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The Large Hadron Collider (LHC) particle accelerator at CERN collides head-on groups of
protons called bunches. The number of proton-pair collisions per bunch crossing is denoted
µ. A larger µ is desired as it increases the probability of producing rare and interesting ele-
mentary particles, such as a Higgs boson. For this reason the LHC plans to increase µ from
36 in the data taking period 2015-2018 (Run-2) to 200 in 2025-2028 (Run-4). The particles
resulting from the proton-collisions in one bunch crossing are recorded simultaneously in
the detector in a 3D image, denoted an event. A larger µ presents the drawback that the
event is complex and the particles are harder to reconstruct. A key component of the event
reconstruction is to reconstruct tracks of particles from the individual point hits of particles
in the inner detector. Track reconstruction computing requirements surpass the LHC bud-
get at µ = 200 due to large hit combinatorics. Alternative reconstruction methods become
necessary.

In this thesis simulated data for a future general-purpose LHC detector are used. The sim-
ulations are offered by CERN via the TrackML challenge. The solution involves two steps.
The first step is for each hit to identify its 20 neighbouring hits along the direction from
the centre of the detector. The hits are grouped together in a bucket with an approximate
nearest neighbour method. In the second step, a deep neural network (DNN) is trained to
predict for each hit in the bucket the output value of +1 or -1. The value +1 is assigned to the
hit if it belongs to the particle with the largest number of hits in the bucket, also called the
majority particle. The DNN input is formed by the spatial coordinates x, y, z of the 20 hits
in the bucket. The machine learning task is a multi-label binary classification problem. The
model hyper-parameters are optimised. The performance of the best model is evaluated at
hit-level, using the figures of merit of precision and recall. The efficiency of particle track
reconstruction is measured to be 71.3%, which suggests the work in this thesis is promising
for further research at CERN.
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Chapter 1

Introduction

Elementary particle physics is the field of physics that describes the elementary particles
and their interactions. The theoretical model denoted by the Standard Model (SM) was
created about 50 years ago and is a very successful theory. All its predictions have been
confirmed experimentally, including the discovery of the Higgs boson in 2012 at CERN. But
theorists believe that there are phenomena predicted by theories beyond the SM that may
be discovered at CERN in the next decade, in the future data taking runs, Run-3 Run-4 and
Run-5, at the Large Hadron Collider (LHC). There are four major experiments, two of which
have general-purpose detectors: ATLAS and CMS. These experiments hope to discover new
phenomena like supersymmetry and dark matter. These detectors are huge digital cameras
in three dimensions (3D) made of three different layers. Inner detectors reconstruct tracks of
charged particles and measure their momenta via ionization energy. Calorimeters measure
the total energy of both charged and neutral particles in a destructive process. The final
layer is the muon detector, which measures muons tracks as minimum ionization particles.

The LHC collides bunches of protons. The number of proton-pair collisions per bunch cross-
ing (denoted by the pileup µ) increases steadily every year, to maximise the probability to
observe rare processes. Higher µ values indicate busier collision events and this makes it
harder to reconstruct the particles. The latest value of µ in Run-2 ended in 2018 is about 36.
In Run-4 a value of 200 is expected. The potential combinatorics of the events exceeds the
available computing power, even with an increased budget. The solution is to reconstruct
tracks via new machine learning techniques. This is the problem addressed in this thesis. A
public simulated dataset for a general-purpose detector at µ=200 produced for the TrackML
Challenge is analyzed in this project. Two key techniques used are a deep neural network
and an approximate nearest neighbour technique.

Sections 1.1 and 1.2 describe the Standard Model and its limitations. Section 1.3 describes the
experimental setup, and Section 1.4 describes the proton collisions, and Section 1.5 describes
the tracking reconstruction.

1.1 Standard Model

The Standard Model is a theory that describes the elementary particle (fermions and bosons)
and their interactions via three fundamental forces. The SM elementary particles are illus-
trated in Figure 1.1 and are described in more detail below.

There are 12 fermions representing the constituents of matter. They have a semi-integer
spin (1/2) and they are divided into two categories: quarks and leptons. The quarks have
fractional electric charges and form baryons and mesons. The six quarks are up (u +2/3),
down (d −1/3), charm (c +2/3), strange (s −1/3), top (t +2/3), and bottom (b −1/3). The three
electrically-charged leptons have a negative charge: the electron (e −), the muon (µ −), and



2 Chapter 1. Introduction

FIGURE 1.1: Elementary particles of the Standard Model

the tau lepton (τ −). These have corresponding neutrally-charged leptons caled neutrinos
(νe

0, νµ
0, ντ

0). Together these particles form matter. For each matter particle there is an
anti-matter particle that has an opposite electric charge.

Fermions interact with each other via the exchange of elementary particles called bosons.
Bosons are carriers of the elementary forces and have integer spin (1). There are eight type of
gluons (g) that carry the strong force. The photon (γ) is responsible for the electromagnetic
force. The W+, W− and the Z0 bosons carry the weak force.

There is also another type of boson, a scalar elementary particle of spin zero (0), called
the Higgs boson. The Higgs boson is the latest elementary particle of the Standard Model
discovered in 2012, by the ATLAS and CMS collaborations at CERN. It is predicted by the
mechanism explaining how the elementary particles acquire mass.

1.2 Limitations of the Standard Model

Although all particles predicted by the Standard Model have been discovered, there are
phenomena not yet explained by the SM.

The matter-antimatter asymmetry is not yet understood. It is believed in the Big Bang equal
quantities of matter and antimatter were produced. But the observable Universe seems to
consist of matter only.

The matter-energy content of the Universe consists of only 5% of regular baryonic matter.
About 25% is represented by dark matter, an unknown form of matter that interacts only
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very weakly with regular matter. It is thought this matter is key to the evolution of the
Universe.

Overall, it is believed that the Standard Model is in fact only a low-energy approximation of
a higher-energy theory. New particles and interactions are predicted by a variety of models
of physics beyond the Standard Model (BSM). Such models have already been ruled out by
current searches at CERN. The search for new physics will continue in Run-3, Run-4 and
Run-5 at the LHC.

1.3 Experimental Setup

At the moment the Large Hadron Collider (LHC), which is situated at CERN, is the most
powerful proton-proton collider in the world. After the Tevatron and the Large Electron-
Positron Collider (LEP) era, a new machine was needed for new discoveries in particle
physics. The LHC was designed to achieve a centre-of-mass energy

√
s = 14 TeV. Two

of the biggest goals of the LHC are to study and test the SM, as well as to search for new
physics BSM. The LHC accelerator complex is illustrated in Figure 1.2.

FIGURE 1.2: LHC Accelerator Complex

This project is affiliated to the international collaboration of the A Toroidal LHC ApparatuS
(ATLAS) [1][2]. ATLAS is the largest of several detectors at the LHC. ATLAS is one of two
general-purpose particle physics detectors at the LHC, the other being CMS. The two col-
laborations of ATLAS and CMS perform similar research programs. New discoveries must
be observed by both detectors to be believed as true.

ATLAS is a cylindrical detector around the colliding proton beams. It is formed of four
main subdetectors. The closest to the beam is the inner detector (ID). The ID measures the
momentum vector of charged particles which ionise the gas inside the detector. An electric
current is measured, giving the position of the particle in the detector, also called a hit. A
collection of hits forms a track. The next detectors the particle encounters are two types of
calorimeters, which measure the energy of the particle in a destructive way. The calorime-
ter is formed of two parts. First there is the electromagnetic calorimeter (EMCal), which
measures the energy of electrons, positrons and photons. Then the hadronic calorimeter
(HadCal), which measures the energy of hadrons, which originate from quarks and gluons.
Several hadrons travelling together, after having originated in the same particle, are called
jets. Muons deposit very little energy in the calorimeters, being minimum ionising parti-
cles. The fourth subdetector detects energy depositions of muons and thus measures their
momenta. These subdetectors of ATLAS are illustrated in Figure 1.3.
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FIGURE 1.3: ATLAS detector and its sub-detectors

1.4 Proton Collisions

The LHC collides proton beams head-on. The beam is not continuous. Instead, the protons
are grouped into up to 2808 bunches. Each bunch contains approximately 115 billion pro-
tons. Proton bunches collide every 25 nanoseconds (ns), at a bunch collision rate of 40 MHz.
The number of proton collisions during a bunch crossing is called pile-up and is denoted by
µ. The data from the proton collisions from one bunch crossing are recorded together by the
detector, called an an event. Usually only one of the collisions produces a rare interesting
particle, such as a top quark, a W, Z, or Higgs boson, or BSM particles like supersymmet-
ric candidates or dark matter. The remaining collisions represent a background for the rare
one. The rare collision is called hard scatter (HS) and the rest of the collisions are called pile-
up collisions (PU). Event reconstruction in general and charged-particle track reconstruction
in particular becomes harder with increasing µ.

Yet increasing µ is exactly the strategy employed at the LHC for Run-1 and Run-2, in order
to increase the collision luminosity and thus the probability to produce rare particles. The µ
average values during Run-2 were about 13, 25, 38, 36 in 2015, 2016, 2017 and 2018, respec-
tively, as seen in Figure 1.4 [3]. In Run-3, Run-4 and Run-5, the aim is to increase the pile-up
even further to µ = 200.

FIGURE 1.4: LHC pile-up (µ) increase during Run-2 [3]
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1.5 Tracking

A group of hits reconstructed in the inner detector (ID) and belonging to the same particle
is called a track. Reconstructing particle tracks is called tracking. Tracks are produced only
by charged particles that ionise the gas in the ID. The ID is held in a magnetic field, so that
the trajectories of positively and negatively charged particles curve in opposite directions.
The radius of the curvature allows measurement of the particle momentum. Neutral par-
ticles, such as photons, neutrinos, and neutral hadrons, do not produce tracks. Because of
the magnetic field, tracks are geometric helices pointing approximately to the origin of the
primary proton-proton interaction. Reconstructing one track from hits is illustrated in Fig-
ure 1.5. Reconstructed hits and tracks for an entire collision event are overlaid in Figure 1.6,
using simulated data for a general-purpose particle detector. The data is from the TrackML
Challenge dataset used in this project.

FIGURE 1.5: Reconstructing one track from hits in a general-purpose detector.
In green a good reconstruction, in orange two bad reconstructions [4].

FIGURE 1.6: Tracking for a general-purpose detector illustrated by recon-
structing tracks (orange lines to the right) from hits (black individual 3D

points to the left) [5] [6].

Tracking is a key component of event reconstruction and is used in several of its steps. The
first step is to reconstruct vertices. Every proton collision in a bunch-crossing produces its
own particles, out of which only the charged particles produce tracks. These tracks are
clustered in a vertex. From the vertices in an event, the most interesting one (usually at
higher energy for a rare particle) is called the primary vertex, the rest being pile-up vertices, as
illustrated in Figure 1.7 for the ATLAS detector.
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FIGURE 1.7: Left: Diagram of the collision of proton bunches producing sev-
eral vertices: one primary vertex from a rare interesting particle, and several
pile-up vertices [7]. Right: Example of several vertices reconstructed in the

ATLAS detector [4].

The second step is to reconstruct charged particle tracks. For example, an electron is re-
constructed as a track in the ID, plus an electromagnetic shower in the EMCal. A muon is
reconstructed as a track in the ID, plus energy deposits in the muon detector. A charged
hadron is reconstructed as a track in the ID, plus a hadronic shower in HadCal.

Current tracking algorithms employed at ATLAS [8] and CMS [9] use a combinatorial ap-
proach. First a track seed is found and later the track is computed. These algorithms require
many calculations and thus require high CPU consumption. There is a stringent need to find
algorithms with reduced CPU consumption to allow scaling from an LHC pile-up of about
µ = 36 in Run-2 to µ = 200 in Run-3 and beyond. As illustrated in Figure 1.8 (left), the
CPU consumption increases more than quadratically with µ. Tracking represents the largest
part of the event reconstruction CPU. Figure 1.8 (right) illustrates how the CPU consump-
tion increases even further for Run-4 and Run-5. Especially for Run-4, scheduled for 2026,
significant algorithm improvements are needed to improve tracking CPU requirements by
a factor of approximately 10 [4].

FIGURE 1.8: CPU consumption increases more than quadratically with both
pile-up (left) and years (right) [5] [6].

A promising avenue is machine learning algorithms. Such algorithms require a lot of train-
ing data and require a long time to train (learn), but are usually fast to predict (infer). The
field of machine learning has experienced a rapid growth in last few years. In this thesis a
deep neural network algorithm is studied.
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Chapter 2

TrackML

2.1 TrackML Challenge

To bring expertise for particle tracking for Run-3 to CERN from the computer science and
machine learning communities, several LHC experiments have worked together to invite
machine learning teams from outside CERN to compete in the 2018 Kaggle challenge called
the TrackML Particle Tracking Challenge [10] [4] [5] [6] and a follow-up challenge in 2019 [11].

The candidates were offered a dataset of simulated charged particles in a general-purpose
detector, representative of ATLAS and CMS at CERN. The simulation contains both the true
and reconstructed position of the track hits, allowing for a labelled dataset on which learning
can be performed. The dataset was obtained using a common tracking software framework
at CERN called ACTS [12] [13]. Events of top quark production (tt̄ events) were simulated
at µ = 200, leading to about 10 thousand tracks per event. tt̄ events are known to produce
many particles and consequently also many tracks.

Tracks are reconstructed in the inner detector, which is simulated to be formed of three types
of silicon detectors, to be representative of both the ATLAS and CMS at the planned High
Luminosity LHC (HL-LHC). As illustrated in Figure 2.1, the three silicon detectors are the
pixels, short strips and long strips, in order of increasing radius.

The coordinate system is right-handed and cartesian. The z-axis points along the beam axis
(longitudinal axis). The x-y plane is the transverse plane. The azimuthal angle φ with values
within [0, 2π) is the angle in the transverse plane to the x-axis. The polar angle θ with values
within [0, π] is the angle to the z-axis. In particle physics, instead of the angle θ often the
pseudo-rapidity η is used, where η = − ln tan(θ/2).

In this coordinate system, the three silicon detectors are presented in the longitudinal plane
in the left side of Figure 2.2. The horizontal lines represent the barrel, and the vertical lines
represent the two end-caps of the detector. The pixel detector is shown in the transverse
plane in the right side of 2.2.

2.2 Dataset

Ten thousand events were simulated with collisions in the centre of the detector, leading
to about 0.1 billion tracks. Each track has about 10 hits, or 3D points, in the simulated
detector, leading to a total of 1 billion points, and about 100 GBytes of data [6]. The dataset
from TrackML is described in detail in [14] [15] [16]. A subset of 100 events of the TrackML
dataset is used in this study.



8 Chapter 2. TrackML

FIGURE 2.1: Tracks are reconstructed in the inner detector, which is simulated
to be formed of three types of silicon detectors. From beam pipe outwards the

pixels, short strips and long strips [4] [14].

The detector volumes for barrel and end-caps are divided into unique volume_id. Each
volume is divided into layers described by layer_id, which for technical reasons have only
even values. Each layer is divided into modules identified by module_id. For each event,
four files are provided [15], as described below.

The hit file contains the reconstructed hit information: hit_id, the numerical identifier of
the hit within the event, the measured coordinates x, y, z of the hit in mm, the volume_id,
the layer_id, and the module_id.

The truth file contains the generated (also called truth) hit information: the hit_id, the
particle_id of the particle that generated this hit, the truth coordinates tx, ty, tz in mm,
and the truth momenta tpx, tpy, tpz.

The particles file contains for each particle_id the particle type, its velocities and momenta,
the electric charge and the number of hits.

The cells file contains for each hit_id the cell that recorded the hit. A cell is the smallest unit
in a particle detector. A cell is identified uniquely by two channel numbers, similarly to two
coordinates of a pixel in an image.

In this thesis only the hit and truth files of 100 events simulated with µ = 200 are stud-
ied. They are read in as data frames, and concatenated by columns. As a result, for each
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FIGURE 2.2: The three detectors are organized in volumes, layers and mod-
ules [4] [14].

hit_id one knows the reconstructed coordinates, the truth coordinates, truth momenta and
to what particle_id it belongs to.

2.3 Simulated Truth Particles and Reconstructed Hits

One random event with index 99 is studied. Its behaviour is however representative for all
events. A typical event produces about 10 thousand simulated particles, with a distribution
of the number of hits per particle illustrated in Figure 2.3, with a mean of 10.8 and a standard
deviation (rms) of 3.3.
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FIGURE 2.3: Distribution of the number of hits in truth particles in event 99

Particles produced in the collisions in the centre of the detector travel in all possible direc-
tions. Four tracks made of hits for truth particles, going to both left and right, at an angle
closer to the transverse plane, or to the z-axis, are shown in Figure 2.4. The images confirm
that the hits for each particle are grouped along a line. The z and radius r coordinates are fit
to a line of equation (r = a0 + a1 · x). a0 represents the intercept, or the radius when z = 0,
at the centre of the detector. The values of a0 that are close to zero are consistent with the
particles being emitted from the centre of the detector. a1 represents the slope of the line.
The fact that a0 have different values, both positive and negative, show that particles are
emitted in all directions. z0 represents the z position when the radius r = 0, meaning when
the particle line intersects the z-axis. The fact that the z0 values are close to zero is consistent
again with the particles being emitted in the centre of the detector.
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FIGURE 2.4: Four truth particle tracks from event 99 travelling in all possible
directions shown in the longitudinal r-z plane. A straight line of equation
r = a0 + a1 · x is fitted to the points. a0 is the intercept and a1 is the slope. z0

is the z coordinate when the radius r = 0.

The reconstructed hit coordinates x, y, z are very close to the corresponding truth values, as
illustrated in Figure 2.5. The reconstructed scale and resolution values are therefore good.
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FIGURE 2.5: Distributions of reconstructed values minus truth values for x, y,
z in mm for all truth particles in event 99

Their coordinates, plus the r coordinate, are illustrated in Figure 2.6.

2.4 Detector Components

The grouping of hits inside the detector is used later in this study to evaluate the perfor-
mance of the model in each detector sub-volume called volume_id. The detector is formed
by a central barrel and two end-caps. There are three layers of volumes from the beam
outwards. The volumes from the barrel (end-caps) have the modules alligned horizontally
(vertically). Most hits are detected in the volumes of the inner layer, and in those of the
barrel. This is consistent with hard-scatter collisions emitted mostly at high pT, so close to
the transverse plane. The volume_id numbers are visualised in Figure 2.7, along with the
percentage of the hits in each volume_id, as measured in 100 simulated event in this study.
Also Figure 2.8 illustrates the clustering of hits by volume_id, layer_id, and module_id. The
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FIGURE 2.6: x, y, r, z distributions in mm for all truth particles in event 99

2D scatter plots between the volume_id and the module_id on one side and the r and z on
the other side are illustrated in Figure 2.9.

FIGURE 2.7: Percentage of hits from 100 events in each volume ID and layer
ID
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FIGURE 2.8: Distributions of reconstructed hits in the various volume ID,
layer ID and module ID, for all truth particles in event 99

FIGURE 2.9: 2D scatter plots of the reconstructed hits between the volume ID,
module ID versus r and z coordinates, for all truth particles in event 99
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Chapter 3

Problem Setting

In this study a machine learning algorithm is developed to reconstruct tracks from recon-
structed hits in an event. The dataset used is comprised of 100 events from the TrackML
challenge, described in Chapter 2. This chapter describes what is processed for a given
event, how the input and output datasets are formed, and how the question is formulated.

3.1 Question

Ideally, one would want like to take as input all hits reconstructed in the detector in one
event and return all the reconstructed particle tracks, each track with its own set of hits.
This ideal problem is too hard to solve due to the very large combinatorics.

The problem may be simplified by asking a new question: How to identify all the particle
tracks in a given group of hits and also each particle with its own hits. It turns out this is
still too hard. So an even simpler problem is attempted.

In each group of reconstructed hits, there is one truth particle that has the largest number of
hits in the group. This particle is denoted the majority particle or the leading particle. If a hit
belongs to the majority particle, then it is assigned a label of +1 and is considered a positive
hit (signal). If not, it is assigned a label of 0 or -1. In this study a label of -1 is used and it is
considered a negative hit (background). The number of positive hits in the group represents
the majority particle size and is denoted by nbPositiveHit. The question now becomes for
each hit in the group whether it belongs or not to the particle with the largest number of
hits in the group (the majority particle). In other words, the question is given the x, y, z
coordinates of all the hits in the group to predict the label of each hit in the group (+1 or -1).

3.2 Approximate Nearest Neighbours

A preliminary step is therefore to select groups of hits from the event that are close to each
other in such a way that the group is likely to contain at last one real particle. An algorithm
denoted approximate nearest neighbours is employed. The algorithm is a form of unsupervised
learning, described in detail in Reference [17]. The collection of hits with x, y, z coordinates
is represented mathematically by a 3D point cloud.

Usually the distance metric used to measure closeness is the Euclidean distance in 3D (using
the x, y, z coordinates). However, in this case, the angular distance is the better metric to
select hits from the same direction of travel from the centre of the detector outwards, as
illustrated in Figure 2.4 for several truth particles. Nearest neighbours can be computed
exactly via brute force techniques, but they consume too much resource in terms of memory,
CPU and time. Given the large number of hits in one event, it is preferred to use a more
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efficient algorithm, even if it may not return the exact result at every query. Such methods
are called approximate nearest neighbour methods. The algorithm contains two main steps,
illustrated in Figure 3.1.

FIGURE 3.1: There are two steps in the approximate nearest neighbour
method. First create an index from the positions of all hits in the event. Then

query hits to find the nearest neighbours to each hit.
.

The first step takes as input the x, y, z coordinates of all the reconstructed hits in an event
and returns as output a tree that groups the hits along their direction relative to the centre
of the detector. The tree is built using random projections. At every node, a random sample
of two hits is selected and the hyper-plane equidistant to both hits is chosen to divide the
space into two further subspaces. This is done k times, to obtain an ensemble method of
a forest of trees. k is a hyper-parameter to tune and is set to 10 in our study. The result is
called an index.

In the second step, a query hit is given and the N-nearest-neighbour hits along the direction
are returned (including the query hit), where N is a parameter chosen by the user. The
resulting group of hits is called a bucket or a hash of hits. The operation is done for every hit
in the event, resulting in as many buckets as there are hits in the event. The procedure is
then repeated for each event in the sample.

There are several code implementations of the Approximate Nearest Neighbors algorithm.
In this project the implementation in the Annoy library (Approximate Nearest Neighbors
Oh Yeah) [18] is used. Annoy is fast, since it is coded in C++, but easy to use from Python as
the library provides a Python wrapper (or bindings). Annoy is an efficient library because
a static read-only file is produced for the index, allowing it to be queried simultaneously in
parallel by many threads, like when running on several CPU cores, or a GPU, or in a real pro-
duction environment. The Annoy implementation supports the two step process described
above: building one index made of trees and querying in parallel for several points.

Since the count of the number of hits in a truth particle tails off just before 20, as can be
seen in Figure 2.3, the number of hits per bucket is chosen to be 20. The pseudo-code used
in this project to produce a bucket for each hit in each of the 100 events is described in
Appendix 7.1.

3.3 Buckets

With the procedure above the distribution of the size of the majority particle, defined in
Section 3.1 and denoted nbPositiveHit, is obtained and illustrated in Figure 3.2. This is
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done for both the Train and Test samples that are described later in Section 4.5. The mean
and rms of the histograms are 8.5 and 2.8, respectively. The interpretation is that the average
bucket contains fewer than 10 hits belonging to the same particle.
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FIGURE 3.2: Distribution of the majority particle size, or nbPositiveHit
.

Similar to the reconstructed hits above, another aspect realised from Figure 2.3 is that only a
fraction of truth particles have a number of hits smaller than 10. It is desired to reconstruct
a particle with a significant number of hits in the bucket. A threshold of 10 is chosen. If a
bucket has nbPositiveHit < 10, then all its hit labels are set artificially to -1, leading to it
having nbPositiveHit = 0. In Figure 3.3 the default threshold of 0 (Min00) and the chosen
threshold of 10 (Min10) are overlaid for both the Train and Test samples. The Train and Test
samples represent 70% and 30% of the events, respectively, as detailed in Section 4.5, and
behave similarly. For each sample, the histograms for nbPositiveHit ≥ 10 are identical
(visualised as one colour, blue). After this change the imbalance between the fraction of
positive and negative hits is increased in the favor of the negative hits. A further balancing
is needed, as described in Section 4.6.

0 5 10 15 20
NbPositiveHit per bucket

0

1000000

2000000

3000000

4000000

Nu
m

be
r o

f b
uc

ke
ts

Train: 7353542 buckets
Min00
Min10

0 5 10 15 20
NbPositiveHit per bucket

0

250000

500000

750000

1000000

1250000

1500000

1750000

2000000

Nu
m

be
r o

f b
uc

ke
ts

Test: 3218871 buckets
Min00
Min10

FIGURE 3.3: Overlay of the number of positive hits per bucket by default
(Min00) and after moving all hits to negative for buckets with less than 10

number of positive hits (Min10). Train (left) vs Test (right).

3.4 Multi-Label Binary Classification

To mathematically formulate the track reconstruction, for each bucket one must ask as many
questions as there are hits in the bucket. Does the hit belong to the majority particle, equiv-
alent to asking whether it has the label +1 (signal) or -1 (background)? For a single hit, it
is a classification problem. For the entire bucket, it is a multi-label classification problem.
This can be answered via a supervised machine learning model. It is a supervised problem,
as the labels are known. It is a classification problem, as the answers are categorical (yes
or no, +1 or -1). There are only two possible answers, so it is a binary classification. It is a
multi-label classification, as for each data sample (bucket), several questions are asked (one
for each hit). The exact procedure is described in detail in Chapter 4.
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Chapter 4

Machine Learning

4.1 Introduction

As described in Section 3.4, to reconstruct tracks from the reconstructed hits in an event, one
must solve a multi-label binary classification problem. This chapter describes how Machine
Learning addresses this question.

Since the labels are known, the task is a supervised problem. Supervised learning can be
either classification or regression. Since the labels have categorical values of +1 or -1, this is
a classification problem. There are several types of classification problems.

Multi-class is a classification with more than two classes. In this category each sample is
assigned to one and only one label. For example, a colour can have only one label from
several choices: red, green, or blue. In other words, there is only one question, and the
answer to each question can be one of three or more labels.

Multi-label is a classification where each sample is mapped to a set of labels, each being
binary. This is like asking several questions, the answer to each being either yes or no. In
this case, the question asked is if the output is +1 or -1 for the hit. Therefore, this is a multi-
label classsificaton problem.

The general case is a multi-class multi-label classification problem: where there are many
questions, the answer to each being selected from a finite set of categorical labels.

4.2 Neural Network Architecture

Several machine learning algorithms can be used to perform a classification task. The most
common are decision trees and neural networks [19]. Several decision trees are trained and
grouped together into an ensemble method such as random forests and boosted decision
trees. In general, to find a multi-dimensional function representing a non-linear relation
between input and output, it is efficient to train a neural network (NN). NNs are statistical
models inspired by biological neural networks in the brain. The brain contains millions of
neuron cells forming a network where electro-chemical impulses are passed between them.
An artificial neural network is formed by a number of interconnected artificial neurons, or
nodes. In this project NNs are used.

One NN characteristic is that they contain weights along paths between neurons. The
weights can be tuned with an algorithm that learns from observed data to improve the
model. The NN learns through optimisation techniques, like gradient descent. A NN is rep-
resented by an architecture formed by layers of artificial neurons, which are able to receive
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several inputs. Each input is processed by an activation function to determine the output.
A simple model is formed by an input layer followed by a single hidden layer and then an
output layer. Each layer may contain one or more neurons. A NN with more than one hid-
den layer is called a deep neural network (DNN). For the best DNN performance, the model
has to be designed according to the problem being solved, and then the hyper-parameters
are tuned. A general structure of a fully connected DNN is presented in Figure 4.1.

FIGURE 4.1: Diagram of the general architecture of a DNN. Credit image:
O’Reilly. [20].

The Universal Approximation Theorem states that a neural network with one hidden layer can in
principle approximate any N-dimensional function to an arbitrary degree of accuracy, given
a sufficiently large (though finite) number of nodes. In practice however, it is more suitable
to use multiple hidden layers connected in series [19].

In a fully connected NN, each node takes a weighted linear combination of the outputs from
nodes of the previous layer, adds its own bias value, and applies an activation function. The
node output represents the input to neurons of the next layer, as illustrated in Figure 4.2.
The activation function is chosen via optimisation for each neuron when the architecture of
the NN is defined.

FIGURE 4.2: Diagram of a neuron or node in a NN, with its weight inputs,
bias and the output via the activation function. Credit image: The Fork [21].

Once the NN architecture (the layers, nodes and activation functions) is defined, the total
function of the NN is parametrised by all the weights for connections between nodes plus
the biases of each node. Training the NN means learning these weights and biases so that
the NN can predict the output when new data not seen before is taken as input.
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4.3 Hyper-Parameters

Several hyper-parameter choices can be made depending on the question being asked: the
number of hidden layers, number of nodes on a hidden layer, the activation function of
nodes in the hidden layers, the activation function of nodes in the output layer, the learn-
ing optimizer, the loss function, and the batch size. In the plots of this section the hyper-
parameters that are retained for the best performing model are coloured in red, to illustrate
their performance relative to other possible hyper-parameters.

The problem is a multi-label binary classification. Given a collection (bucket) of 20 hits,
the question is whether the hit belongs to the particle with the largest number of hits in
the bucket. If the hit belongs to the majority particle, the label +1 is applied, otherwise the
label 0 or -1 is applied. A preliminary study suggests that the latter option using a label of -1
provides better results. With this choice, there remains only a limited number of appropriate
activation functions for the output layer and loss functions.

Firstly, the output value of the NN prediction fixes the choice of the activation function on
the last layer to the hyperbolic tangent (TANH), which has values between -1.0 and 1.0. The
logistic regression function, also called sigmoid, is not appropriate because it has values
between 0.0 and 1.0, illustrated in Equations

tanh x =
sinh x
cosh x

=
ex − e−x

ex + e−x =
e2x − 1
e2x + 1

(4.1)

and

S(x) =
1

1 + e−x =
ex

ex + 1
. (4.2)

and on the left-hand side of Figure 4.3. Two more activation functions are possible for values
between -1.0 and 1.0. The square non linear (SQNL) is described by Equation

SQNL (x) =



−1, x < −2.0

x +
x2

4
, −2.0 ≤ x < 0

x− x2

4
, 0 ≤ x < 2.0

1, x > 2.0

. (4.3)

and the soft sign (SOSI) function by Equation

SOSI (x) =
x

1 + |x| . (4.4)

All three functions reach the values of -1.0 and 1.0, though for different values of x. SQNL,
TANH and SOSI reach the value of 1.0 (-1.0) for x values of exactly 2.0 (-2.0), of around
π ∼ 3.14 (-π ∼ −3.14) and for ∞ (−∞), respectively, as illustrated in the right-hand side of
Figure 4.3.

There are only two appropriate loss functions for the target values of -1.0 and 1.0: the (reg-
ular) hinge function and the squared hinge function. Denoting y the predicted output and t
the true target output (label), the hinge function is given by Equation
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FIGURE 4.3: Overlaid potential activation functions for the final layer. Left:
hyperbolic tangent (tanh) and logistic regression (sigmoid). Right: tanh,
square non linear and soft sign. tanh is chosen as our output labels are -1.0

and 1.0.

Loss function hinge : l(y) = max(0, 1− t · y), (4.5)

and the squared hinge by Equation

Loss function squared hinge : l(y) = [max(0, 1− t · y)]2. (4.6)

Their relative behaviour is illustrated in Figure 4.4 for t = −1.0 (left) and t = 1.0 (right).
These loss functions never become negative. For t = 1.0, for y ≥ t, the loss function is
exactly zero. For y < t, the loss function gradually increases. The squared hinge does not
have a discontinuity at y = 1.0 and at high values increases more than the regular hinge,
applying a bigger penalty for large deviations. The same is valid for y = −1.0, but in the
opposite direction.
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FIGURE 4.4: Overlaid loss functions of (regular) hinge and squared hinge for
varying predicted y, for a fixed true y of -1.0 (left) and 1.0 (right).

The functions above apply to a pair of predicted y and true t values. In this problem, a
loss function must be evaluated for each hit. The final loss function for the entire sample
represents a sum over all the buckets in all events, and for each bucket the sum over each of
the 20 hits, as exemplified in Equations

Loss function hinge : l(y) = ∑
bucket

∑
hit

max(0, 1− thit · yhit) (4.7)
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and

Loss function squared hinge : l(y) = ∑
bucket

∑
hit
[max(0, 1− thit · yhit)]

2. (4.8)

Another choice to make is that of the activation functions for the nodes of the hidden lay-
ers. Besides the already-mentioned sigmoid and hyperbolic tangent functions, the Recti-
fied Linear Unit (ReLU) is introduced. ReLU is a common activation function for neural
networks, including for more advanced neural networks such as convolutional neural net-
works (CNN) or deep neural networks (DNN). ReLU is rectified from the bottom, meaning
its values are zero for negative inputs and return the same value as the input for positive
inputs. ReLU can be summarized by Equation

ReLU : R(x) = max(0, x). (4.9)

While both the function R(x) and its derivative are monotonic, the function also has some
drawbacks. Firsly, it is not differentiable at zero. Secondly, since for all negative values the
input is exactly zero, for methods learning with gradient descent, the ability to learn is re-
duced. To address this problem, a variation of ReLU is introduced, namely the Exponential
Linear Function (ELU), described by Equation

ELU : E(x =

{
α(ex − 1), x < 0
x, x ≥ 0

. (4.10)

For positive values, the function remains the same. But for negative values, an exponential
curve appears, tending smoothly to a constant value α. ELU has several advantages over
ReLU: it is fully continuous and differentiable, and does not have the vanishing gradient
problem for gradient descent learning. Its main disadvantage is that it is slower to compute
for negative values, but this may be worth it for a more precise result. The comparison of
the ReLU and ELU functions is illustrated in Figure 4.5.
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FIGURE 4.5: Overlaid activation functions of ReLU and ELU, with α = 1.0

Another hyper-parameter to tune is the number of hidden layers and the number of nodes
on each hidden layer. The Universal Approximation Theorem suggests that one layer with a
very large number of nodes is enough to learn any arbitrary function. But in practice it is
worth having several consecutive layers of fewer nodes per layer. That forms a deep neural
network.
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Another option in the architecture of the NN is whether to use a regularisation layer, in
particular a dropout layer [22]. Sometimes the resulting model is too complex relative to
the quantity of input data, leading to overfitting during training. Overfitting is similar to
memorisation of the input data, leading to not be able to predict correctly on new data. To
avoid overfitting, regularisation techniques are used. Typical methods add a new term to the
loss functions. Other techniques add a dropout layer. The dropout method randomly sets
some of the inputs to 0.0 with a frequency f , and reweights the other inputs by 1/(1− f ),
so that the total sum of inputs remains constant. The value of f is a hyper-parameter to be
optimised. The location of the dropout layer is usually between the hidden layers and the
final layer. The dropout method is applied only during training, and not during testing or
infering on new data.

Another choice related to the learning method is the learning optimiser. Two algorithms
based on stochastic gradient descent are compared, namely Adam [23] and AdaDelta [24].
For both, their default parameters are used, the most important being the learning rate of
0.001. Adam is very computationally efficient, while AdaDelta uses an adaptive learning
rate.

4.4 Learning Methods

NN training learns on the training dataset and tests on the testing dataset, described in
Section 4.5. Running once over all the data from training and testing represents an epoch.
During an epoch, events are analysed in groups called batches. The number of epochs to run
and the number of events in each batch can be optimised.

Let’s take a look at how the NN training happens. At first, the NN has random values for
the weights and biases. For each of the events in the first batch, data comes in, and the NN
predicts output values. At first these are very different from the true desired output value.
To evaluate how far away the predicted output is from the desired output, a loss function is
defined that can be chosen from several formulas, but have the generic form of a sum over
the absolute values of the difference. The goal of the NN training is to update the values
of the weights and biases so that the loss function is minimized. After the first batch, the
NN changes the weights via a back-propagation algorithm using the optimiser algorithm.
For each new batch, the weights and biases change, and become continously closer to the
correct values, as the loss function becomes gradually smaller. When all the training events
are used, the first epoch is finished. The NN function at this point is then applied to the
testing dataset, which is not split in batches, and a loss function is also calculated. The
entire procedure repeats for the number of epochs chosen. At the end, the final weights and
biases define the final NN model that has been learned.

4.5 Train and Test Split and k-fold

The k-fold validation is a procedure used to test the effectiveness of a machine learning
model. It is used especially if the data are limited. Normally, the data are split in two equal
parts (train and test), corresponding to k=2. For a general k, the data are split randomly into
k groups. k-1 groups are used in training and the last one is used in testing. The operation
is repeated by permuting the groups, so that each group is used only once in testing. The
final result is obtained by averaging out the permutations.
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The split between train and test does not have to be done in equal parts. In this project the
split is done with k=2, 70% in train and 30% in test. There are 100 events. Since by the laws
of particle physics, events simulate independent particle collisions, one strategy is to divide
the events randomly. As NN training takes a significant amount of time, it is useful to be
able to check whether the performance has reached a plateau. In each step of 10 events, the
first 7 are used for training (Train sample) and the following 3 events are used for testing
(Test sample). After each step, a check is made whether the performance has reached a
plateau. The pseudo-code is described in Appendix 7.1.

4.6 Balancing Datasets

It is common practice in ML classification problems that the signal is much rarer than the
background. This is called an unbalanced dataset. The solution is to balance the dataset by
increasing the weights of signal events such that the total sum of weights of signal equals
the total sum of weights for background. NN learning uses these weights. A balanced
dataset is used for training, without a bias towards one category or the other. For testing, the
unbalanced dataset is used in order to represent the real-world situation where the balancing
ratio is not known.

From studies in Chapter 2, it is decided that all buckets with fewer than 10 hits with label
+1, have their label set to -1. This has the result that buckets with nbPositiveHit between 1
and 9 now have nbPositiveHit of 0.

The NN training performs better if equal number of buckets are given for each value of
nbPositiveHit. For this reason, a number of buckets with nbPositiveHit between 10 and 16
are removed such that there remain equal number of buckets with nbPositiveHit between
10 and 17. No buckets are removed with nbPositiveHit between 18 and 20, as they are
already too few.

The two operations above make the dataset even more unbalanced towards the negative
hits. For the final rebalancing of positive and negative hits, a number of buckets with
nbPositiveHit=0 are removed, such the total number of positive and negative hits in the
sample are equal. About 130k buckets remain in the balanced training dataset. The testing
set remains unbalanced, with roughly 3.2M buckets.

4.7 Hyper-Parameter Tuning

The hyper-parameters are tuned by choosing the models that perform best in the test sam-
ple over 300 epochs. The performance metrics used are the accuracy and loss that result
directly from Keras/TensorFlow after the training. In the plots of this section, the best
model summarised in Section 4.7.3 is compared with alternative models where all hyper-
parameters are kept constant, except one that is changed. Training on 1200 epochs on an
unbalanced test dataset takes too long. For this reason, for the purpose of choosing the best
hyper-parameters the test dataset is also balanced, and only 300 epochs are used. The per-
formance of the best model is evaluated when trained in 1200 epochs on the unbalanced test
dataset, as described in Chapter 5. From this study the best performining hyper-parameters
are chosen. When the performance of several hyper-parameters is similar, the simplest or
most commonly used hyper-parameter is chosen. The resulting final model is presented in
Section 4.7.3.
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4.7.1 DNN Architecture

A comparison of the number of hidden layers is studied. The performance is similar for
different values, and 3 hidden layers is retained for the final model, as it provides a slightly
better performance, as illustrated in Figure 4.6.
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FIGURE 4.6: Comparison of different numbers of hidden layers. 3 hidden
layer is best. Binary accuracy and loss in Train and Test balanced samples.

A comparison of the number of nodes on the hidden layers is studied. For simplicity, in this
study it is considered the same number of nodes on each hidden layer. The performance
is similar for different values, and 200 nodes on the hidden layers is retained for the final
model, as illustrated in Figure 4.7. This represents 10 times more than the nodes on the
output layer.
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FIGURE 4.7: Comparison of the ratio of the different number of nodes on the
hidden layers divided by the number of nodes on the last layer. k=10, or 200
nodes on each hidden layer, is best. Binary accuracy and loss in Train and Test

balanced samples.

A comparison of the activation functions for the hidden layers, namely ReLU and ELU, is
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performed. For simplicity, in this study it is considered that all nodes of all hidden layers
have the same activation function. The performance is similar between the two options,
so the standard and commonly used ReLU is retained for the final model, as illustrated in
Figure 4.8.
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FIGURE 4.8: Comparison of ReLU and ELU activation functions on the hidden
layers. ReLU is chosen for the final model. Binary accuracy and loss in Train

and Test balanced samples.

A comparison of adding or not adding a regularisation function via the dropout layer at the
end of the hidden layers is studied. The performance is better by using a dropout layer, as
illustrated in Figure 4.9.
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FIGURE 4.9: Comparison without and with a dropout layer for regularisation.
A dropout layer is used in the final model. Binary accuracy and loss in Train

and Test balanced samples.

A comparison of the activation functions for the last layer, namely TANH, SQNL and SOSI,
is studied. The performance is similar for the three options, so the standard and mostly used
TANH is retained for the final model, as illustrated in Figure 4.10.
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FIGURE 4.10: Comparison of TANH, SQNL and SOSI as activation functions
on the last layer. TANH is used in the final model. Binary accuracy and loss

in Train and Test balanced samples.

4.7.2 DNN Learning

Moving on from the hyper-parameters that define the geometry of the deep neural network
to those defining its learning method, a comparison of the optimisers, Adam and AdaDelta,
each with its default parameters, is studied. The performance of Adam is significantly better
than that of AdaDelta, so Adam is retained for the final model, as illustrated in Figure 4.11.
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FIGURE 4.11: Comparison of Adam and AdaDelta optimisers for the learning
method. Adam is used in the final model. Binary accuracy and loss in Train

and Test balanced samples.

A comparison of the loss functions used to learn the weights and biases of the DNN via
gradient descent, regular hinge and squared hinge, is studied. Their performance is similar,
so the standard and mostly used regular hinge is retained for the final model, as illustrated
in Figure 4.12.

The conclusion is that the learning part of the hyper-parameters tuning by comparing var-
ious batch sizes. The best performance is obtained for 50000, which is retained for the final
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FIGURE 4.12: Comparison of regular and square hinge loss functions for DNN
learning. Regular hinge is used in the final model. Binary accuracy and loss

in Train and Test balanced samples.

model, as illustrated in Figure 4.13.
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FIGURE 4.13: Comparison of various batch sizes for DNN learning. A batch
size of 50000 is used in the final model. Binary accuracy and loss in Train and

Test balanced samples.

4.7.3 Best Model

The problem structure fixes the number of nodes on the input layer to 60 (3 coordinates
for 20 hits), and of the output layer to 20 (1 boolean for 20 hits). The DNN architecture
and learning methods are optimised as hyper-parameters, whose options are limited by the
choice of representing the answers yes and no by 1.0 and -1.0, respectively. The hyper-
parameters that describe the best model are summarised as follows.

There are 3 hidden layers, each with 200 nodes, or 10 times more than the number of nodes
in the output layer. A reminder is that the input layer has 60 nodes (3 coordinates x, y, z for
each of the 20 hits in the bucket) and the output layer has 20 nodes (an output of -1.0 or 1.0
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for each of the 20 hits in the bucket). A dropout layer (0.2) is added at the end of the hidden
layers. The activation function for the hidden layers is the rectified linear unit (ReLU). The
activation function for the last layer is hyperbolic tangent (tanh). The loss function is the
(regular) hinge function. The batch size is 50000.

While the choice of hyper-parameters is done using 300 epochs and the balanced test dataset,
the final result uses 1200 epochs and the unbalanced test dataset.

4.8 Predicting or Inference and Figures of Merit

Once the model is trained, it can be applied to a new dataset to infer or make a prediction.

Besides the value of the loss function across the entire dataset, there is also another figure
of merit of how well does a NN perform in training and testing. It is called accuracy and
is related to the number of of true positives or false negatives. The larger the accuracy, the
better.

For the training dataset, the loss and accuracy values always improve. But in the testing
dataset they can start to degrade if we train for too many epochs. By degrading it means
that the loss value starts to grow, and the accuracy value starts to decrease. That is called
over-training and consists of memorizing the inputs, and thus not being able to predict
correctly any more for new inputs.

The confusion matrix is a table that summarises the performance of a binary classification
model, as illustrated in Table 4.1.

TP FP
FN TN

TABLE 4.1: Confusion Matrix.

The four metrics presented in the table are true positive (TP), false positive (FP), false nega-
tive (FN), and true negative (TN). Based on these four numbers further figures of merit are
derived.

The accuracy defines what percentage of the total predictions are classified correctly, either
as TP or TN, as defined by the Equation

Accuracy =
TP + TN

TP + TN + FP + FN
. (4.11)

The precision defines the percentage of the predicted positive that are actually positive, as
defined by Equation

Precision =
TP

TP + FP
. (4.12)

The recall defines the percentage of actual positive that are correctly predicted, as defined
by the Equation
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Recall =
TP

TP + FN
. (4.13)

The equivalents of the precision and recall can be constructed also for the negative values,
as if the negative values are the sought target. The negative predicted value is the negative
equivalent of precision and it represents the percentage of the predicted negative that in
reality are also negative, as defined by Equation

Negative Predicted Value =
TN

TN + FN
. (4.14)

The true negative rate is the negative equivalent of the recall. It defines the percentage of
the real negative that are also predicted as negative, as defined by Equation

True Negative Rate =
TN

TN + FP
. (4.15)

The pseudo-code to calculate the metrics is described in Appendix 7.2.

4.9 Software Used

Several software Python libraries are used to perform this study, including data manipula-
tion, the NN training, the figure of merit evaluation and plotting.

Numpy is a Python programming library, which is a coding support for large multi-dimensional
arrays and matrices [25].

PANDAS is a data manipulation and analysis library [26]. It is an open source library that is
made mainly for working with relational or labeled data. It provides various data structures
and operations for manipulating numerical data and time series. It is fast, has high perfor-
mance and productivity. A data frame is a two-dimensional data structure with labeled data
(rows and columns). Pandas uses numpy behind the hood.

Jupyter Notebook is an important tool in the data science field. It is a web-based interac-
tive computing platform [27]. The Notebook combines code, equations, text, visualisation,
interactive dashboard and other media. It works in line code, using blocks.

Matplotlib is used for producing the plots in this thesis, both 1D and 2D [28].
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Chapter 5

Model Performance

In this chapter the performance metrics of the best deep neural network model are de-
scribed. The hyper-parameter values for the best model are enumerated in Section 4.7.3.

5.1 Training Metrics

In Figure 5.1 the binary accuracy and loss function are presented. These result directly from
training in Keras and Tensorflow. The Train dataset is balanced. While in general the Test
dataset is unbalanced, for these plots Test is also balanced. This is done because it would be
too slow to train the NN with 1200 epochs with Test unbalanced. Training is done on the
balanced Train dataset. Prediction is done on the unbalanced Test dataset.

5.2 Hit-Level Metrics

In this section the metrics at the hit level are studied. A bucket is made of 20 hits. Figure 5.2
presents at the top the distribution of the number of positive hits (nbPositiveHit), and
at the bottom the distribution of the number of hits predicted to be positive, with Train
on the left and Test on the right. The distributions are normalised, so their shapes can be
compared. The number of events used in Train relative to Test is 7 to 3. Furthermore, the
Train dataset is balanced, keeping only a subset of the buckets, while the Test dataset is
unbalanced, keeping all of its buckets. In both datasets all values of nbPositiveHit < 10
are set artificially to 0, effectively saying there is no hit belonging to an interesting particle
in this bucket. Furthermore, the Train dataset is balanced, so that some of the buckets with
nbPositiveHit between 10 and 17 are eliminated, so that equal numbers of buckets for each
nbPositiveHit remain. Since the distribution is falling (as seen in the Test plot), all values
take the lower value of bin 17.

Tests were done with values flattened from 10 to 14, through 10 to 20. Ending the interval
lower than 17 would not have a training distribution flat enough. Ending the interval higher
than 17 would leave very few buckets to train on. Therefore values for bins 18-20 are left
unchanged, as they are too small.

At the bottom of Figure 5.2 there are the equivalent plots after prediction using our model.
Comparing the actual values on top with the predicted values at the bottom, the same fea-
tures in the plots are observed. There is a tall bin at nbPositiveHit = 0, followed by nearly
empty bins. Then the distributions starts to grow at nbPositiveHit = 10, just as in the
desired output distribution. For the higher bins, the relative shape does not agree fully
to the desired output. For Train, instead of being flat, the distribution increases with larger
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FIGURE 5.1: Binary accuracy and loss, resulting directly from training in Keras
and Tensorflow. Note that while Train is balanced, Test is also balanced, as it

would be too slow to have it unbalanced.

nbPositiveHit. For Test, the distribution decreases as expected, but not nearly as fast. Over-
all, however, the model behaves quite well, relative to many other hyper-parameter settings
tried.

Figure 5.3 presents the 2D distributions of the output predicted vs output in terms of the
number of positive hits. The colour coding is proportional to the number of entries in the
2D histogram. As expected, there is a peak at (0, 0). These events have exactly zero number
of positive hits (after moving all values smaller than 10 to 0), and are also predicted to have
exactly zero number of positive hits. There is nothing between 1 and 9. And for values
≥ 10, there is a diagonal for the Train balanced. When the training is accurate, a diagonal
is expected because the predicted output will be similar to the actual output. For the Test
unbalanced, the diagonal is harder to see. But indeed most entries are in the top left corner
of this region, as expected.

From these plots it can be concluded that in the balanced dataset (Train and Test) a diagonal
can be seen. In the Test unbalanced it is harder to see, but values still look relatively flat in
1D.

Figure 5.4 presents figures of merit at hit level for each volume_id in the detector. By looping
over all buckets and all hits, both the true and predicted output labels for each hit are known.
Each hit prediction can be either TP (True Positive), FP (False Positive), FN (False Negative),
or TN (True Negative). The number of hits in these four categories in each volume_id is
counted. From these, for each volume_id several figures of merit are estimated: accuracy,
precision, recall, predicted output negative and true negative rate. They all need to be as
high as possible, ideally 1.0. As is known from the bias-variance trade-off, it is impossible
for any model to satisfy all criteria. For this reason, a model with overall good performance
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FIGURE 5.2: Output and output predicted 1D
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FIGURE 5.3: Output and output predicted 2D. In Train balanced, a diagonal is
seen. In Test unbalanced, it’s harder to see.

across all categories is chosen.

5.3 Particle-Level Metrics

Two numpy arrays of dimension two are used: the true output and the output predicted
by the model. Each row represents a bucket. There are 20 columns, representing the 20
hits in the bucket. A for loop over buckets is made. For each bucket a loop over hits is
made. Each hit has a value of -1 or +1 for the output and for the predicted output. For the
current bucket, the number of hits that are positive (nbPositiveHit) is counted. A count
is also made for those that are both positive and in addition predicted to also be positive
(nbTruePositiveHit). A bucket with nbPositiveHit ≥ 10 is considered to contain a truth
particle. If in addition the bucket also has nbTruePositiveHit/nbPositiveHit > 80%, it is
also considered to have reconstructed that particle correctly. A count is made of the buckets
that have a truth particle. Then a separate count is made of those buckets that have a truth
particle, and in addition has reconstructed the truth particle. The efficiency of reconstructing
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a particle (eff = nbParticleReco/nbParticleTruth) is 84.2% for Train and 71.3% for Test.
Detailed results are summarised in Table 5.1.

Sample eff nbBucket nbParticleTruth nbParticleReco
Train Balanced 84.2% 130k 94k 79k
Test Balanced 74.9% 62k 45k 34k
Test Unbalanced 71.3% 3219k 1178k 840k

TABLE 5.1: Particle reconstruction efficiency results



5.3. Particle-Level Metrics 35

7 8 9 12 13 14 16 17 18
VolumeID

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Train Balanced. Min10. Flat peak 10-17.

03_10_R_RH_B_1200

7 8 9 12 13 14 16 17 18
VolumeID

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Test Unbalanced. Min10. Flat peak 10-17.

03_10_R_RH_B_1200

7 8 9 12 13 14 16 17 18
VolumeID

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Train Balanced. Min10. Flat peak 10-17.
03_10_R_RH_B_1200

7 8 9 12 13 14 16 17 18
VolumeID

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Test Unbalanced. Min10. Flat peak 10-17.
03_10_R_RH_B_1200

7 8 9 12 13 14 16 17 18
VolumeID

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Train Balanced. Min10. Flat peak 10-17.

03_10_R_RH_B_1200

7 8 9 12 13 14 16 17 18
VolumeID

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Test Unbalanced. Min10. Flat peak 10-17.

03_10_R_RH_B_1200

7 8 9 12 13 14 16 17 18
VolumeID

50000

100000

150000

200000

250000

300000

350000

Pr
ed

ict
ed

Ou
tp

ut
Ne

ga
tiv

e Train Balanced. Min10. Flat peak 10-17.
03_10_R_RH_B_1200

7 8 9 12 13 14 16 17 18
VolumeID

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

Ou
tp

ut
Ne

ga
tiv

e 1e7Test Unbalanced. Min10. Flat peak 10-17.
03_10_R_RH_B_1200

7 8 9 12 13 14 16 17 18
VolumeID

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

Ne
ga

tiv
eR

at
e

Train Balanced. Min10. Flat peak 10-17.
03_10_R_RH_B_1200

7 8 9 12 13 14 16 17 18
VolumeID

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

Ne
ga

tiv
eR

at
e

Test Unbalanced. Min10. Flat peak 10-17.
03_10_R_RH_B_1200

FIGURE 5.4: Accuracy, precision, recall, predicted output negative, true nega-
tive rate. Train (left) and Test (right).
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Chapter 6

Conclusions

6.1 Conclusions

CERN experiments at the LHC plan to continue their studies of the building blocks of the
Universe by studying proton-proton collisions with ever increasing instantaneous luminos-
ity. This improves the probability that interesting particles are produced, such as Higgs
bosons, top quarks, W and Z bosons, and hopefully also particles predicted by models Be-
yond the Standard Model. Higher instantaneous luminosity translates to increasing number
of collisions per bunch crossing (pile-up µ). For Run-4, µ is expected to reach a value of 200,
from a maximum around 60 in Run-2. The drawback to increasing µ is that the particle
events become much busier, with many more particles overlapping. Reconstructiong these
particles becomes harder. So much so that computing resources are predicted to not be
enough to reconstruct Run-4 detector and simulation data.

The solution is to dramatically improve particle reconstruction with improved algorithms
and software. In this regard, machine learning is a promising avenue studied thorougly
at CERN. In this thesis, a deep neural network (DNN) is studied to reconstruct particles
from hit data in the inner detector, using simulations of a general-purpose particle physics
detector at CERN, provided by the TrackML data challenge. The inner detector is split into
sub-detectors and regions defined by the volume_id, layer_id and module_id. For each
simulated hit, both the reconstructed position and the original (true) position are known.
Also the particle_id of the particle producing the hit is known. This allows a supervised
machine learning algorithm to be built. The aim of the algorithm is to study groups of hits
at a time and try to identify the particle with the largest number of hits in the group. This
particle is called the majority particle.

First, all hits in an event are organised in an approximate nearest neighbour tree based on
their spatial position. For each query hit in the detector a group is created consisting of
hits that are closest to the direction of the line that connects the query hit with the original
collision in the centre of the detector. Each such group is denoted a bucket. A particle
typically leaves around 10 hits in the detector, but less than 20. For this reason, the bucket
size is chosen to be 20. The number of hits belonging to the majority particle is counted.
If this number is smaller than 10, then it is considered that none of the hits belong to this
particle, and the labels of all hits in the bucket are set to -1. The goal is therefore that in each
group of 20 hits, to identify those that belong to a particle that has 10 or more hits. This is
a multi-class binary classificiation problem, as for each hit in the bucket there is a question
that can be answered by yes or no, namely if the hit belongs to the majority particle.

A deep neural network algorithm is trained, using Keras and TensorFlow in Python. 100
events are used, split 70% in training and 30% in testing. The training dataset is balanced.
The testing dataset is studied both in a balanced and unbalanced format. The balanced
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training dataset has about 130k buckets, the balanced testing dataset about 62k buckets, and
the unbalanced testing dataset about 3.2M buckets. Hyper-parameters for the model are
tuned. The resulting structure of the best-performing model is summarised in Section 4.7.3.

The final performance metrics are shown for the unbalanced dataset, resulting in a particle
reconstruction efficiency of 71.3%.

6.2 Future Plans

Given more time, several improvements or new studies may enhance the current results.

The output labels of the hits belonging or not to the majority particle in a bucket are repre-
sented by +1 and -1. One can represent them also as +1 and 0. This leads to the use of other
activation functions on the final layer and to alternative loss functions. A preliminary study
suggests that +1/-1 behave better than +1/0, but a more thorough study may be performed.

Only 100 events have been studied in this project. The entire TrackML dataset is 100 times
larger, consisting of 10000 events. Deep learning methods benefit from using large quantities
of data. Using the entire dataset should result in a better peforming model. The principal
technical challenge remains the computing power needed for training. Dedicated resources
at CERN and member institutes, such as the University of Geneva, using CPU and ideally
also GPU, may then be used to improve the training and inference times.

Once the current question is addressed, namely of identifying hits belonging to the majority
particle, more complex questions may be tackled. For example, identifing several particles
at once from a given bucket, probably using a larger bucket size.

To conclude, this study is a stepping stone towards improving particle track reconstruction
for Run-4 at the LHC at pile-up µ = 200, using advanced machine learning techniques.
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Chapter 7

Pseudo-Code

In this appendix chapter several pseudo-code algorithms are presented.

7.1 Input and Output Preparation

This section presents the pseudo-code for three algorithms for preparing the input and out-
put for the NN training.

7.1.1 Algorithm 1

The Algorithm 1 is the following: for all events in a folder, store in .npy files numpy arrays
with each row representing a bucket of 20 hits.

The input variables are the following:

• inputFolderName: contains any number of files for each event in format "*-hits.csv",
"*-truth.csv"

• outputFolderName:

• fileNameNNInputTrainAll: ("input_train.npy")

• fileNameNNOutputTrainAll: ("input_test.npy")

• fileNameNNInputTestAll: ("output_train.npy")

• fileNameNNOutputTestAll: ("output_test.npy")

• metric: ("angular")

• nrtrees: (10)

There is no output variables. There are only side effects.

There are the following intermediate variables:

• list_eventNumber: used in the for loop, using the eventNumber and index i

• inputFileName_hits_recon

• inputFileName_hits_truth

• df_hits_recon

• df_hits_truth
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• df_hits

• nparray_position

• numberDimension

• index

• nparray_input_all

• nparray_output_all

• nrBuckets

• list_index_Train

• list_index_Test

• nparray_Input_Train

• nparray_Input_Test

• nparray_Output_Train

• nparray_Output_Test

• nparray_Input_Train_all_Events

• nparray_Input_Test_all_Events

• nparray_Output_Train_all_Events

• nparray_Output_Test_all_Events

The method of the algorithm is the following.

create empty list: list_eventNumber=[]
for fileName in alphapetical list (sorted) of files in inputFolder:

if fileName ends in "-hits.csv":
eventNumber <-- from fileName remove "event" and "-hits.csv"
append eventNumber to the list_eventNumber

for eventNumber in list_eventNumber also remember index i:
inputFileName_hits_recon <-- inputFolderName+"/event"+eventNumber+"-hits.csv"
inputFileName_hits_truth <-- inputFolderName+"/event"+eventNumber+"-truth.csv"
df_hits_recon <-- read pandas df from csv file inputFileName_hits_recon
df_hits_truth <-- read pandas df from csv file inputFileName_hits_truth
df_hits <-- concatenate df_hits_recon & df_hits_truth on axis 1
nparray_position <-- df_hits take column "x", "y", "z" and convert to nparray
numberDimension <-- number of columns in nparray_position (3)
metric <-- "angular"
index <-- AnnoyIndex constructor(numberDimension, metric)
for position in nparray_position with index j:

add to index the position at index j
build index with 10 trees
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nparray_input_all, nparray_output_all <-- function with arguments df_hits, index
(see this function implemented in Algorithm 2)

nrBucket <-- number of elements in nparray_input_all
if nrBucket is odd remove last element from nparray_input_all and nparray_output_all
reshape nparray_input_all to have three dim as needed by TensorFlow
nrBucket <-- recount number of elements in nparray_input_all
list_index_Train <-- build list of even bucket indices
list_index_Test <-- build list of odd bucket indices

nparray_Input_Train <-- takes subset of nparray_input_all with list_index_Train
nparray_Input_Test <-- takes subset of nparray_input_all with list_index_Test
nparray_Output_Train <-- takes subset of nparray_output_all with list_index_Train
nparray_Output_Test <-- takes subset of nparray_output_all with list_index_Test

if i is 0:
nparray_Input_Train_all_Events <-- nparray_Input_Train
nparray_Input_Test_all_Events <-- nparray_Input_Test
nparray_Output_Train_all_Events <-- nparray_Output_Train
nparray_Output_Test_all_Events <-- nparray_Output_Test

else:
nparray_Input_Train_all_Events <-- concatenate over axis 0
nparray_Input_Train_all_Events & nparray_Input_Train
nparray_Input_Test_all_Events <-- concatenate over axis 0
nparray_Input_Test_all_Events & nparray_Input_Test
nparray_Output_Train_all_Events <-- concatenate over axis 0
nparray_Output_Train_all_Events & nparray_Output_Train
nparray_Output_Test_all_Events <-- concatenate over axis 0
nparray_Output_Test_all_Events & nparray_Output_Test

# done for loop over all events

write nparray_Input_Train_all_Events to binary .npy file fileNameNNInputTrainAll
write nparray_Input_Test_all_Events to binary .npy file fileNameNNInputTestAll
write nparray_Output_Train_all_Events to binary .npy file fileNameNNOutputTrainAll
write nparray_Output_Test_all_Events to binary .npy file fileNameNNOutputTestAll

7.1.2 Algorithm 2

The Algorithm 2 is the following. For one event, from df_hits and Annoy index compute
numpy arrays for NN input and output, where each row represents a bucket of 20 hits. For
one bucket, the input has 60 elements (20 hits times 3 coordinates (x,y,z)), and the output
has 20 elements (-1 or 1 depending if the hit belongs to the particle with largest number of
hits in that bucket).

The input variables are the following:

• df_hits

• index

• minValueOfNrHitsForParticleWithMostHits (0 or 10)

• bucketSize (20)
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The output variables are the following:

• nparray_input_all

• nparray_output_all

The intermediate variables are the following:

• nparray_volume_id

• nparray_layer_id

• list_nparray_input

• list_nparray_output

• i index of hit in df_hits

• list_index list of indices in df_hits for 20 nearest neighbors (nns) by angle to one hit

• df_bucket

• nparray_input

• nparray_particleID

• dict_particleID_counterParticleID

• particleIDWithMaxHits

• counterParticleIDWithMaxHits

• list_output

• nparray_output

The method of the algorithm is the following.

Create empty lists list_nparray_input and list_nparray_output

nparray_volume_id <-- df_hits takes column "volume_id" and convert to nparray
nparray_layer_id <-- df_hits takes column "layer_id" and convert to nparray

for i in list of indices of elements in df_hits:
list_index <-- from annoy index get the nns for hit with index i and bucketSize
df_bucket <-- subset of df_hits using indices from list_index
nparray_input <-- df_bucket take column "x", "y", "z" and convert to flat nparray

nparray_particleID <-- df_bucket take column "particle_id" and convert to nparray
dict_particleID_counterParticleID <-- is a dictionary for each particleID (in the bucket) counts how many hits belongs to this particle
counterParticleIDWithMaxHits <-- find max counter of the dictionary above
list_output <-- create empty list

for particleID in nparray_particleID (loop over hits in bucket):
if counterParticleIDWithMaxHits<minValueOfNrHitsForParticleWithMostHits:
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add to list_output -1 (consider no hit belongs to a particle)
else:

if articleID==particleIDWithMaxHits:
add to list_output +1 (consider this hit belongs to the particle)

else:
add to list_output -1 (consider this hit not belongs to the particle)

# done loop over hits in bucket
nparray_output <-- convert list_output into a numpy array

Add to list list_nparray_input. the element nparray_input
Add to list list_nparray_output. the element nparray_output

# done loop over hits in the event

nparray_input_all <-- convert from list_nparray_input
nparray_output_all <-- convert from list_nparray_output

return nparray_input_all, nparray_output_all

7.1.3 Algorithm 3

The Algorithm 3 describes how the 100 events are split 70% into the Train sample and 30%
in the Test sample.

for i, eventNumber in list_eventNumber:
df_hits_recon <-- pd.read.csv (file ending in “_hits.csv”)
df_hits_truth <-- pd.read.csv (file ending in “_truth.csv”)
df_hits <-- concatenate (df_hits_recon, df_hits_truth)

nparray_position <-- from df_hits take columns “x”,”y”,”z” as numpy arrays
index <-- use Annoy library to build an index (sorting hits per direction)
nparray_input_all, nparray_output_all <-- from df_hits and index
(see this function implemented in Algorithm 1)

# keep only number of buckets multiple of 10
nbBucket=nparray_input_all.shape[0]
rest=nbBucket%10
if rest<7:

add event to Train
else:

add event to Test
# done for loop over event

7.2 Model Evaluation Metrics

In this section the pseudo code for the metric evaluation of the model is presented.

In the first algorithm, a histogram is built across buckets for multi-label classification metrics
at bucket level, across the 20 hits in a bucket: Accuracy, Precision, Recall, Positive, Negative,
Predicted Positive, Predicted Negative. The algorithm is implemented in a function that is
called for both Train and Test.
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The input variables are the following:

• nparray_Output

• nparray_PredictedOutput

The output variables are the following:

• nparray_bucket_OutputPositive

• nparray_bucket_OutputNegative

• nparray_bucket_PredictedOutputPositive

• nparray_bucket_PredictedOutputNegative

• nparray_bucket_TruePositive

• nparray_bucket_FalsePositive

• nparray_bucket_FalseNegative

• nparray_bucket_TrueNegative

• nparray_bucket_acc

• nparray_bucket_accuracy

• nparray_bucket_precision

• nparray_bucket_recall

The intermediate variables are the following:

• nparray_bucket_Output

• nparray_bucket_PredictedOutput

• counter_hit_TP (per bucket)

• counter_hit_FP (per bucket)

• counter_hit_FN (per bucket)

• counter_hit_TN (per bucket)

• TP True Positive (per hit)

• FP False Positive (per hit)

• FN False Negative (per hit)

• TN True Negative (per hit)

• bucket_OutputPositive

• bucket_OutputNegative
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• bucket_PredictedOutputPositive

• bucket_PredictedOutputNegative

• bucket_TruePositive

• bucket_FalsePositive

• bucket_FalseNegative

• bucket_TrueNegative

• bucket_acc,bucket_accuracy

• bucket_precision

• bucket_recall

The method of the algorithm is the following.

Create an empty list for every metric
nbBucket=number of rows in nparray_Output
for i in range(nbBucket): (for loop over buckets):

nparray_bucket_Output=nparray_Output[i]
nparray_bucket_PredictedOutput=nparray_PredictedOutput[i]
# Initialize to zero counters of number of hits for each confusion matrix element (TP,FP,FN,TN)
counter_hit_TP=0
counter_hit_FP=0
counter_hit_FN=0
counter_hit_TN=0
for j in range(len(nparray_bucket_Output)): (for loop over hits)

# Read values for every hit
hit_Output=nparray_bucket_Output[j]
hit_PredictedOutput=nparray_bucket_PredictedOutput[j]
# initialize matrix confusion element to zero for this hit
TP=0
FP=0
FN=0
TN=0
if hit_PredictedOutput>0 and hit_Output>0:

TP=1
if hit_PredictedOutput>0 and hit_Output<0:

FP=1
if hit_PredictedOutput<0 and hit_Output>0:

FN=1
if hit_PredictedOutput<0 and hit_Output<0:

TN=1
# increment counters for this hit
counter_hit_TP+=TP
counter_hit_FP+=FP
counter_hit_FN+=FN
counter_hit_TN+=TN

# done for loop over hits, for each bucket calculate metrics: accuracy, precision, recall, etc .
bucket_accuracy=(counter_hit_TP+counter_hit_TN)/(counter_hit_TP+counter_hit_FP+counter_hit_FN+counter_hit_TN)
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if counter_hit_TP+counter_hit_FP==0:
bucket_precision=0

else:
bucket_precision=(counter_hit_TP)/(counter_hit_TP+counter_hit_FP)

if counter_hit_TP+counter_hit_FN==0:
bucket_recall=0

else:
bucket_recall=(counter_hit_TP)/(counter_hit_TP+counter_hit_FN)

#
bucket_TruePositive=counter_hit_TP+counter_hit_FP
bucket_TrueNegative=counter_hit_FN+counter_hit_TN
bucket_PredictedOutputPositive=counter_hit_TP+counter_hit_FN
bucket_PredictedOutputNegative=counter_hit_FP+counter_hit_TN
bucket_acc=counter_hit_TP+counter_hit_TN
For each metric append the value for this bucket to its corresponding list

# done for loop over buckets
For each metric create a numpy array from the corresponding list

This function is run twice, one pe Train or Test. This allows to create a histogram from the
numpy array and overlay Train and Test. If the histogram with values between 0 and 20
is divided by the number of buckets (20), the x variable becomes the probability density
function with values between 0.0 and 1.0.
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