make sure that the training of the neu-
ral network achieves moderate performance independent of the training weights and to
understand the e↵ect of the training weights.

• 2D reweighting in p

T

� ⌘ with a flat p

T

distribution This reweighting is applied
with the goal of being independent of the statistical di↵erences across the p

T

spectrum.
We applied a 2D reweighting in order to not change the ⌘ distribution significantly while
reweighting and we made sure that the reweighting did not result in very small or large
weights. Resulting weight range is [0.34,16].

• 1D reweighting in p

T

: (norm mcevt)j with j = {0.5, 0.8, 1} We used these sets
of weights to find an optimal weight distribution which train the neural network with a
distribution that mimics the QCD background by using relative MC event weights while
avoiding a very wide weight range. As we wanted to avoid very large weights, we first
normalized the weighted number of jets to the total number of unweighted jets, which are
referred to as (norm mcevt). We compared the resulting p

T

distributions and performance
di↵erences between three smooth functions of (norm mcevt) in order to find which set of
weights performed best. The resulting weight ranges are given below.

1. (norm mcevt): Resulting weight range = [0.002,98]

2. (norm mcevt)0.8: Resulting weight range = [0.005,40]

3. (norm mcevt)0.5: Resulting weight range = [0.03,10]
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As a first comparison, performances of the neural networks in the whole p

T

region of our
samples in terms of signal e�ciency and background rejection are shown in Figure 3.5. We also
included two widely used basic substructure variable taggers in our performance plots in order
to compare the performance of the neural networks with these taggers. We observed that all
AGILETopTaggers significantly perform better than the substructure variable cuts. Additionally,
the neural networks trained with (norm mcevt)j where j = {0.5, 0.8, 1} outperform the neural
networks which were trained without weight and with a 2D reweighting in p

T

� ⌘.
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Figure 3.5: Performance comparison of neural networks which were trained with di↵erent training
weights. The neural network is trained and tested in the same p

T

window

As we applied di↵erent reweightings which result in significantly di↵erent p
T

distributions, it
was important to evaluate the performance di↵erences in high and low p

T

bins in order to make
sure that we were not improving the performance only in a certain region while worsening the
performance in other regions by applying the training weights.
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3.2.1 Performance in p
T

Bins

We evaluated and compared the performances of the neural networks8 in the low(300 < p

T

< 500
GeV) and high (500 < p

T

< 1000 GeV) p
T

bins. We observed that all AGILETopTaggers per-
form better in the high p

T

region despite the fact that the training distribution in p

T

changes
significantly. Amongst the (norm mcevt)j training weight based taggers, (norm mcevt)0.8 gen-
erally performs slightly better. The performances in low and high p

T

bins are presented in Figure
3.6 and Figure 3.7.
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Figure 3.6: Performance comparison of neural networks which were trained with di↵erent training
weights. The neural network is tested in the low p

T

bin
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Figure 3.7: Performance comparison of neural networks which were trained with di↵erent training
weights. The neural network is tested in the high p

T

bin

8Please keep in mind that the neural networks are always trained in the following pT and ⌘ ranges 300 < pT <

1000 GeV, |⌘| < 2.
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3.2.2 p
T

Dependence of Performance at 50% Working Point

We observed significant di↵erences in background rejections which correspond to 50% signal
e�ciency between substructure variable taggers, neural networks trained with the weights based
on (norm mcevt)j and neural networks trained with the weights based on the 2D reweighting
in p

T

� ⌘ with a flat p

T

distribution. In this section we compare the p

T

dependence of signal
e�ciencies and background rejections at 50% working points(WP) of low and high p

T

bins9.
Although there are minor di↵erences in p

T

dependence of top taggers, we didn’t observe any
significant di↵erence that could be harmful.
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Figure 3.8: Comparison of signal e�ciency dependence on p
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in the 300 < p
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< 500 GeV bin
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Figure 3.9: Comparison of background rejection dependence on p
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950% WP is the operating point corresponding to an overall e�ciency of 50% in the considered pT bin.
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3.2.3 Performance in |⌘| Bins

As a last step, we compared the performance in two |⌘| bins(|⌘| < 0.7 and 0.7 < |⌘| < 2) because
in only one training reweighting ⌘ is taken into account. Including ⌘ in the reweighting in addition
to p

T

is expected to be a secondary e↵ect. We observed that AGILETopTaggers perform better
in high |⌘| bin and AGILETopTagger trained with weights based on (norm mcevt)0.8 is again
the most performant tagger in both bins.
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Figure 3.12: Performance comparison of neural networks which were trained with di↵erent train-
ing weights. The neural network is tested in the low ⌘ bin

 t∈Signal Efficiency 
0.4 0.5 0.6 0.7 0.8 0.9

 Q
C

D
∈

Ba
ck

gr
ou

nd
 R

ej
ec

tio
n 

1/

5

10

15

20

25

30

35

| < 2η < 1000 GeV, 0.7 < |
T

Top Tagging Efficiency vs. Rejection, 300 < p

AGILETopTagger - Training weights
no weight
2D Flat

0.5(norm_mcevt_weight)
0.8(norm_mcevt_weight)

(norm_mcevt_weight)
Substructure variable taggers

12d

32τ

| < 2η < 1000 GeV, 0.7 < |
T

Top Tagging Efficiency vs. Rejection, 300 < p

Figure 3.13: Performance comparison of neural networks which were trained with di↵erent train-
ing weights. The neural network is tested in the high ⌘ bin
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3.3 Final results

We observed that AGILETopTagger that is the result of the neural network trained with weights
based on (norm mcevt)8 performs best in the full p

T

and ⌘ spectrum as it provides a good balance
between having a reasonable training weight range for the deep learning algorithm and providing
a good proxy for the testing sample. Hence, we chose it as the benchmark AGILETopTagger for
final comparison with other top tagging algorithms. We compared its performance with the basic
N-subjettiness ⌧32 tagger and early Run-2 pre-recommendation top taggers based on ⌧32, and
the calibrated trimmed mass. We evaluated the performance of the Run-2 pre-recommendation
top tagger by varying the cut on ⌧32 while applying the recommended cuts on the trimmed mass.
Please note that in our samples we don’t have the information about the calibrated trimmed
mass and the evaluated performance of this tagger is only an indication of its performance in
our samples.
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Figure 3.14: Performance comparison of AGILETopTagger with the basic substructure variable
taggers in the low p

T

bin
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Figure 3.15: Performance comparison of AGILETopTagger with the basic substructure variable
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bin
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Chapter 4

Conclusions

As a first step, we studied the e↵ect of the training sample size. Although the training of the
deep network resulted in relatively stable top tagging performance with our training sample, one
would need higher statistics in order to study the deep networks in more detail and optimize
further the AGILETopTagger.
We focused in the studies on the performances of the neural networks trained with di↵erent
sets of weights and we observed di↵erences in the performances of these neural networks. All
AGILEPack neural networks outperformed the basic substructure taggers. In addition, all
AGILEPack neural networks performed better in high p

T

(300 < p

T

< 1000 GeV) and high
|⌘|(0.7 < |⌘| < 2) regions independent of the training weights. The AGILETopTagger based on
(norm mcevt)0.8 training weights showed the overall best performance in addition to not having
a strong p

T

dependence, which clarifies that the training weights do not create a bias in certain
regions of the p

T

spectrum.

Outlook and plans for future Studies carried out in this project were a small part of a
much wider e↵ort on top tagging with advanced machine learning techniques. Adopting ad-
vanced machine learning techniques in object identification require extensive studies to adapt
these techniques for high energy physics specific problems.
In order to make AGILETopTagger one of the top tagging algorithms in the ATLAS experiment,
first of all AGILETopTagger should be trained and tested with MC15 simulated samples which
provide higher statistics and a better description of the high-luminosity, high energy environment
of the LHC. In particular, it is crucial to study the top tagging performance as a function of
pile-up with these samples. Moreover, in this study AGILETopTagger’s performance was only
compared with the basic substructure variable cut based taggers, and the fair comparison of its
performance with other MVA methods’ are necessary to study the benefits or the hazards of
employing a deep learning algorithm in top tagging.
In addition to necessary tests with new simulated samples, the performance on data should be
evaluated and the performance agreement between data and MC simulation should be studied
in order to use AGILETopTagger in physics analyses.
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Appendix A

Part I - Sample list

mc12 8TeV.182328.MadgraphPythia AUET2BCTEQ6L1 dmV DM50 MM50 W3 QCUT80.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182329.MadgraphPythia AUET2BCTEQ6L1 dmV DM50 MM100 W3 QCUT80.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182330.MadgraphPythia AUET2BCTEQ6L1 dmV DM50 MM300 W3 QCUT80.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182331.MadgraphPythia AUET2BCTEQ6L1 dmV DM50 MM600 W3 QCUT80.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182332.MadgraphPythia AUET2BCTEQ6L1 dmV DM50 MM1000 W3 QCUT80.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182333.MadgraphPythia AUET2BCTEQ6L1 dmV DM50 MM3000 W3 QCUT80.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182334.MadgraphPythia AUET2BCTEQ6L1 dmV DM50 MM6000 W3 QCUT80.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182335.MadgraphPythia AUET2BCTEQ6L1 dmV DM50 MM10000 W3 QCUT80.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182336.MadgraphPythia AUET2BCTEQ6L1 dmV DM50 MM30000 W3 QCUT80.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182364.MadgraphPythia AUET2BCTEQ6L1 dmV DM400 MM50 W3 QCUT80.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182365.MadgraphPythia AUET2BCTEQ6L1 dmV DM400 MM100 W3 QCUT80.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182366.MadgraphPythia AUET2BCTEQ6L1 dmV DM400 MM300 W3 QCUT80.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182367.MadgraphPythia AUET2BCTEQ6L1 dmV DM400 MM600 W3 QCUT80.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182368.MadgraphPythia AUET2BCTEQ6L1 dmV DM400 MM1000 W3 QCUT80.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182369.MadgraphPythia AUET2BCTEQ6L1 dmV DM400 MM3000 W3 QCUT80.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182370.MadgraphPythia AUET2BCTEQ6L1 dmV DM400 MM6000 W3 QCUT80.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182371.MadgraphPythia AUET2BCTEQ6L1 dmV DM400 MM10000 W3 QCUT80.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182372.MadgraphPythia AUET2BCTEQ6L1 dmV DM400 MM30000 W3 QCUT80.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182337.MadgraphPythia AUET2BCTEQ6L1 dmV DM50 MM50 W3 QCUT300.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182338.MadgraphPythia AUET2BCTEQ6L1 dmV DM50 MM100 W3 QCUT300.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182339.MadgraphPythia AUET2BCTEQ6L1 dmV DM50 MM300 W3 QCUT300.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182340.MadgraphPythia AUET2BCTEQ6L1 dmV DM50 MM600 W3 QCUT300.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182341.MadgraphPythia AUET2BCTEQ6L1 dmV DM50 MM1000 W3 QCUT300.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182342.MadgraphPythia AUET2BCTEQ6L1 dmV DM50 MM3000 W3 QCUT300.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182343.MadgraphPythia AUET2BCTEQ6L1 dmV DM50 MM6000 W3 QCUT300.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182344.MadgraphPythia AUET2BCTEQ6L1 dmV DM50 MM10000 W3 QCUT300.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182345.MadgraphPythia AUET2BCTEQ6L1 dmV DM50 MM30000 W3 QCUT300.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182373.MadgraphPythia AUET2BCTEQ6L1 dmV DM400 MM50 W3 QCUT300.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182374.MadgraphPythia AUET2BCTEQ6L1 dmV DM400 MM100 W3 QCUT300.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
mc12 8TeV.182375.MadgraphPythia AUET2BCTEQ6L1 dmV DM400 MM300 W3 QCUT300.merge.NTUP SUSY.e2219 a188 a205 r4540 p1328
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Appendix B

Part I - Trigger turn-on curves
and parameterization
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Figure B.1: E�ciency of xe100 XE70 where there are less than 2 jets with p
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� 30 GeV
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Figure B.3: Parametrizing the turn-on curve: Fit the retrieved points from the previous figure
to a hyperbolic function. Shown parameters are imposed after rounding the original resulting fit
parameters
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