
Dual Digitizer Readout
and
Run Control Implementation

at the experiment

Edward Galantay

Supervised by Prof. Anna Sfyrla

Co-supervised by Dr. Claire Antel
and Dr. Brian Petersen

Department of Nuclear and Particle Physics

Faculty of Sciences

University of Geneva

July, 2024

ii

Acknowledgements

I would like to thank all those who made this thesis possible:
Prof. Anna Sfyrla, who suggested this project.
Dr. Claire Antel for helping me during the long and multiple tests of the Run Con-
trol and for reviewing and providing feedback during the writing of the thesis.
Dr. Brian Petersen, for his help in working with the digitizers and for providing the
opportunity to work on the detector in the tunnel.
Dr. Enrico Gamberini, for guiding me through all the cryptic C++ errors during the
DAQling integration.
Not forgetting my parents, who agreed to proofread the thesis, thoroughly looking
for (and finding) mistakes.

iii

Abstract

FASER (ForwArd Search ExpeRiment) is a small and inexpensive LHC exper-
iment, located in a previously unused tunnel, designed to probe the far-forward
region of the ATLAS interaction point for Long-Lived Particles (LLPs) such as dark
photons or Axion-Like Particles (ALPs).
The FASER detector underwent a calorimeter upgrade that significantly extends the
operational energy range of the calorimeter using a split-readout method but that
required adding a second digitizer to the FASER TDAQ system.
A new dual-readout system of the digitizers has thus been implemented, with spe-
cial attention on the synchronization between the digitizers. This system has been
in operational use since February 2024, following successful high-rate tests on the
full detector.
Additionally, the FASER Run Control software, which facilitates control of the data
acquisition system through an intuitive web interface, required a major overhaul
to improve modularity, maintainability, and to be capable of automatic recovery of
the TDAQ system in case of issues. This overhaul involved significant architectural
changes and updates to subsystems such as configuration, logging, and error han-
dling. It facilitated the addition of features to FASER, such as automatic restarts and
opens the way for other experiments to use the Run Control.

Contents

List of Abbreviations vi

1 Introduction 1
1.1 FASER at CERN . 1
1.2 Physics motivation . 2

2 The FASER Detector 5
2.1 Overview . 5
2.2 Magnets . 6
2.3 Tracking system . 7
2.4 Calorimeter & Scintillator system . 8
2.5 FASERν . 10

3 The Trigger and Data Acquisition System 12
3.1 Overview . 12
3.2 TDAQ Hardware . 13
3.3 TDAQ Software . 17

3.3.1 DAQ software framework . 17
3.3.2 Event format . 18
3.3.3 Control and Monitoring Tools . 19

4 Upgrade to calorimeter split readout 22
4.1 Motivation . 22
4.2 Proposed solution . 23
4.3 The digitizer . 25

4.3.1 The vx1730s digitizer . 26
4.4 Standalone tests . 30

4.4.1 Digitizer code structure changes . 30
4.4.2 Synchronization tests . 33

iv

Contents v

4.4.3 DAQling integration . 36
4.5 TI12 Installation . 40

4.5.1 Digitizer and Calorimeter installation 40
4.5.2 High rate tests with the combined system 41

5 The Run Control Implementation 44
5.1 Motivation . 44
5.2 General Tour . 45
5.3 Implementation . 48

5.3.1 Technologies used . 48
5.3.2 Project architecture . 51
5.3.3 Logging system . 52
5.3.4 Authentication . 53
5.3.5 Interlock . 54
5.3.6 Actions . 55
5.3.7 Run Control Class . 57

5.4 Outlook . 58

6 Conclusion 59

Bibliography 61

List of Abbreviations

LHC Large Hadron Collider . 1

FASER Forward Search Experiment . 1

SM Standard Model . 1

LEP Large Electron-Positron Collider . 2

IP1 Interaction Point 1 . 2

SPS Super Proton Synchrotron . 2

LLP Long-Lived Particle . 3

TAN Neutral Particle Absorber . 3

ALP Axion-Like Particle . 4

LOS line of sight . 5

IFT Interface Tracker . 7

L1A Level 1 Accept . 12

TLB Trigger Logic Board . 12

TRB Tracker Logic Board . 12

BOBR BST Receiver Interface for Beam Observation System 13

FClock FASER Clock Board . 14

GPIO General Purpose I/O . 15

LUT Look-Up Table . 15

SCT Silicon Strip . 16

RO Readout . 19

ROR Readout Receiver . 19

DCS Detector Control System . 21

PMT Photomultiplier Tube . 22

ADC Analog-To-Digitial Converter . 25

PCI Peripheral Component Interconnect . 25

VMEbus VersaModules Eurocard bus . 25

vi

List of Abbreviations vii

PLL Phase Loop Lock . 28

TTT Trigger Time Tag . 29

BLT Block Transfer . 29

CLI Command Line Interface . 44

SSO Single Sign-On . 46

API Application Programming Interface . 46

CDN Content Delivery Network . 48

DOM Document Object Model . 49

1

Introduction

1.1 | FASER at CERN
With its 27 km ring, the Large Hadron Collider (LHC) at CERN is the world’s largest
particle accelerator and a remarkable achievement in terms of its construction, control
and maintenance. The LHC has enabled major advances to be made in our understand-
ing of the Standard Model (SM) and has led to the discovery in 2012 of the last puzzle
piece of the Standard Model, the Higgs boson. Since beginning operations in 2008, two
operational periods (Run 1 and Run 2) have been successfully completed and Run 3
is currently ongoing and will continue until the end of 2025 [1]. After three years of
shutdown (Long Shutdown 3), the next phase, Run 4, will begin, marking the start of
the High-Luminosity LHC (HL-LHC) era. This major upgrade will enable significantly
more collisions per second, thanks to improved magnets, collimators, superconductors,
and other advancements [2].

Despite extensive studies, no physics beyond the Standard Model has been found,
motivating the search for new physics in unexplored regions such as forward physics,
which studies high-energy particle collisions at very small angles.

The major experiments of the LHC were designed to study high transverse momen-
tum (pT) phenomena, making these detectors highly inefficient for low pseudorapidity
(forward region) studies. However, this forward region presents unique opportunities
to investigate much lighter particles that are weakly coupled to the Standard Model.

The Forward Search Experiment (FASER) is a small (5 m x R=0.1 m) and inexpen-
sive experiment at CERN that takes advantage of the existing LHC and ATLAS infras-
tructure to target light and weakly-interacting particles in the far forward region of the
ATLAS interaction point IP1. Proposed in 2017 and approved by CERN in 2019, FASER
was built over the next two years and began taking data in summer 2022, at the start of
LHC Run 3. FASER will be operational during Run 3 and Run 4 during HL-LHC.

The aim of FASER is to study physical processes in these forward regions, potentially
leading to the discovery of new light and weak interacting particles, ranging from MeV

1

Chapter 1. Introduction 1.2. Physics motivation

SPS

TI12

ATLAS
IP1

FASER

(a) (b)

Figure 1.1: FASER location with respect to ATLAS, the SPS, and the LHC (a).
Picture of FASER near the LHC tunnel (b). The picture was taken in the direction
of IP1.Picture: Maximilien Brice.

to GeV, which are less coupled to the Standard Model, such as dark photons or axion-
like particles. These weakly-interacting particles typically travel great distances before
decaying into Standard Model particles, necessitating a detector placed at a sufficient
distance from their production site to study their decay products.

FASER is located on the beam collision axis, 480 meters from the ATLAS Interaction
Point 1 (IP1) in the TI12 tunnel, previously used to link the Super Proton Synchrotron
(SPS) and Large Electron-Positron Collider (LEP), as shown in Figure 1.1. This location
is separated by over 100 meters of rock from IP1.

The later addition of FASERν [3], an emulsion detector with a target mass of 1.1
tonnes, allows studies of high-energy neutrinos of all flavors produced from proton-
proton collisions at IP1.
Since the beginning of LHC Run 3 in summer 2022, FASER has demonstrated its capabil-
ities, including the first direct observation of neutrino interactions at a particle collider
experiment [4, 5].

1.2 | Physics motivation
By placing FASER 480 meters from IP1 in the tunnel, FASER hopes to find light, very
weakly-interacting particles LLPs, produced at IP1, travelling long distances through
concrete and rock without interacting and then decaying into visible particles within
the detector’s decay volume. Such particles are produced with transverse momentum
approximately equal to their mass pT ∼ m. Taking into account FASER’s acceptance,

2

Chapter 1. Introduction 1.2. Physics motivation

θ ≤ 1 mrad, their energy can be deduced to be around the TeV:

θ ≃ tan θ =
pT

p
∼ m

E
≪ 1 (1.1)

allowing hypothetical decays such as:

LLP → e+e−, µ+µ−, π+π−, γγ, . . . (1.2)

The main Long-Lived Particle candidate is the dark photon. Dark photons A′ are
part of dark sector models. These models propose a new spin-1 vector boson that
interacts weakly with SM particles through kinetic mixing with the SM photon. The
dark photon acts as a mediator between the SM and hypothetical dark matter particles.
FASER is sensitive to dark photon masses mA′ in the 2me < mA′ < 2mµ range. The decay
product would then be a positron and an electron A′ → e+e−, with a detector signature
shown in Figure 1.2.

Figure 1.2: Signature example of a dark photon decay into a positron and an elec-
tron. The dark photon enters the detector from the left and decays in the decay
volume. [6]

Dark photons potentially decaying in the FASER volume are primarily produced
from the decay of π0 mesons, with a branching ratio of the π0 → γγ process modified
by the dark photon’s mass :

<latexit sha1_base64="ebFgAuVE8So2dPGh0+mZ635Oq2M=">AAACyXicbZFdi9NAFIYn8WuNX1UvvRks4i62JVlkFaSw6o3gzS7Y3cUkltPJpB06X85M1Dbkyt/mj/BH+B+ctrkwux4YOLzneTnDe2aaM+vi+HcQXrt+4+atvdvRnbv37j/oPXx0ZlVlCJ0QxZW5mIGlnEk6ccxxeqENBTHj9Hy2fL+Zn3+jxjIlP7mVprmAuWQlI+C8NO39ykq6kgJkwWBuQODUCuB8gBfKsLWSDvgYsFPYJTmuI8CpBuMY4XSc7WeafanjJjvI8XDonQQ4mNyjOC2U24l6oZySOdZJ1zoHIcA7B5HHO+BhB3z7PDsYYEMLT+odWRj4PpZK0g0c4eZNNO3141G8LXy1Sdqmj9o6mfb+ZIUilaDSEQ7WpkmsXV63a5soqyzVQJYwp6lvJQhq83obd4OfeaXApTL+SYe36r+OGoS1KzHzpAC3sJdnG/F/s7Ry5eu8ZlJXjkqyW1RWfBu/vx0umKHE8ZVvgBjm/4rJAgwQ5y/c2eLYcj1sL9tEm3ySy2lcbc4OR8nR6Oj0Zf/4XZvUHnqCnqJ9lKBX6Bh9QCdogkjwIjgNPgdp+DH8Gv4I1zs0DFrPY9Sp8OdfW1HXMg==</latexit>

⇡0

�

A0

Figure 1.3: Production of a
dark photon via pion decay.

B
(
π0 → A′γ

)
= 2ε2

(
1 −

m2
A′

m2
π0

)3

B
(
π0 → γγ

)
Another possible Long-Lived Particle (LLP) candidate
would be Axion-Like Particles, that could be produced by
very high energy photons interacting with the atomic nu-
clei of the Neutral Particle Absorber (TAN) (shown on Figure 1.5) via the Primakoff
effect and finally decaying into a pair of photons.

3

Chapter 1. Introduction 1.2. Physics motivation

Figure 1.4: Differential pion production rate in the (θ, p) plane, with respect to
the beam axis and momentum, from Monte-Carlo simulations. The angular ac-
ceptance for FASER and a potential upgraded new experiment, FASER2 are indi-
cated by the vertical dashed lines [7]

.

Figure 1.5: Production of LLP from IP1 to FASER. The TAN protects the LHC mag-
nets from radiation, but can also be used as a fixed-target experiment for Axion-
Like Particle (ALP) production [7].

4

2

The FASER Detector

2.1 | Overview
As mentioned in section 1.1 , the TI12 tunnel was chosen as the location for the FASER
experiment because of its suitable orientation with respect to the IP1 line of sight (LOS).
However, it was necessary to adjust the vertical inclination of the experiment, as the
tunnel is inclined. To this end, a trench was dug in the tunnel floor, over a distance of
approximately 6 meters to a maximum depth of 64 cm (see Figure 2.1 b). In this trench,
an aluminum base serves as a support for the experiment.

(a) Before FASER work in the
TI12 tunnel. [8]

(b) After TI12 cleared out
and the trench finished. [8]

(c) Current layout of FASER, during
YETS 2023-24.

Figure 2.1: TI12 evolution : from unused tunnel to the FASER cavern, in YETS
2023-24.

After a certain time of data taking, it became apparent that background noise was
coming from stray particles coming from the beam in the direction of IP1, caused by
secondary interactions of the incoming beam with a quadrupole magnet close to FASER.
Concrete blocks were therefore installed between the TI12 entrance and the LHC tunnel
(as seen in the picture in Figure 2.1 (c), bottom right).

FASER is composed of several subsystems (with the corresponding colors in Figure
2.2):

5

Chapter 2. The FASER Detector 2.2. Magnets

■ The magnets (blue)

■ The tracking system (brown)

■ The scintillators (yellow) and the calorimeter (red)

■ FASERν (dark red)

Each subsystem is briefly explained in the following sections.

Figure 2.2: The FASER detector with its sub-systems. The z-direction points in the
opposite direction to the ATLAS IP1. [8]

2.2 | Magnets
To further separate the slightly separated particles arriving in FASER, three permanent
dipole magnets (rinner = 0.1 cm, router = 21.5 cm) of 0.57 T are used. The permanent na-
ture of the magnets requires no high voltage power supply or cooling, greatly reducing
monitoring and maintenance.

The first magnet (1.5m long) surrounds the decay volume, and the other two (1m
long) are used in the tracking spectrometer.

The three magnets, based on the Halbach design [9], enable a compact architecture
while ensuring an strong, homogeneous magnetic field inside the magnets.

As shown in Figure 2.3, each 16x12 (18) block constituting the short (long) magnet is
made of Samarium Cobalt Sm2Co17.

6

Chapter 2. The FASER Detector 2.3. Tracking system

The magnets are one of the elements of FASER made specifically for the experiment,
making them the most expensive parts of the experiment.

Figure 2.3: Cross-section of the dipole magnets used for the FASER experiment.
Each block has a different magnetic field direction to produce a homogeneous
field inside the assembled magnet. [8]

2.3 | Tracking system
The tracking system consists of the tracking spectrometer and the Interface Tracker
(IFT). The tracking spectrometer, consisting of three stations located at either end of the
two short magnets and covering the entire magnet apertures, detects two oppositely-
charged particles from an LLP decay in the decay volume. A resolution of O(100 µm)

enables us to detect these very collimated particles and attempt to reconstruct their tra-
jectory.

Figure 2.4: An SCT module with its
ASIC readout board. [8]

The IFT consists of one station, located just af-
ter FASERν, and acts as a link between the emul-
sion detector tracks and the other detector track-
ing stations. The spectrometer tracking and IFT
stations (Figure 2.5 b) are each composed of three
layers. One layer is itself made up of eight sili-
con strip modules (SCT), spares from the ATLAS
SCT barrel detector (shown in Figure 2.4). These
double-sided modules are staggered, four per side,
as shown in Figure 2.5 a.

With the exception of the SCT modules, every-
thing else (readout, cooling, etc.) has been specifi-
cally designed for FASER.

7

Chapter 2. The FASER Detector 2.4. Calorimeter & Scintillator system

(a) A tracker plane with the eight SCT modules (four
per side). [8]

(b) A tracker station, made of three tracker
planes. [8]

Figure 2.5: Design of a tracking station.

2.4 | Calorimeter & Scintillator system
The scintillator system consists of four stations. The first station, located in front of
FASERν, is made up of two scintillator counters. The second station is located in front
of the decay volume, and contains four scintillators. A 10 cm block of lead between
the four scintillators prevent muon bremsstrahlung before the detector from interfering
with the rest of the experiment. It will stop the photons, or generate a shower that
can be detected by the second two scintillators. At the time of the later installation
of FASERν, one of the two front veto scintillators replaced a layer of the veto station,
leaving it unused. It was only with the addition of the second digitizer that the 4th layer
of the veto station was reused. These two stations are used to veto charged particles
entering the detector, since the events of interest are mainly those produced by particles
coming from the decay volume. The timing scintillator station consists of two counter
scintillators, and unlike the previous two stations, each scintillator is read by two PMTs.
This station, located just after the decay volume, enables precise measurement of the
timing of events and triggers on charged particles.

The last station, the preshower, is used to differentiate between photon and neutrino
interaction events in the calorimeter, thanks to tungsten plates located between and
around the two scintillators.

To avoid the risk of backsplash (signal collected by the preshower station and caused
by particles interacting with the calorimeter), graphite blocks are also present between
the scintillators of the preshower.

The calorimeter is made up of four ECAL modules, spares from LHCb experiment’s
outer electromagnetic calorimeter. Each module consists of 66 layers of lead and plas-
tic scintillators, as well as wavelength-shifting fibers. Until January 2024, the module

8

Chapter 2. The FASER Detector 2.4. Calorimeter & Scintillator system

Figure 2.6: The different scintillator geometries. From left to right : the first sta-
tion, the second station, the timing station and the preshower station. [8]

was read by a single PMT, limiting the operating range of energy, and making calibra-
tion more difficult (see section 4.2). Since the restart of data taking after the Year-End
Technical Stop (YETS) 2023-24, each module is followed by a light splitter at the end of
which are two PMTs, increasing the energy range of the calorimeter (see section 4.2 and
Figure 2.7). The 4 (then 8) PMTs are enclosed by a metal cage (RF shield), used to reduce
noise in the PMTs, due to a GSM antenna installed a few meters from the the calorimeter
(the location is shown in Figure 2.8 and the impact of the GSM antenna is discussed in
section 4.5.2).

(a) Old : single readout, four PMTs.
[8]

(b) New : dual readout, eight PMTs. Pic-
ture: Brian Petersen

Figure 2.7: FASER Calorimeter

9

Chapter 2. The FASER Detector 2.5. FASERν

Calorimeter

GSM antenna

Figure 2.8: Photo of FASER, showing the calorimeter with the GSM antenna above
it.

2.5 | FASERν

FASERν (FASERnu) [3] is an emulsion detector, measuring approximately 25x30 cm2

(shown next to FASER in Figure 2.9) and weighing 1.1 tonnes. The detector’s large
mass is due to 770 tungsten plates, each 1mm thick, which in total is equivalent to 220
radiation lengths.

Figure 2.9: Picture of
FASERν (without the cover),
installed in the trench, in
front of FASER. The picture
points in the opposite direc-
tion to ATLAS. [8]

The high density of the tungsten allows neutrinos arriv-
ing in the detector to interact with the material, while emul-
sion films between each tungsten plate mark the trajectory
of charged particles. The high resolution of this type of de-
tector makes it possible to have more than 106 tracks/cm2.
On the other hand, as a passive detector, the emulsion films
have to be extracted manually in order to be scanned before
the number of trajectories is too large to distinguish them.
Only once they have been scanned can the information pro-
vided be included in the offline analysis process. With cur-
rent luminosity at the FASER location, emulsion films need
to be replaced every three months on average, only during
LHC technical stops.

The high precision of FASERν makes it possible to re-
trieve many characteristics, such as the interaction vertex
of neutrinos, or the energy of particles interacting with the
emulsion and tungsten.

The active part of emulsion films is made up of silver

10

Chapter 2. The FASER Detector 2.5. FASERν

bromide crystals of 200 nm (shown in Figure 2.10). These crystals interact with the
charged particles, forming agglomerates of around 2 µm long, which allow the recon-
struction of particle trajectories.

Figure 2.10: Left : microscopic view of silver bromide crystals with scale for com-
parison. Right : Tracks from β-rays into the emulsion film. [8]

11

3

The Trigger and Data Acquisition
System

3.1 | Overview
The TDAQ system of FASER (represented as a simplified diagram in Figure 3.1) is a
relatively simple yet robust system designed to detect extremely rare processes. To min-
imize maintenance as much as possible, given that the tunnel is inaccessible during data
taking, FASER does not have a control room with 24/7 shifts. Therefore, the monitoring
of the experiment and alerts play a major role, relying on existing tools like Grafana or
custom-made interfaces such as the Online Histogram Monitoring and the Run Control.
Some actions are also automated, such as the automatic restart of the daq system during
a new LHC fill, which is when new protons bunches are injected in the LHC.

When a high-energy particle passes through the detector, signals from the scin-
tillators and calorimeter modules are digitized by two commercial digitizers (CAEN
vx1730s, more information in chapter 4), and an initial trigger logic is applied, based
on preset thresholds. The triggers are then sent to the central part of the DAQ system:
the Trigger Logic Board (TLB). The TLB is a custom FPGA-based board that, from all
its inputs, can decide to issue a global trigger Level 1 Accept (L1A). This signal is then
received by the digitizers and the Tracker Logic Boards (TRBs), which enable data read-
out from the sub-components. The read data is packaged into data fragments, which
are then transferred via a fiber optic network to the DAQ PC at the surface, where the
data fragments can then be assembled to a full event by the event builder and written
on disk by the file writer.

The DAQ software is built on a lightweight and open-source C++ framework, DAQling
[11], developed at CERN by the Detector Technologies and Infrastructure group. DAQling
consider DAQ processes as modules, responsible for specific tasks, such as data readout,
monitoring or compression. The DAQ software is described in section 3.3.

12

Chapter 3. The Trigger and Data Acquisition System 3.2. TDAQ Hardware

(x12)

(x2)

(x8)

(x2)

Fib
e

r

D
ata O

n
ly

Fib
e

r

Fib
e

r

GPN router

Clock
board

CAEN digitizer

Trigger Logic Board

Tracker Readout Board

Calorimeter ScintillatorsTracker modules

L1A

Data

Data acquisition
and storage

Eth
e

rn
et

Underground

Surface

(x4)

(x96)

(x12)

Ethernet
switch

Ethernet
switch

LHC clock &
orbit

(x8)

Clock & command

Busy Busy BCR
L1A

BCR

Clock

Ethernet
switch

DCS
Control

DCS

TR
G C
lo

ck

(x96)(x96)

(all signals x2)

(x2)

(x12)

Figure 3.1: Diagram of the FASER TDAQ architecture, where the arrows repre-
sents the different types of connections between the TDAQ components. The sub-
detector modules are read by the readout boards (TRB and Digitizers). The TLB
decides if the trigger signals generated by the digitizers match its preloaded logic.
If so, it activates the readout of the boards via Ethernet. At the surface, each DAQ
readout processes reads the data from the sub-detector systems and sends the
generated readout fragment to the event builder, which build the full event. The
file writer records the event to file. [10] (updated)

3.2 | TDAQ Hardware

The clock system
The electronic boards in the TDAQ system use the LHC clock and the orbit signal, re-
spectively 40.08 MHz and 11.245 kHz as reference clock. The clock system is described
in Figure 3.2. Both signals are transmitted via the Timing, Trigger and Control system
(TTC) and received by the BST Receiver Interface for Beam Observation System (BOBR),
a VME module developed by the LHC Beam Instrumentation Group. It decodes and
converts the acquired signals to electric signals which can then be used via LEMO con-
nectors on the front panel. However, the BOBR clock has jitter due to the power mod-
ules, changes during the LHC energy ramp, and possible discontinuities when there is
no beam in the LHC. This is problematic for the FASER electronics boards, as they re-
quire a clean and stable reference clock with a constant phase with respect to the LHC

13

Chapter 3. The Trigger and Data Acquisition System 3.2. TDAQ Hardware

clock for precise timing.

Figure 3.2: Diagram of the FASER Clock and BOBR boards. The Beam Syn-
chronous Timing (BST) signal is transmitted via the TTC fibre to the BOBR. It
decodes the input signals and convert them to electric signals, transmitted to the
FASER Clock Board to clean the signal using an off-the-shelf clock cleaner board.
The cleaned clock signal can then be used for the other electronics boards. [10]

A custom board has therefore been designed for FASER, the FASER Clock Board
(FClock), to clean the jitter. The FClock consists of an off-the-shelf clock cleaner board
[12] and a VME adapter board, which provides a cleaned signal with zero delay relative
to the LHC clock, ensuring phase consistency across power cycles, even with frequency
changes during the LHC cycle. The cleaned clock is then sent to the TLB as LVDS signals
and to one of the two digitizers as single-ended LVCMOS.

The digitizer boards
Two commercial digitizer boards (16 channels, 14-bit CAEN vx1730s [13], shown in Fig-
ure 3.3) are used to continuously digitize the signals from the calorimeter and the scintil-
lators at a rate of 500 MHz. A channel-specific trigger occurs if the signal is under/over
a configurable threshold. Each channel trigger signals are then combined in pairs using
a configurable logic. The trigger signals are finally sent to the TLB as LVDS signals.

Figure 3.3: The commercial vx1730s digitizer from CAEN. The board is used in a
VME crate. [13]

Upon receiving an L1A trigger from the TLB, the digitizer boards transfer samples
into a buffer, including all enabled channels and a data header with additional event

14

Chapter 3. The Trigger and Data Acquisition System 3.2. TDAQ Hardware

Digi�zers

Figure 3.4: Diagram of the functionalities of the Trigger Logic Board. [10]

information, and then read out by the readout system. The digitizers are controlled via
Ethernet using a Struck SIS3153 VME interface board [14]. To measure signal arrival
times precisely, a copy of the LHC clock from the FClock card is sampled on one digi-
tizer channel, allowing precise measurements of arrival time of the signals with respect
to collisions occurring in IP1.

The digitizers are discussed in more detail in chapter 4.

The Trigger Logic Board
The TLB is the central trigger logic processor of the DAQ system. It is based on a General
Purpose I/O (GPIO) board, developed by the University of Geneva. Its different func-
tionalities are described in the diagram of Figure 3.4.

The TLB receives and combines up to 8 trigger input signals from the digitizer
through LVDS signals along with the LHC clock and LHC orbit signals from the FClock
(right-hand-side of Figure 3.4). An additional input trigger comes from the LED Cal-
ibration System through a TTL signal. It synchronizes these trigger signals with the
LHC clock, applying input delays and finally send the final trigger decision via the L1A
signal to the digitizers and the TRBs. The TLB also outputs a BCR (Bunch Counting
Reset) signal, generated on every LHC orbit signal to the readout boards (digitizers and
tracker readout boards).The Bunch Counter ID (BCID), corresponding to the number of
clock cycles between the last BCR and the trigger signal is also computed by the TLB.

The 8 trigger inputs are combined into 4 physics trigger items via a Look-Up Ta-
ble (LUT), with a configurable coincidence logic. The TLB can also generate an internal
trigger in three different modes: fixed rate, pseudo-random rate, and software com-

15

Chapter 3. The Trigger and Data Acquisition System 3.2. TDAQ Hardware

mand. Each trigger source can be "prescaled" by a factor n (only every nth signal is
kept). Upon an L1A, the TLB sends a data packet containing information about the
event to the DAQ system. At a configurable rate, the TLB can publish monitoring data
packets containing metrics before / after prescale and veto.

To manage trigger vetoes and minimize system deadtime, The TLB implements sev-
eral sources of trigger vetoes:

■ Tracker busy veto: Triggered when the tracker readout boards are busy reading
out event data.

■ Digitizer busy veto: Triggered when the digitizer’s internal readout buffer reaches
a certain threshold.

■ Simple deadtime veto: Prevents triggers within a fixed number of bunch-crossings
after an L1A.

■ BCR veto: Prevents overlap between L1A and BCR processing by vetoing triggers
around the BCR signal.

■ Rate limiter: Limits the L1A rate to prevent uncontrolled high rates from noisy
input channel.

The Tracker Readout Board
The Tracker Logic Board (TRB) operates and reads out data from the Silicon Strip (SCT)
modules. Like the TLB, the TRB is based on the GPIO board from the University of
Geneva. They are housed in custom mini-crates on the detector. One TRB can read out
eight SCT modules, which necessitates a total of 9 TRBs, plus an additional 3 TRBs for
the IFT.

When commands are sent from the host PC to the tracker modules, the TRB converts
them into bit-stream encoded data, which is understandable by the tracker modules.
In standalone mode, the TRB can generate internal triggers for calibration scans, oper-
ating on its internal 40 MHz clock. When integrated into the full system, it synchronizes
with the TLB clock.

Location of the boards
Nine TRBs are housed in a dedicated mini crate positioned above the middle tracking
station while 3 TRB are housed in another mini crate, above the IFT station. Each TRB
receives 24 V power and includes a temperature sensor. The TLB and the digitizer are

16

Chapter 3. The Trigger and Data Acquisition System 3.3. TDAQ Software

(a) Photo of the VME crate. From left
to right : Crate controller, digitizer 0,
TLB, digitizer 1, FClock, BOBR.

fiber from fiber patch panel

AMPMODU

21 slots
19 inches

V
M

E
 –

E
T

H
E

R
N

E
T

 IN
T

E
R

F
A

C
E

 B
O

A
R

D

B
O

B
R

C
LO

C
K

 B
O

A
R

D

D
IG

IT
IZ

E
R

 0

T
L

B

6U

D
IG

IT
IZ

E
R

 1

fro
m

 / to
 TR

B

fro
m

 calo
/ sci

p
atch

 p
an

el
(B

N
C

-to
-M

C
X

)

LEMO
BNC
MCX
RJ45
LVDS

spares

x16x4

to readout switch

(b) Schematic view of the VME crate with the
connections. The layout of the boards has been
optimized to simplify the connections display.
[10] (updated)

Figure 3.5: Disposition of the electronic boards in the VME crate, located next to
the detector.

located in a VME crate located several meters away from the detector, but still in TI12.
A photo and a schematic view of the VME crate are shown in Figures 3.5(a) and 3.5(b) .

3.3 | TDAQ Software

3.3.1 | DAQ software framework
The FASER DAQ software [15] (represented in a simplified diagram in Figure 3.6) is
built on top of DAQling [11], an open-source C++ data acquisition framework suited
for small and medium experiments. DAQling is built around modules, which can com-
municate with each other via the ZeroMQ messaging library [16]. DAQling also pro-
vides tools such as ERS [17] for error logging or monitoring via Redis [18] and InfluxDB
[19]. The configuration of the modules is done via JSON, with the possibility of using
tools such as JSON Schema [20] for modularity and validation of the configuration files.
DAQling allows managing the different processes/modules registered in the configu-
ration files through commands, some of which are available by default and others that
can be added.

Each readout electronics (TRB, TLB, Digitizers) board in FASER is managed by a
dedicated software process, packaged as a DAQling module (called a receiver). They are
responsible for controlling, reading, and packing the readout data into a sub-detector

17

Chapter 3. The Trigger and Data Acquisition System 3.3. TDAQ Software

fragment. Each sub-detector has a specific ID, allowing identification of the origin and
the event to which the fragment belongs. The data fragment is then sent to the event
builder module, which is responsible for reconstructing the entire event from the frag-
ments of all the sub-components. The event is then sent to the file writer module to
be recorded to file. To avoid a high rate of I/O file operations, the file writer stores
the events in a buffer, which, if it exceeds a certain threshold, will write the buffer to the
file. The event is also sent to all the monitoring modules, which can perform monitoring
on the full event and populate histograms. At regular intervals, a module (histogram
archiver) takes a snapshot of the histograms and saves them in a file. There are sev-
eral streams to which the events can be sent. When reconstructing the event, the event
builder also performs quality checks. It checks that the BCID number of each fragment
is the same, and that the fragments are not flagged as corrupted. If fragments do not
arrive at the event builder within a configurable time, the event is also flagged and di-
rected to a dedicated stream. A data compression module, developed by FASER, allows
compressing events from the physics stream before they reach the file writer, reducing
the event size by half. Events from other streams are not compressed.

(x2)

(x2)

CAEN digitizerTrigger Logic BoardTracker Readout Board
(x12)

TRB Receiver TLB Receiver Digitizer Receiver

Event Builder

Event Compression

(x12)

(x12)

ZeroMQ connections

File Writer

TRB Monitoring

Storage

TLB Monitoring

Digitizer Monitoring
Histogram Archiver

Monitoring histograms
and time series

FASER DAQ

(x12)

Figure 3.6: Simplified diagram of the DAQ processes used for FASER. The re-
ceiver modules handles readout and event fragment creation, while monitoring
modules have access to the entire event to publish monitoring metrics. [10] (up-
dated)

3.3.2 | Event format
The structure of the event format is composed of a header, a body, and an optional
trailer. The header contains event identification information such as data size, event

18

Chapter 3. The Trigger and Data Acquisition System 3.3. TDAQ Software

counter, event identifier number, and timestamp and is provided by the event builder.
The body contains the sub-detector fragments, such as the TLB, digitizers, TRBs, and
the event builder. These data fragments are structured the same way as the full event:
a header and a body, respectively the Readout Receiver (ROR) Event Header and the
Readout (RO) fragment. An optional trailer is also possible. The ROR Event Header
contains the fragment origin and eventual flags caused by hardware issues. The RO
fragment contains the raw readout data coming from the different sub-detectors and
thus is specific to the sub-detector electronics. A diagram of the event structure is shown
in Figure 3.7.

Full Event Header

Sub-Detector fragments

Optional trailer

ROR Event Header

RO fragment

Optional trailer

RO Event Header

RO data

Optional trailer

Figure 3.7: Structure of the event format. The sub-detector fragment has the same
structure for all sub-detector components. [10]

3.3.3 | Control and Monitoring Tools
Since FASER does not have a Control Room, several monitoring and control tools have
been put in place to ensure the stability and quality of data acquisition. Some come
directly from DAQling, while others have been specifically implemented for FASER,
described in the following sections.

Run Control

DAQling allows representing the DAQ system through a "control tree" where the dif-
ferent nodes correspond to the modules specified in the configuration file. The nodes
can each be controlled independently according to an advanced Finite State Machine.
Commands executed on a node are propagated to all child nodes. It is possible to ex-
clude certain nodes so that they do not contribute to the status of the parent node and
do not receive its commands. The different possible states of the nodes are represented
in Figure 3.8.

not_added added booted runningready paused

add

remove

boot

shutdown

configure

unconfigure

start

stop

enableTrigger

disableTrigger

ECR

Figure 3.8: FSM states with their respective commands.

19

Chapter 3. The Trigger and Data Acquisition System 3.3. TDAQ Software

To improve the interaction between the DAQ system and a user, a web interface is
available, allowing visualization of the DAQ system and execution of commands on
the various nodes (processes). When starting data taking, the user specifies the type
and a comment associated with the run, with the number provided by an application
(Run Service). Upon stopping, the user can add an end comment. The type, comment,
and other run-related information are sent to the Run Service, which stores them in an
Oracle database. The interface also allows easy log consultation.
The Run Control is detailed in Chapter 5.

Monitoring

Monitoring of the DAQ system is done via time-series metrics, published by every mod-
ule, and via data quality histograms published by monitoring modules.

Metrics are directly handled by DAQling and are published to InfluxDB and a Redis
database, which can then be viewed in Grafana (see Figure 3.9) and a small part on the
web interface of the Run Control.

Figure 3.9: Example of a Grafana dashboard. Global information such as the
trigger rate are displayed (top-left). Information specific to sub-detector (digitizer)
and software (event builder) components are also visible.

The histograms are populated by DAQ processes which can do monitoring on full
events. The histograms are published to the Redis database and then viewed in a cus-
tom web interface. The interface allows to display live histograms, perform some small
checks, and flag problematic histograms. Comparisons between several snapshots of

20

Chapter 3. The Trigger and Data Acquisition System 3.3. TDAQ Software

the same histogram are also possible. An example of histograms displayed on the on-
line histogram web app is shown on Figure 3.9.

Histograms saved in a file by the histogram archiver module can be viewed via a
web application similar to the online histogram viewer,

Figure 3.10: Interface of the histogram monitoring web app, where 1D and 2D
histograms can be displayed.

The Detector Control System

The Detector Control System (DCS) uses a Supervisory Control and Data Acquisition
system [21] (SCADA) employed by LHC experiments at CERN. It controls, configures,
and monitors the operational states of the FASER detector. This includes environmental
parameters such as the temperature and humidity of the tracker, thanks to a custom
Tracker Interlock and Monitoring (TIM) board, which also serves as a hardware safety
interlock for the tracker. The DCS also controls the high and low voltage systems and
the Power Distribution Units. Checks on the monitored values allow action in case of
problems, through alerts, or automatic procedures. The DCS also publishes its moni-
tored values on Grafana.

21

4

Upgrade to calorimeter split readout

4.1 | Motivation
Until the end of 2023, the calorimeter consisted of just four modules, in a 2 x 2 configu-
ration and the major drawback of this configuration was the energy range coverage.

For dark photon-like events, we expect high energy signals up to 3 TeV, which force
us to run the Photomultiplier Tubes (PMTs) at low gain. An optical filter reduces the
signal amplitude by a factor of 10 to avoid having to run the PMTs at very low gain,
where their response is non-linear.

On the other hand, the only source of particles that can practically be used for cali-
bration of the calorimeter response is the high rate of muons: minimum ionizing parti-
cles depositing an energy of around 0.3 GeV in the calorimeters. At low gain, the signals
from these muons are almost completely hidden in the noise, even with a good digitizer
(RMS noise is about 3-4 ADC counts, with 1 ADC count = 0.12 mV with the current
physics run settings).

Before 2024, this problem was overcome by dedicating a period of data taking to
collecting collision muon events at high gain. The calibration measurements were then
extrapolated to the low gain region. The accuracy of the extrapolation was controlled
by a calibration LED system: an LED emits short signals while scanning different PMT
input voltages.

Two modes were therefore required: low gain for physics data taking, and high gain
for MIP calibration.

Although the method was effective, almost a third of the total data collected was
spent on calibration, which reduced the dataset for the physics analysis.

22

Chapter 4. Upgrade to calorimeter split readout 4.2. Proposed solution

4.2 | Proposed solution
The solution considered was, for each calorimeter module, to divide the light in two
paths and have two PMTs instead of a single one. This is done by using a fibre bundle
where the light split would follow a 1:30 ratio (high:low), as shown in Figure 4.1. The
two PMTs would then operate at mid gain (at a gain three times higher than the low
gain values), eliminating the need for the filter and gain calibration.

high gain

low gain

light splitter

1 : 30 ratio

filter
Before

After

Figure 4.1: Setup before and after adding a light
splitter.
Before : the light is first attenuated by a filter be-
fore being collected by the PMT.
After : the filter is removed in favor of a light
splitter that divides the incoming light. It is then
split at a ratio of 1:30. The small fraction is col-
lected by the high-gain PMT for low-energy sig-
nals, and the large fraction is collected by the
low-gain PMT for high-energy signals. [8] (up-
dated)

One light path would then target the
high-energy range (low gain PMT), and
the other the low-energy range (high gain
PMT), specifically, covering the following
energy range :

■ Low energy range : 0.1 - 100 GeV

■ High energy range : 3 - 3000 GeV

The overlap between the two PMTs is
intentional, as it allows cross-calibrations
to be performed.

With four additional PMTs came also
four additional sources to read from,
but since all 16 digitizer channels were
already used, a second digitizer was
needed.

At the time of FASER installation,
FASERν was not approved yet, so when
FASERnu was installed in the tunnel,
some adjustments were needed: a veto
layer had to be disconnected to use the one of the front veto layer, in front of FASERnu,
as both acts as a veto layer. With the additional digitizer, it would allow to connect the
four additional PMT signals and the previously disconnected veto layer. The remaining
channels could be used in the future for other sources.

The new architecture, which brings new possibilities to the DAQ, also comes with
expected challenges:

1. The occupancy of both digitizer’s buffer should be the same. If it is not the case,
the buffer of one of the digitizers could be filled to the maximum, without being

23

Chapter 4. Upgrade to calorimeter split readout 4.2. Proposed solution

the case in the second digitizer, which would induce a BUSY signal, blocking ac-
quisition in one of the digitizers. This can lead to synchronisation problems when
reconstructing events and a potential loss of important events.

2. The digitizers need to be synchronized with each other.

3. The maximum trigger rate would be lower, as more data is read out and processed.

The digitizers must therefore be read out in "parallel", i.e. instead of first reading the
entire buffer of the first digitizer before moving on to the second digitizer, the readout
will alternate between each digitizer after only reading N events, where N is config-
urable (generally corresponding to the chosen value of the BLT). Unfortunately, true
parallel readout is not possible, which is a limitation due to the crate controller used.

The second point concerns the digitizer’s internal clocks. Even with digitizers of the
same model, the internal clocks are not exactly the same as small variations can happen
(e.g. temperature change, slightly different nominal clock rate). Bad digitizer synchro-
nization leads to unpredictable offsets in data acquisition, making offline processing
much more complicated. Wrong synchronization can be minimized by using the CLK
IN connector, designed to provide an external clock as a reference. The last point is
unavoidable, but can be minimized by adjusting readout parameters.

The proposed new mapping is described in Figure 4.2.

Digitizer 1
SourceCH

1 Calo 1, high E
2 Calo 2, high E
3 Calo 3, high E
4
5
6
7
8
9

10
11
12
13
14
15 LHC clock signal

0 Calo 0, high E

BCRTLB

62.5 MHz clock

LVDS triggers and BUSY

Digitizer 0
SourceCH

1 Calo 1, low E
2 Calo 2, low E
3 Calo 3, low E
4 FASER𝝂 , ch 0
5 FASER𝝂 , ch 1
6 Veto St2, ch 0
7 Veto St2, ch 1
8 Btm timing, ch 0
9 Btm timing, ch 1

10 Top timing, ch 0
11 Top timing, ch 1
12 Preshower, ch 0
13 Preshower, ch 1
14 Veto St1, ch 0
15 Veto St1, ch 1

0 Calo 0, low E

L1A

BCR

L1A

Figure 4.2: Mapping of the different scintillators and calorimeter modules to the
16 + new 16 digitizer channels. Red labels indicate new / changed elements.

24

Chapter 4. Upgrade to calorimeter split readout 4.3. The digitizer

ADC buffer
0100 0111 0100 ...

ADC buffer
0110 1111 0111 ...

chan. n°1

chan. n°2

Analog signals

Figure 4.3: The analog signals are first digitized via the ADC, then stored tem-
porarily, waiting to be read out by a computer. Additional channels allows multi-
ple analog signals to be processed (in this case, two channels).

The 62.5 MHz external clock frequency has been decided, based on existing config-
uration files provided by the CAEN manufacturer.

The channel used by the clock, because of its high activity (continuously alternating
signal, unlike the other channels, where the signals are pulses), is isolated in the last
channel of the second digitizer so as not to create noise in the adjacent channels.

Reading the second digitizer also results in a new sub-detector-fragment in the global
event. This sub-fragment is identified by the SourceID associated to the digitizers and
the digitizer number (0 or 1). The new fragment and the five new channels increases the
size of an event from 12.8 kB to 15 kB.

This increase also has an impact on readout speed. Thus, the BLT is increased from
1 to 4. This divides the number of calls to the digitizers by 4 for the same number of
events, compensating for part of the slowdown. A higher number of BLTs is possible,
but also more risky, since if a network packet is dropped, all the events linked to the
same BLT will be lost.

4.3 | The digitizer
A digitizer is an electronic acquisition device which converts analog signals into digital
data using Analog-To-Digitial Converters (ADCs). The digitized signals are then stored
in a buffer, waiting to be read by an external computer. Multiple signals can be digitized
in parallel, via different channels, as depicted in Figure 4.3. Communicating with the
digitizer can be done via several interfaces, such as the Peripheral Component Intercon-
nect (PCI) or the VersaModules Eurocard bus (VMEbus). For firmware updates or PLL
reconfiguration, an optical link interface is used (LINK input in Figure 4.4)

A digitizer has several important characteristics. Firstly, the resolution of the ADC
is determined by the number of bits used to describe the value of the analog signal. The
dynamic range represents the maximum and minimum signal voltage that the digitizer
can measure in a single acquisition. A resolution of 14 bits for a dynamic range of

25

Chapter 4. Upgrade to calorimeter split readout 4.3. The digitizer

2 Volts gives, for example, 214 − 1 = 16 384 signal levels. A single level therefore is
2/16 384 ∼ 0.12 mV, which correspond to the minimum value the digitizer can convert.
A smaller dynamic range will convert a smaller signal amplitude, but will be limited to
smaller input signals.

The sampling rate determines the frequency at which the ADC can convert signals
and therefore influences the temporal resolution of the digitized data. For example, a
sampling rate of 500 MHz corresponds to one digitization (one sample) every 2 ns.

4.3.1 | The vx1730s digitizer
The vx1730s is a commercial digitizer card, manufactured by CAEN [13], and is highly
configurable via writes to specific memory registers. It has a 14 bits ADC resolution
with a selectable dynamic range of 2 Vpp / 0.5 Vpp and a sampling rate of 500 MS/s
(500 000 000 samples per seconds). The vx1730s differs from its predecessor, the 1730
(used as the first digitizer in the experiment) in not needing to be manually calibrated
on start-up, as this is done automatically.

CH14

CH15

DTACK

CH0

CH1

CH2

CH3

CH4

CH5

CH6

CH7

CH8

CH9

CH10

CH11

CH12

CH13

CLK IN

CLK OUT

TRG OUT

TRG IN

S IN

LINK

MON /

S/N

TTL

NIM

PLL LOCK

PLL BYPS

RUN

TRG

DRDY

BUSY

O
U
T

15

L
V
D
S

I
/
O

0

– +

Figure 4.4: Front view of the digitizer. Figure 4.5: Side view of the digitizer. [22]

All I/O connectors are located on the front of the board (except for the connection

26

Chapter 4. Upgrade to calorimeter split readout 4.3. The digitizer

Figure 4.6: After the trigger signal, the samples included in the acquisition win-
dow are then saved in a channel-specific buffer, awaiting readout. [22]

to the VMEbus back plane), so that the digitizer can be placed in a VME crate alongside
other modules.

The base address (A), clock source (B) and flash page (C) can be configured on the
right-hand side (Figure 4.5).

Input analog signals can be connected to input MCX connectors via LEMO cables,
labeled from CH0 to CH15. During data acquisition, analog signals are digitized and
temporarily stored in a circular memory buffer.

Trigger

With the vx1730s, a trigger signal can be delivered in several ways. A common external
trigger (for all channels) can be given via the TRG IN TTL input or the LVDS connectors.
A software command can also produce a trigger signal. Finally, a channel can self-
trigger if the digitized signal exceeds a configurable threshold. The trigger signals are
combined in groups of two channels (eight groups in total) with a programmable logic
(AND, OR, XOR). More information can be found in the official documentation [22].

If an acquisition trigger signal is received, the digitizer saves the current samples
inside a configurable acquisition window. The acquisition window can contain samples
coming before the trigger signal (pre samples) and after the signal (post samples), as
illustrated in Figure 4.6.

The width of the acquisition window depends directly on the configuration of the
SRAM memory, which is independent for each channel. Each memory SRAM is capable
of storing 640 000 (-10 S) samples. It is then possible to organize this memory into several
buffers, with one buffer corresponding to one event. The memory can be divided into a
maximum of 1024 buffers, i.e. 1024 events, each with 640kS/Nb = 640 (−10) S = 630 S,
with Nb = 1024, the number of buffers. Once the 1024 buffers have been filled, the
memory will be marked as FULL and no further triggers will be accepted. Table 4.1 lists
the different buffer configurations with the corresponding number of samples.

27

Chapter 4. Upgrade to calorimeter split readout 4.3. The digitizer

Buffer Number (Nb) Number of samples (Nsample)

1 640 kS (-10 S)
2 320 kS (-10 S)
4 160 kS (-10 S)
8 80 kS (-10 S)
16 40 kS (-10 S)
32 20 kS (-10 S)
64 10 kS (-10 S)

128 5 kS (-10 S)
256 2.5 kS (-10 S)
512 1.25 kS (-10 S)
1024 640 S (-10 S)

Table 4.1: Buffer organisation. A higher number of buffer allows more events to
be stored, but less samples per event. 10 samples are removed due to internal
logic in the digitizer.

A custom number of samples, smaller than the buffer size, can be configured by
choosing an N_LOC value so that is formula is respected :

Nsample = 10 · N_LOC, with N_LOC the configurable parameter

However, this doesn’t change the number of buffers.

Clock distribution

The clock distribution happens on two domains : OSC-CLK and REF-CLK. Optical link,
USB and Local Bus communication are handled by the OSC-CLK, which is fixed at 50
MHz. REF-CLK can be either external (via the CLK-IN input) or internal, via the 50 MHz
oscillator, and will enable the clock distribution device and the Phase Loop Lock (PLL)
to generate a ADC sampling clock of 500 MHz and the trigger logic synchronization
clock (TRG-CLK) of 250 MHz.

REF-CLK source can be toggled via the dip switch B (EXT / INT) on Figure 4.5.
The AD9510 must be reconfigured if an external PLL reference clock is supplied with a
frequency other than the default 50 MHz.

Event Structure

A stored event in the channel buffer is made of 32-bit words, where each bit / sequence
of bits is associated with a specific information of the event. It has always the same
following structure :

28

Chapter 4. Upgrade to calorimeter split readout 4.3. The digitizer

■ A Header : 4 x 32-bits words where information such as the event size (the total
number of words in the event), the channel mask (which channels are activated)
and the Trigger Time Tag (TTT) are stored.

■ The Data : a variable number of 32-bits containing the digitized signals of the
activated channels.

The TTT provides a time reference to the trigger which increments at a frequency of
125 MHz (i.e. 4 ADC clock cycles) from the start of acquisition and ends at the stop, or
at an S IN / LVDS signal and is read at half this frequency, i.e. 62.5 MHz (16 ns). When
the counter reaches its maximum, (231 − 1), a rollover occurs and the 32nd bit is set to
1 (during the first rollover), and the TTT continues to increment up to 232 before rolling
over again at 231 − 1 (see Figure 4.7).

Figure 4.7: TTT Counter time evolution. Credits: CAEN

The structure of the event is described in greater detail in Figure 4.8 and in the user
manual [22].

Data Transfer

The vx1730(s) digitizer is compatible with several data transfer modes. For FASER,
the 2eSST mode is used because it allows data transfers of up to 200 MB/s. Another
feature related to data transfer is the Block Transfer (BLT). Block Transfer readout allows
multiple events to be read per digitizer call. For example, a BLT of 2 halves the number

29

Chapter 4. Upgrade to calorimeter split readout 4.4. Standalone tests

Figure 4.8: Structure of an event with all channels (16) activated. [22]

of digitizer accesses, which is an important factor in optimizing the readout system, as
digitizer calls are an unavoidable bottleneck.

4.4 | Standalone tests
A test setup was constructed in a lab room at CERn in order to commission the new
dual digitizer readout. It includes a sis3153 crate controller, two digitizers and a spare
TLB.

As one of the vx1730s digitizers is already used by the FASER experiment itself, the
tests were performed with a spare digitizer (vx1730) and the new digitizer (vx1730s).
This presents no issues, given that both digitizers have the same characteristics, except
that the old one requires manual calibration, which is not the case for the *s model.

4.4.1 | Digitizer code structure changes
Given the relatively short time available to integrate a second digitizer in the current
DAQ setup (a first version was to be ready at the end of December, with installation
in January during YETS), a complete restructuring of the digitizer code was not possi-
ble, given that all new implementations must be rigorously tested. However, several
guidelines were taken into account during implementation:

30

Chapter 4. Upgrade to calorimeter split readout 4.4. Standalone tests

Ethernet
connection

Figure 4.9: From left to right : the crate controller, the two digitizers and the TLB.

■ Follow the C++ 17 standard [23] as closely as possible, without interfering with
low-level code related to digitizer / crate interface communication.

■ The new code implementation should not only be able to handle an additional dig-
itizer, but should also be easy to add additional digitizers in the future (assuming
they are of the same model)

■ The already existing digitizers configuration files should also work on the new
system.

To manage the configuration of several digitizers in the same json configuration file,
a new digitizers field has been created. This field takes as its value an array of ob-
jects, each linked to the individual digitizer configuration. These objects contain the
same fields as the previous version, except for those common to all digitizers, such as
the readout parameters and the trigger mode. Those parameters have been removed
from the individual objects in order to avoid redundant fields.

Since both digitizers would receive the same commands at the same time (start, stop,
read data, etc.), a class was implemented to propagate actions performed on this class
to all digitizers. The structure of the new digitizer codebase is illustrated in Figure 4.10
and its structure is summarized below.

31

Chapter 4. Upgrade to calorimeter split readout 4.4. Standalone tests

vx1730

«Abstract»
vme_interface_class

digitizerHandler sis3153eth sis3153usb1..*

Already existing code

Figure 4.10: Simplified class diagram of the digitizer codebase [24]. The vx1730
class is a wrapper around the low level sis3153eth class, provided with the
crate controller. The digitizerHandler class allows to perform actions on all
registered vx1730 objects.

The code is mainly divided into two parts: the code supplied by the crate controller
manufacturer, struck innovative systeme [25], and the code implemented specifically for
FASER. The crate controller code had to be slightly modified to improve packet loss and
error handling.

The abstract class vme_interface_class instantiates two other classes that sim-
plify communication with the crate controller (and therefore with the digitizer). For
FASER, communication is performed via Ethernet, so the sis3153eth class is used.
The vx1730 implements functions to link "high-level" actions, such as digitizer config-
uration and control, with read/write registers specific to each action via the provided
sis3153 class. The digitizerHandler class manages several vx1730 objects, each
corresponding to a digitizer.

To improve readability, a C++ structure has been added, READOUT, which holds the
raw data and the monitoring values for a single readout operation. Its code implemen-
tation is provided in Code Fragment 1.

32

Chapter 4. Upgrade to calorimeter split readout 4.4. Standalone tests

struct READOUT {

unsigned int nerrors = 0; // # errors occuring in a single readout

size_t eventSize; // expected size of the event

size_t nwordsObtained = 0; // # received words during readout

std::map<std::string, float> monitoring; // basic monitoring

UINT *raw_payload; // the software buffer which contains the raw data

~READOUT() { // destructor

delete[] raw_payload;

raw_payload = nullptr;

}

};

Code Fragment 1: Definition of the the READOUT struct.

4.4.2 | Synchronization tests
Without Synchronization

The first step is to check that digitizer synchronization is working properly, and to un-
derstand the impact of setting the external clock on the second digitizer. To achieve this,
an initial test was performed with the two digitizers and a signal generator, shown on
Figure 4.11. The signal generator sends short negative square-wave signals at the same
time to both digitizers on one channel.

cr
at

e
co

nt
ro

lle
r

di
gi

tiz
er

 0

di
gi

tiz
er

 1

TL
B

VME backplane

Ethernet

faser-daq server

Pulse Gen.

Figure 4.11: Setup with only the two digitizers and a pulse generator, sending a
square signal in both digitizers. Without synchronization.

By selecting the trigger operating mode to self-trigger, the digitizers choose
to trigger an event when the signal in a channel exceeds a defined voltage threshold.

33

Chapter 4. Upgrade to calorimeter split readout 4.4. Standalone tests

The signals are sent simultaneously, but since both digitizers are not synchronized, the
trigger should not happen at the same time, resulting with two offset signals, as shown
in Figure 4.12.

0 20 40 60 80 100 120 140
No. sample

5000

5500

6000

6500

7000

7500

8000

AD
C

co
un

t

Offset = 10 samples
 (= 20 ns)

Digitizer 0
Digitizer 1

Figure 4.12: Plot of one pulse from the pulse generator, as seen by each digitizer.
The offset between the two signals indicates a difference in clock rates.

To calculate the offset between the signals, we take the difference between the two
half rise-time. The falling part of the signals is fitted with a logistic sigmoid function
[26]. With ∼ 6200 events, we obtain the distribution shown in Figure 4.13. The conver-
sion from the number of samples to time can be made by multiplying the number of
sample by 2, given that a sample is taken every 2 ns (500 MHz). We can see that in the
majority of cases, the offset between the two digitizers is neither zero nor constant.

2 0 2 4 6 8 10 12 14
Offset (d.0 - d.1) [samples]

0

50

100

150

200

250

300

Co
un

ts

 = 5.98 samples
 (= 11.96 ns)

2 = 3.25 samples

events = 6199

Figure 4.13: Distribution of the offsets
for ∼ 6200 events. Two synchronized
digitizers would give a much narrower
distribution.

0 1000 2000 3000 4000 5000 6000
No. event

10.35

10.40

10.45

10.50

10.55

10.60

10.65

10.70

10.75

TT
T

di
ffe

re
nc

e
(m

s)

TTT increase rate = 0.54 s/s

Figure 4.14: Evolution of the difference
between the Trigger Time Tag for both
digitizers. The rate can lead us to the
clock rate mismatch of the two digitizers.

Another measure of de-synchronisation between the digitizers is to look at the Trig-

34

Chapter 4. Upgrade to calorimeter split readout 4.4. Standalone tests

ger Time Tag. The TTT is incremented as soon as data acquisition begins. As opera-
tions can only be sequential between the VME crate modules and the crate controller,
the start of the digitizers is offset, which inevitably leads to a difference in the TTT.
Since the incrementation of the TTT is managed by the digitizer’s internal clock, the de-
synchronisation of the clocks induces a constantly increasing offset of the two TTTs, as
can be seen in Figure 4.14. From the increase in the offset, we can compute the difference
in frequency between the two clocks. With the rate found in Figure 4.14, the difference is
0.54 µHz, which is a small difference but enough to create misleading timing of events.

The vertical lines that can be seen on the graph in Figure 4.14 are due to the TTT
rollover. When the offset between two TTTs is sufficient, one of the digitizers can per-
form its TTT rollover (as shown in Figure 4.7) while the other is not yet at its maxi-
mum TTT. This results in an immediate difference of slightly less than (232 − 1)− 231 =

2 147 483 647 TTT values, equivalent to ∼ 17 seconds.

With Synchronization

CAEN provides ready-to-use configuration files for reprogramming the PLL. Both dig-
itizers have to be reprogrammed, since internal clocks are used by default :

■ Digitizer 0 : In : internal (500 MHz)→ Out : external (62.5 MHz)

■ Digitizer 1 : In : external (62.5 MHz) → Out : deactivated

The clock is transmitted from one digitizer to another by a Single-ended-to-differential
A318 cable.

With the same configuration, we were able to compare with and without synchroni-
sation.

0.0 8.0
Sample number diff (d.0 - d.1)

Yes

No

TT
T

Ju
m

p

0 183

50 0

Figure 4.15: Grid of the different TTT
values and the sample number offset
between the two signals, as seen by
the digitizers.

By synchronizing the two digitizers, we can see
that the distribution of offsets is now limited to
just two values. The synchronisation is also con-
firmed by no increase in the difference in TTT val-
ues, shown in Figure 4.17. On the other hand,
small jumps of 2 TTT values occur regularly. These
jumps, mentioned in the documentation, are un-
avoidable because of the limitations of the digitiz-
ers and the fact that the TTT is incremented every
8 ns and read every 16 ns. Thus, a jump of 2 TTTs
corresponds to a 16 ns (8 samples) offset, which is

35

Chapter 4. Upgrade to calorimeter split readout 4.4. Standalone tests

confirmed by the distribution described in Figure
4.16.

0 1 2 3 4 5 6 7 8
Offset (d.0 - d.1) [samples]

0

25

50

75

100

125

150

175

Co
un

ts

 = 6.28 samples
 (= 12.57 ns)

2 = 3.28 samples

events = 233

Figure 4.16: Distribution of the offsets
for 233 events. The offsets are limited to
only two values.

0 50 100 150 200
No. event

92

94

96

98

100

102

104

106

TT
T

di
ffe

re
nc

e

+1.298e6

Figure 4.17: Evolution of the difference
of TTTs. There is no more increase rate,
but jumps of 2 ns are present.

To differentiate the case where two signals are simultaneous, but with an offset due
to the inaccuracy of the digitizers, from the case where two signals are truly offset by
16 ns, we can refer directly to the difference in TTT, the different combinations of which
are shown in Figure 4.15. Thus, two signals offset by the same TTT correspond to asyn-
chronous signals. This technique could help to correct these inevitable jumps in the
offline event reconstruction software.

4.4.3 | DAQling integration
The integration of an additional digitizer into DAQling has necessitated changes in two
major areas of the codebase: The first concerns the DigitizerReceiver module, re-
sponsible for reading the digitizers and the DigitizerMonitor module, responsible
for creating and filling in data quality metrics histograms.

Digitizer Receiver

To facilitate integration of the digitizer, a new C++ structure, MonitoringValuesHandler,
has been added. This structure stores the metrics registered for publication in InfluxDB
for time series visualisation, and its definition is described in Code Fragment 2.

36

Chapter 4. Upgrade to calorimeter split readout 4.4. Standalone tests

1 struct MonitoringValuesHandler {

2 MonitoringValuesHandler() : temps(16) {}

3 //

4 std::atomic<int> pedestal[16];

5 std::vector<std::atomic<int>> temps;

6 std::map<std::string, float> monitoring;

7

8 std::atomic<int> hw_buffer_space;

9 std::atomic<int> hw_buffer_occupancy;

10 std::atomic<int> triggers; // number of triggers

11 std::atomic<float> time_read;

12 std::atomic<float> time_parse;

13 std::atomic<float> time_overhead;

14 std::atomic<int> corrupted_events;

15 std::atomic<int> empty_events;

16

17 // intermediate monitoring variables, reset after each read sequence

18 float intermediate_read_time = 0;

19 size_t intermediate_receivedEvents = 0;

20 float intermediate_parse_time = 0;

21 };

Code Fragment 2: Definition of the the MonitoringValuesHandler structure.

Each module has a set of functions to implement, which will then be executed during
the various FSM states defined by DAQling. The function executed during data-taking
is the part most affected by the addition of the new digitizer. As explained in section
4.2, the digitizers must be read out alternately, N events per readout. Therefore, most of
the changes have been to transform the existing code to this alternate readout schema.
A diagram summarising the logic of this function is shown in Figure 4.18. Note that this
logic is repeated until the measurement is stopped (stop command sent to the module),
or when an error or crash occurs.

At each iteration, depending on the occupancy of the digitizer buffers, the process
will either pause for 1 millisecond, which allows the polling rate to be set slightly higher
than the expected rate, but it limits unnecessary network traffic. If at least one of the
buffers is not empty, readout will take place in groups of N events (configured by the
BLT size) or smaller if the number of events in the buffer is less than the BLT size. After
the N events have been read, the raw payloads are converted into a C++ data fragment,
before being sent to the event builder. Once this operation has been completed, the
readout moves on to the next digitizer, and so forth, until the number of events retrieved
initially falls to 0 for both digitizers. Theoretically, this means that there is a difference

37

Chapter 4. Upgrade to calorimeter split readout 4.4. Standalone tests

Figure 4.18: Diagram of the digitizer readout logic during data taking.

of no more than N events between the two digitizers. Finally, once the readout sequence
is complete, the monitoring metrics are updated so that they can be viewed on Grafana
(example of two Grafana time series plots on Figure 4.19) and Redis via InfluxDB.

Digitizer Monitor

The changes were mainly linked to the addition of histogram metrics for the new digi-
tizer.

To simplify channel remapping with the addition of the digitizer, a new field has
been added to the module’s JSON configuration file, allowing the source to be linked
directly to the channel used. The various fields are described in the Code Fragment
3. The number of channels in the second digitizer, instead of starting again from 0 to
15, continues from 16 to 31. Thus, for example, the channel labelled 10 on the second
digitizer will correspond to channel (15 + 1) + 10 = 26.

1 {

2 "...",

3 "mapping_channels": {

4 "input_clock": 31, // channel 15 from 2nd digitizer.

5 "fasernu_ch0": 4,

6 "fasernu_ch1": 5,

7 "veto_st2_ch0": 6,

8 "veto_st2_ch1": 7,

9 "btm_timing_ch0": 8,

10 "btm_timing_ch1": 9,

11 "top_timing_ch0": 10,

12 "top_timing_ch1": 11

13 },

14 "..."

15 }

Code Fragment 3: JSON configuration fields related to channel mappings.

With these changes, the histogram data linked to the two digitizers appears in Re-

38

Chapter 4. Upgrade to calorimeter split readout 4.4. Standalone tests

Figure 4.19: Examples of Grafana time series for the number of triggered events
(top) and the buffer occupancy (bottom) for both digitizers.The fact that the two
curves overlap is a promising, because it means that the two digitizers are well
synchronized. In particular, we can see that the number of events in the buffers
(buffer occupancy) is almost identical, thanks to the alternate readout. The metrics
responsible for updating the buffer occupancy and the triggered events are stored
in the MonitoringValuesHandler structure, respectively at L.9 and L.10 from
Code Fragment 2. The data represents a succession of fills, the progressive fall in
the trigger rate corresponding to a drop in the number of bunches in the LHC.

39

Chapter 4. Upgrade to calorimeter split readout 4.5. TI12 Installation

dis, and is displayed in the online monitoring histogram viewer (an example for each
digitizer is shown in Figure 4.20)

(a) ADC values for channel 11, which, accord-
ing to the configuration mapping, L. 11, corre-
sponds to the first channel of the top scintillator
in the timing station.

(b) ADC values for channel 31, which corre-
spond (L. 4 in the configuration) to the clock
channel, hence the difference with the other
ADC values histogram.

Figure 4.20: ADC values from both digitizers displayed on the online histogram
monitoring web page.

4.5 | TI12 Installation

4.5.1 | Digitizer and Calorimeter installation
The second digitizer and PMT modules were installed in the tunnel in two stages:

■ Installation of the digitizer in the crate.

■ Installation of the new PMT modules.

The cables had to be disconnected from the front panel of the existing digitizer in
order to insert the second digitizer into the VME crate. As explained in section 4.4.2,
the PLLs were also correctly reprogrammed in order to synchronise the two digitizers.
The procedure was completed without any major problems, thanks to the previous tests
performed on the surface.

After testing the calorimeter with a single PMT module exchanged (shown in Figure
4.21), the other modules were replaced. When testing the system without the protective
metal cage, it was noticed that the upgraded calorimeter did not solve the problem of
noise related to the GSM antenna present a few meters away. Thanks to the fact that the
new PMT modules are approximately the same size as the old PMTs, the cage could be

40

Chapter 4. Upgrade to calorimeter split readout 4.5. TI12 Installation

Figure 4.21: Picture of a new PMT module mounted on the calorimeter, alongside
the old PMTs.

Time
0

2

4

6

8

C
al

o
ri

m
et

er
 R

M
S

Without box With box With alu foil ch0

ch1

ch2

ch3

Figure 4.22: Plot of the RMS noise for the calorimeter channels as a function of
time, showing the impact that the addition of the metal box and aluminium foil
has on the noise caused by the GSM antenna.

put back in place, which greatly reduced the noise. Wrapping the cables in aluminium
foil also helped to reduce the impact of the antenna to an acceptable noise level. The
impact of the cage and aluminium foil is shown in Figure 4.22.

4.5.2 | High rate tests with the combined system
These tests were performed mainly to find out the limits of the digitizer trigger rate, i.e.
the trigger rate at which the digitizer buffers fill up faster than they empty. If the readout
system is not fast enough, the buffer will fill up little by little until it is completely full. At
this point, the digitizer emits a BUSY signal which stops the acquisition of new events,
allowing the buffer occupancy to decrease. In Figure 4.24, we see when the readout logic
is fast enough (low buffer occupancy) and when it is not (buffer occupancy reaches
100%). For the purposes of this tests, the trigger rate is generated jointly by the LED
calibration system and the TLB. The LED calibration system allows a gradual increase
in the trigger rate, while the TLB provides a baseline. The different tests, as displayed

41

Chapter 4. Upgrade to calorimeter split readout 4.5. TI12 Installation

Test Nb. Channels Buffer Length (BL) Block Transfert (BLT) Max Trigger Rate

1 22 300 1 2 kHz
2 21 280 1 2.1 kHz
3 21 280 2 3 kHz
4 21 280 4 3 kHz (rate limited)
5 21 280 4 3.7 kHz
6 21 280 8 3.9 kHz

Table 4.2: Results of the high rate tests. Test number 4 reached the maximum rate
allowed by the rate limiter, whose limit was increased to 5611 Hz in order to be
able to continue the tests.

in Figure 4.24 are listed in Table 4.2.

1 2 3 4 5 6
Test

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
ax

 t
ri

gg
er

 r
at

e
[k

H
z]

10

12

14

16

18

ti
m

e
al

lo
ca

te
d

 fo
r

p
ar

si
n

g
%

Figure 4.23: Max trigger for the tests
performed, as well as the proportion
of time needed to parse the data from
the digitizer.

There was a good improvement between tests 2
and 3, as well as 3 and 5, i.e. for 2 and 4 events per
readout. The change from 4 to 8 events per read-
out is not sufficiently advantageous to take the risk
of reading 8 events per readout, as if a commu-
nication/network problem occurs and packets are
lost, all 8 events are lost. So, according to the per-
formed tests, 4 events per readout seems to be the
best compromise.

It is also interesting to look at the proportion of
time allocated to event parsing for a given maxi-
mum rate. In Figure 4.23, we can see that for a BLT
of 8 with a maximum rate of around 4 kHz, i.e. a
time window of 0.00025 seconds, the percentage of
time allocated to parsing is almost 20%, which suggests that optimisations could per-
haps be made in the future.

42

Chapter 4. Upgrade to calorimeter split readout 4.5. TI12 Installation

Time
0

1000

2000

3000

4000

T
ri

gg
er

 R
at

e
[H

z]

1 2 3 4 5 6

0

20

40

60

80

100

B
u

ff
er

 o
cc

u
p

an
cy

 %

Figure 4.24: Rates and occupancy during high rate tests

43

5

The Run Control Implementation

5.1 | Motivation
Since FASER began operating, several web interfaces have been used to control its data
acquisition system. With DAQling, the data acquisition framework used by FASER,
provided only a Command Line Interface (CLI), but it lacked several features and had
the typical drawbacks of CLIs in general, such as the need to authenticate and connect
to the server to control the DAQ and very little support for DAQ process monitoring.
The use of the CLI could also allow multiple users using it at the same time, which could
lead to race conditions (when multiple processes try to access a common resource).

An initial web interface (shown in Figure 5.1(a)) was implemented in 2019, provid-
ing configuration and control of the DAQ system as well as visual feedback. With the
arrival of DAQling v0.10.0 in 2021 and the introduction of the DAQ tree structure, en-
abling individual control of modules, a new implementation of the Run Control, shown
in Figure 5.1(b), was then developed. At the time, it provided new features such as
user authentication for a more restrictive access of the web interface, interlock prevent-
ing race conditions and more granular control on the DAQ modules. Over the last two
years, the Run Control has been tested and used successfully. Other sub-interfaces and
features have been added progressively. Monitoring helper tools have also been imple-
mented to provide better insight of the DAQ system.

As new features were added, the application became increasingly difficult to main-
tain because the Run Control had not been designed to be scalable.

In 2023, the question of making FASER’s Run Control available to other experiments
was raised. This meant including a template Run Control software in the DAQling
framework, which could then be extended by other experiments. The integration of the
Run Control presented a number of challenges, especially as the version of the FASER
Run Control at the time was very difficult to scale. In addition, the DAQling features
and those added by FASER Run Control were closely linked, making the system com-
plex to modify. Some DAQling features were not implemented or were abandoned

44

Chapter 5. The Run Control Implementation 5.2. General Tour

(a) Old version, before 2021. It didn’t im-
plement authentication nor interlock.

(b) New version, after 2021. Didn’t change with the
reimplementation.

Figure 5.1: Run Control GUI interfaces.

because FASER did not use them, such as the ability to manage several run configura-
tions at the same time, which had to be implemented in order to create a template for
DAQling. This feature in particular required a thorough reimplementation of the Run
Control.

To create a Run Control template for integration in DAQling, it was necessary to
re-implement the Run Control software, separating the purely DAQling parts from the
FASER-specific elements to enable updates to be made to the template without gener-
ating conflicts with the experiment-specific parts. The architecture of the Run Control
software in the form of a Python package suited this approach well.

In addition, server configuration, logging and error handling needed to be redesigned
to provide a more stable structure for future extensions. As well as being necessary for
integration with DAQling, these changes would benefit FASER directly, as some re-
quested features were difficult or impossible to implement in the current state of the
application, such as automatic restart when a module encountered an error/crash. Al-
though the Run Control had to be reimplemented at both backend (server) and frontend
(web interface) levels, the aesthetics of the web interface did not need to change, as the
panel-based interface structure (Figure 5.3) was already well suited to the modular as-
pect of the new architecture.

The following chapters describe the general organisation and the different parts of
the Run Control, including the additions related to FASER.

5.2 | General Tour

45

Chapter 5. The Run Control Implementation 5.2. General Tour

Overview
The main features of the Run Control GUI are listed below. The features will be dis-
cussed in section 5.3.

Authentication

Users must identify themselves via CERN Single Sign-On (SSO) [27] or automatically
via a value based on user’s IP address in order to interact with the web interface.

DAQ Control

It is possible to send individual or grouped commands to DAQ modules, while prevent-
ing simultaneous commands from multiple users via an interlock system.

Monitoring

Regular process status checks are performed with the ability to send custom alerts to
Mattermost [28] in case of crashes or errors (configurable).

Automation

An optional automatic restart can be performed if a crash or error occurs. The processes
that trigger an automatic restart on crash or error can be selected using regular expres-
sions. The automatic restart process stops if a manual command is issued.
Also available as a standalone script, the sequencer can be used to create execute run se-
quences with different parameters and run configurations. A sequence step stops after
a configurable time or number of events before starting another. The sequencer is fully
controllable from the web interface via a dedicated panel.

Logs

DAQ process logs can be consulted in real time. The logs of scripts referenced in the run
configuration can also be consulted.

Extensibility

A Python class is available to facilitate interaction between external scripts and the
Application Programming Interface (API) of the Run Control. For example, the se-
quencer can be used to configure sequences via a configuration file. Each sequence

46

Chapter 5. The Run Control Implementation 5.2. General Tour

corresponds to a complete DAQ cycle (initialise → start → stop → shutdown). The se-
quencer is available as a Python script, but also has a dedicated interface on the Run
Control web interface (shown in section 5.2).

Configuration

The Run Control is configurable via a JSON file, allowing application settings to be
modified, such as the authentication method, regular expressions for automatic restart,
and toggling of single run mode (only one active run configuration is allowed). A Local
mode is available, which ignores communication with external services, such as the run
service or InfluxDB and is mainly for development/testing purposes.

The Web Interface
The Run Control interface (Figure 5.3) consists of a header, a side bar and the main area,
where panels associated with different features are present. The header contains links
to the Grafana interface and monitoring histograms, a dropdown for selecting the run
configuration file and options related to interlock and authentication.

If a run configuration is loaded, the side bar displays the modules present in the
configuration with their status in a tree structure. The main area contains the control
panel. This is where the state of the DAQ system can be controlled. The sequencer can
be accessed via the dedicated button on the right of the panel.

The sequencer is displayed as a pop-up window, where the sequence configuration
file and the initial step can be selected. The generated list of steps is also displayed in a
dedicated part, as shown in Figure 5.2.

Sequence selection

Initial step

List of steps

Figure 5.2: Pop-up window for the se-
quencer interface.

The second panel, the monitoring panel, displays
basic monitoring data related to the current run, in
the form of time series and text. The last panel is
the logs panel. It displays logs related to all run
control activities and attached processes (more in-
formation in section 5.3.3). It is also possible to
consult the logs of scripts specified in the configu-
ration file and launched automatically when a con-
figuration is initialized (auxiliary scripts). When a
module (not a category) is selected on the tree in
the side panel, a new panel appears, listing all the
metrics, in real time, associated with this module.

47

Chapter 5. The Run Control Implementation 5.3. Implementation

It is also possible to access the module’s logs, ei-
ther in their entirety (not updated in real time) or the tail of the logs (in real time).

State
Panels

Logs for the auxiliary scripts

Actions

User logged and interlocked config
Side Panel

Module name

Run configuration selection

Trigger rate
monitoring

crashed
module

Figure 5.3: Web interface of the Run Control. It is structured around a series of
panels, each dedicated to a specific function: control, monitoring and log.

5.3 | Implementation

5.3.1 | Technologies used
VueJS and Vuetify

The browser interface (hereafter referred to as the frontend or client) uses the Vue.js [29]
framework. Vue.js is a powerful, versatile and open-source JavaScript framework for
creating user interfaces. Vue.js is called "progressive" because it can be gradually inte-
grated into existing projects, adding only the necessary functionality, thereby keeping
dependencies to a minimum.

Vue.js can be used with tools such as Vite [30] or Webpack [31] to produce optimised
JavaScript code, but this has the disadvantage of considerably increasing the number
of dependencies to be installed (notably Node.js and npm) when the application has to
be deployed on a server. Vue can also be used via a Content Delivery Network (CDN)

48

Chapter 5. The Run Control Implementation 5.3. Implementation

Logs display options
for the selected module

Selected module New module info panel with live metrics

Figure 5.4: When a module is selected in the tree view, a new panel appears con-
taining live metrics and the log menu.

to include it more easily in existing HTML web pages (the method chosen for the Run
Control project).

Vue works with a system of components. A Vue application is made up of a main
instance and components, which are a simplified Vue instance with a given name. Each
component has a lifecycle (an overview of which is shown in Figure 5.5), where it is
possible, at each stage, to register and execute functions linked to the specific hooks,
some of which are listed below.

■ created: This function is called when all operations relating to the initialisation
of the component’s states have been completed.

■ mounted: called when the Document Object Model (DOM) of the component has
finished being initialized.

■ updated: called when the DOM of the component has been modified.

■ unmounted: called when the component is unmounted, before being destroyed.

The components encourage a modular approach, facilitating code reusability and sepa-
ration of concern. Although using a javascript framework adds additional knowledge in
addition to the language, when the page is interactive and elements change frequently,
it improves the development experience as well as the responsiveness of the application.

49

Chapter 5. The Run Control Implementation 5.3. Implementation

Renderer
encounters component

Init Options API
Initial render

create & insert DOM
nodes

Mounted Unmounted

Re-render
and patch

unmounted

updated

mountedcreated

Data
changes

Figure 5.5: Simplified diagram of the lifecycle of a Vue component with the main
hooks used. Inspired by the diagram in the official documentation [32].

Vuetify is an open-source library of UI components and is partially used for the
styling of elements on the interface. It simplifies the implementation of various graphi-
cal elements and integrates well with the Vue.js framework.

Flask

The server side is powered by Flask [33], an open-source micro-framework written in
Python. It makes it easy to create web applications by providing the basic functionality.
Extensions can be added to extend its capabilities.

Its routing system makes it easy to define "routes" (URLs) to Python functions using
decorators, as illustrated by Code Fragment 4.

from flask import Flask, current_app # import Flask package and the proxy

object to the app↪→

app = Flask(__name__) # creates the Flask instance

route decorator, linking "/" to index function

@main.route("/", methods=["GET", "POST"])

def index():

CONFIG = current_app.config["daqControl"] # getting the server

configuration object↪→

return render_template("index.html", localOnly=CONFIG["local_only"])

if __name__ == '__main__':

app.run(debug=True) # starting the server in DEBUG mode.

Code Fragment 4: Minimal example for a Flask application, which displays the
Run Control web interface at the base URL (route) "/".

50

Chapter 5. The Run Control Implementation 5.3. Implementation

Blueprints can be used to structure an application into several modules, centralising
routes and making application development and maintenance more efficient.

Redis

The Run Control uses Redis to enable communication with other parallel processes
and to save temporary data. Redis [18] (REmote DIctionary Server) is an open source
database stored in memory, renowned for its speed and high performance. Although
Redis is a database stored in memory and not on disk, it offers the possibility of backing
up data permanently using point-in-time backups to disk (snapshots). As well as serv-
ing as a database, Redis provides a publication/subscription system (Pub/Sub), useful
for events handling.

Redis is accessible via its redis-cli command line, as shown in Code Fragment 5, but
it is also possible to interact with it via libraries specific to each language.

r = redis.Redis(host="localhost",port=6379, db=4) # creating the connection

... # some code

r.set("selectedConfig", "fullPhysicsConfig") # selecting run configuration

"fullPhysicsConfig"↪→

... # some code

value = r.get("selectedConfig") # retrieve value from key "selectedConfig

... # some code

Code Fragment 5: Example of setting and getting a value using the redis-py
package.

Redis works with a key-value principle, where the key is a string and the value can
take various forms such as a set, a list or a hash.

5.3.2 | Project architecture
The Run Control is used via the daqControl Python package. This package contains
several sub-packages specific to each part of the application : Main, Authentication,
Control and Custom, which will be explained in the next sections.

A recurring problem in Flask applications is the "circular import", which occurs
when two modules depend on each other. To overcome this, a Flask extension has been
implemented to make configuration data and any other object that needs to be globally
accessible, available.

51

Chapter 5. The Run Control Implementation 5.3. Implementation

The most important element of the Run Control is the daqHandler. It is associated
with a single run configuration (several instances can therefore coexist) and is respon-
sible for loading the configuration, checking its validity and propagating commands
issued by the client (browser or via the run control helper class, see section 5.3.7). The
main attribute of the daqHandler is the nodeTree. Introduced by DAQling in version
v0.10.0, the nodeTree provides a tree representation of the data acquisition system,
where each leaf of the tree corresponds to a module. The daqHandler can be inherited
to extend its capabilities. All daqHandlers are themselves managed by the dhManager
class, which is responsible adding active daqHandlers and removing inactive ones.

A separate thread is dedicated to the stateChecker, a function that continuously
checks the status of modules present in daqHandlers and that can be extended accord-
ing to the user’s needs.

In the utils folder, functions and classes are made available for standalone use,
such as Mattermost notifications or configuration file validation.

5.3.3 | Logging system
As mentioned in section 5.1, it was important to have a logging system capable of ag-
gregating different sources and controlling where the logs are sent.

A customisable and versatile system was implemented using the standard logging

[34] module supplied with Python. This system is configurable, directly in the code or
from a JSON file.

The Python logging module has three key concepts: loggers, handlers and format-
ters. Loggers are responsible for capturing logs generated by the application and pass-
ing them on to handlers. Handlers retrieve messages from the loggers and send them
to different destinations. Custom handlers can be implemented by sub-classing the de-
fault handler. The format in which messages are sent is managed by the formatters. As
for the handler, custom formatters can be implemented from the default formatter. A
logger may therefore contain several handlers, each responsible for a destination, whose
format is managed by a formatter (as shown in Figure 5.6).

For the Run Control, the daqControl is created and is accessible for all sub-packages.
Three handlers are added to this logger :

■ A FileHandler, responsible for saving logs to disk.

■ A StreamHandler, for display on standard output.

52

Chapter 5. The Run Control Implementation 5.3. Implementation

■ A SocketIOHandler, a custom handler implemented specially for FASER to
communicate between the server and the Web Interface. It is this handler which
updates the logs displayed on the web interface.

While the StreamHandler handler uses a default formatter, the FileHandler and
SocketIOHandler uses a custom formatter that formats messages in a JSON format.
This format not only facilitates communication between server and client, but also al-
lows logs to be saved in a .jsonl (json line) format, which is easier to analyse and
integrate into other analysis and monitoring tools.

Logger
daqControl

...

.debug()

.info()

.warning()

.error()
 ...

LEVEL: DEBUG / INFO / WARN ...

FileHandler

LEVEL: DEBUG / INFO / WARN ...

Formatter

SocketioHandler

LEVEL: DEBUG / INFO / WARN ...

Formatter

StreamHandler

LEVEL: DEBUG / INFO / WARN ...

Formatter

.jsonl

{"message" : ..., "level" : ..., "timestamp" : ... }

[<timestamp>] [<level>] ... - <message>

message

Made specially
for FASER

Figure 5.6: Diagram of the Run Control logging system

These specific handlers provide granular control over how logs are output and saved.
As an example, logs from Flask’s debugging tools do not need to be sent to an interface
user, but it is still useful to keep them to ensure that the application is working correctly.
On the other hand, an error from Flask should be sent to the interface so that it can be
dealt with as quickly as possible.

The introduction of the new daqControl logger provides a good basis for future
implementations, since a new functionality could be implemented and benefit directly
from the already existing logging infrastructure.

5.3.4 | Authentication
Since the Run Control handles the operation of the experiment, it is necessary to limit
control to authorised members of the FASER collaboration. To achieve this, Single-Sign

53

Chapter 5. The Run Control Implementation 5.3. Implementation

Login

(a) To take control of the in-
terface, the user first have to
login.

Logout
Interlock

(b) Then, the user have to re-
quest interlock via the lock
icon.

Figure 5.7: Part of the web interface dedicated to authentication and interlock.

On [27] authentication has been implemented (shown on Figure 5.7 (a)) , taking advan-
tage of CERN’s existing infrastructure, the CERN Single-Sign On, powered by Keycloak
[35]. It has several advantages:

■ Secure authentication via two-factor authentication.

■ Possibility of using CERN e-groups to restrict access and define several levels of
authentication.

■ A user already logged in on one of the CERN pages does not need to re-authenticate
on the application.

If SSO authentication is not required (for tests, for example), the Run Control falls back
to a basic automatic login via a IP address, where the IP address is used to distinguish
two different users. This method requires no configuration, but it is not very reliable, as
several users can have the same IP address, under certain conditions.

SSO authentication requires several steps before it becomes operational. The appli-
cation must be registered on the CERN Application Portal [36]. Registration provides
identifiers that can then be configured in the Run Control. It is also on this platform
that it is possible to specify the e-groups authorised to take control of the Run Control
interface. A description of the workflow for the two authentication methods is shown
in Figure 5.8.

5.3.5 | Interlock
Interlock is a feature that prevents several users from performing actions simultane-
ously on the same run configuration. This ensures that there is no conflict between two

54

Chapter 5. The Run Control Implementation 5.3. Implementation

Figure 5.8: Diagram of the Run Control authentication logic.

different commands. A user can only request the interlock if they are logged in, as the
interlock uses the upn (CERN login name) as an identifier if SSO is enabled (as shown
in Figure 5.7 (b)), otherwise the IP address. If the configuration is not already locked,
the interlock will be granted, otherwise it will be refused. Once the interlock has been
granted, the user has a certain amount of time (which can be configured) to carry out his
actions. If, at the end of this time, the user has not performed any action, the interlock
will be automatically released.

The interlock is based on the ability of Redis to manage temporary keys - the inter-
lock is released when the keys expire. If the interlock is active, user actions will extend
the duration of the interlock. A diagram of the interlock process is shown in Figure 5.9.

Figure 5.9: Diagram of the interlock logic, where N is the configurable interlock
time duration.

5.3.6 | Actions
In the Run Control, "Commands" correspond to the commands registered by DAQling
and enable the modules to move between their different states of the finite state ma-
chine.

On the other hand, "Actions" correspond to operations which influence the general
state of the Run Control and are implemented by the Run Control itself. Therefore
the DAQ modules are interacted via the actions rather than directly interacted with

55

Chapter 5. The Run Control Implementation 5.3. Implementation

the commands. On the interface, the commands can still be accessed by activating the
"expert" mode from the menu.

FASER implements seven actions: INITIALISE, START, STOP, PAUSE, RESUME,
ECR and SHUTDOWN.

■ INITIALISE prepares the DAQ system by configuring the DAQ modules accord-
ing to the run configuration selected and launches any auxiliary scripts defined in
the same configuration file.

■ START (STOP) starts (stops) a new run.

■ PAUSE (RESUME) deactivates (reactivates) the global trigger, while continuing the
same run.

■ ECR resets the event counter. It is automatically done before an event count over-
flow, but the action can be performed in case of de-synchronization between frag-
ments.

■ SHUTDOWN, stops all DAQ modules and all auxiliary scripts. In the event of an
error/crash in the modules, this action resets the DAQ system.

When an action is performed, an inTransition flag is raised on the daqHandler re-
sponsible for the specific run configuration, which prevents any parallel action on the
same daqHandler until the end of the action.

The action is divided into three parts: action pre-sequence, action sequence and ac-
tion post-sequence.

Action pre-sequence

The action pre-sequence part allows operations to be performed before commands are
sent and depends on the actions performed:

■ INITIALISE: reloads the configuration to take account of possible changes to the
configuration file and starts the auxiliary scripts.

■ START: If local mode is active, the run number is set to 1 000 000 000 (arbitrary
value). Otherwise, the next run number is retrieved from the run service.

■ STOP: Run-related information is sent to the run service (if local mode is disabled).

■ SHUTDOWN: If a crash/error occurs and this action is performed, the Run Control
sends a request to the run service to report it. The auxiliary scripts launched dur-
ing the initialisation phase are then stopped.

56

Chapter 5. The Run Control Implementation 5.3. Implementation

Action Sequence Additional instructions

INITIALISE add, configure save log locations
START start -
PAUSE disableTrigger -
ECR ECR -
RESUME enableTrigger, resume -
STOP stop -
SHUTDOWN unconfigure, shutdown, remove -

Table 5.1: Table of the sequence of commands associated with the actions.

The PAUSE, RESUME and ECR actions do not include instructions in the pre-sequence
part.

Action sequence

The sequence part contains the sequence of commands to be performed. A summary
of the command sequences for each action is listed in table 5.1. Except for the sequence
linked to INITIALISE, no command sequence requires additional instructions.

Action post-sequence

Finally, the action post-sequence part contains the instructions for moving on to the next
state, depending on the outcome of the command sequence.

The IDLE state of the Run Control is DOWN and only the INITIALISE action is per-
mitted. If the INITIALISE action is successful, the Run Control will go into READY

state, where it will be possible to start a new run. On the other hand, if a problem oc-
curs during module configuration, the Run Control state will be ERROR, allowing only
the SHUTDOWN action.

Once data acquisition has started, the Run Control state is RUN, and it is possible
to PAUSE (and then RESUME or ECR) or STOP to stop data acquisition. At the end, the
daqHandler removes its inTransition flag to allow new commands to be performed.

5.3.7 | Run Control Class
Although the main method of controlling the DAQ system is via the Run Control web
interface, it is possible to create external scripts to control the state of the run via a
simple Python class. Currently, the class provides shortcuts for the following actions:
INITIALISE, START, STOP and SHUTDOWN. It is also possible to retrieve information

57

Chapter 5. The Run Control Implementation 5.4. Outlook

about an active run or a particular module, and to send logs via the Run Control logger.
The diagram in Figure 5.10 illustrates the use of the RunControl class.

Run Control
Class

getState()

initalize()

start()

Run Control
server

/globalState

/executeAction

/addLog

external
script

http requests
Run Control

URL

Figure 5.10: A diagram illustrating the use of the Python class to remote control
the Run Control application.

If the already implemented methods are not sufficient, it is always possible to access
other Run Control API endpoints via raw HTTP requests.

For FASER, several scripts (mentioned in section 5.2) take advantage of this interface,
such as the fillChangeHandler, which automatically restarts a run when there is a
fill change at the LHC, or the sequencer, which automatically performs run sequences.

5.4 | Outlook
The re-implementation of the Run Control has resulted in a much more modular and
modifiable structure by separating the core functions from the other parts. It has also
reintroduced the possibility of having several active run configurations, while offering
the option of deactivating this feature via the ’single run mode’. The introduction of
a new logging system has made it possible to unify the various sources (existing and
future) through a single system, improving error management.

Although most of the core codebase is decoupled from experiments specific func-
tionalities, a small coupling still exists due to the way Flask is integrated. Further think-
ing is needed to address this issue. Moreover, modifying certain parts of the appli-
cation that may change for other experiments still requires a good understanding of
the Run Control. This includes adding configuration elements, replacing the default
daqHandler, or modifying frontend elements.

The remaining steps needed for the Run Control to become a template for future
experiments will therefore be to finish the separation between core features and other
features and ease the extension of the application, which will reduce the knowledge
required to extend and customize the software for future uses.

ª

58

6

Conclusion

The FASER experiment extends the LHC physics potential by probing the far-forward
regions to find evidence of Long-Lived Particles such as the dark photon and Axion Like
Particles. This could lead to advances in Physics beyond the Standard Model. During
the last two years of data taking, FASER has demonstrated its capabilities by observing
the first collider neutrinos [5] and first dark photon studies [6].

An upgrade of the FASER calorimeter system to a split readout system significantly
extended the dynamic range of the calorimeter energy sampling but necessitated adding
a second digitizer to the previous single digitizer readout. Standalone tests showed that
synchronization of the digitizers was necessary, and a dual readout was implemented.
The new implementation allows scalable integration of additional digitizers in the fu-
ture. High-rate tests were successfully performed on the full detector, demonstrating
that the addition of a digitizer can still handle trigger rates higher than expected, pro-
vided the readout parameters are optimized. Since its implementation in February, the
experiment has resumed data taking successfully, and the new calorimeter split readout
system’s early performance results seem promising [37]. Future work could focus on
event parsing in the digitizer event processing software, which was shown to occupy
20% of processing time.

The FASER Run Control provides a web interface for manual control of the FASER
TDAQ system as well as impose control autonomously, for instances when set to oper-
ate a sequence of calibration runs. The lack of scalability of the FASER Run Control and
the need to add features such as automatic restarts led to a major re-implementation
and restructuring, which constituted the second part of this master’s project. This was
done through a new Python package structure where core functionalities were imple-
mented, as decoupled as possible from potential extensions. With the upgrade of sub-
systems such as configuration, logging, and error handling, the new architecture bene-
fited FASER by making it more user friendly and modular, but it also opened the way
for other experiments to use the Run Control.
Further improvements in the decoupling of the software’s core features could be done,

59

especially concerning the backend framework Flask, as it requires specific frontend-
related file organisation that does not allow easy modifications without being familiar
with the Run Control software.

Having been approved by CERN to continue operating during Run 4 at the High Lu-
minosity LHC era, FASER promises interesting future results, particularly with future
upgrades.

60

Bibliography

[1] LHC Long Term Schedule. URL: https://lhc-commissioning.web.cern.
ch/schedule/LHC-long-term.htm.

[2] CERN Yellow Reports: Monographs. CERN Yellow Reports: Monographs, Vol. 10
(2020): High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report.
Dec. 17, 2020. DOI: 10.23731/CYRM-2020-0010. URL: https://e-publishing.
cern.ch/index.php/CYRM/issue/view/127. preprint.

[3] F. Collaboration et al. Technical Proposal: FASERnu. Jan. 9, 2020. URL: http://
arxiv.org/abs/2001.03073. preprint.

[4] F. Collaboration et al. “First Direct Observation of Collider Neutrinos with FASER
at the LHC”. In: Physical Review Letters 131.3 (July 19, 2023), p. 031801. ISSN: 0031-
9007, 1079-7114. DOI: 10.1103/PhysRevLett.131.031801.

[5] CERN. First Collider Neutrinos Detected. CERN Courier. Apr. 24, 2023. URL: https:
//cerncourier.com/a/first-collider-neutrinos-detected/.

[6] F. Collaboration. “Search for Dark Photons with the FASER Detector at the LHC”.
In: Physics Letters B 848 (Jan. 2024), p. 138378. ISSN: 03702693. DOI: 10.1016/j.
physletb.2023.138378.

[7] F. Collaboration et al. “FASER’s Physics Reach for Long-Lived Particles”. In: Phys-
ical Review D 99.9 (May 15, 2019), p. 095011. ISSN: 2470-0010, 2470-0029. DOI: 10.
1103/PhysRevD.99.095011.

[8] H. Abreu et al. “The FASER Detector”. In: Journal of Instrumentation 19.05 (May 1,
2024), P05066. ISSN: 1748-0221. DOI: 10.1088/1748-0221/19/05/P05066.

[9] K. Halbach. “Design of Permanent Multipole Magnets with Oriented Rare Earth
Cobalt Material”. In: Nuclear Instruments and Methods 169.1 (Feb. 1980), pp. 1–10.
ISSN: 0029554X. DOI: 10.1016/0029-554X(80)90094-4.

61

https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm
https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm
https://doi.org/10.23731/CYRM-2020-0010
https://e-publishing.cern.ch/index.php/CYRM/issue/view/127
https://e-publishing.cern.ch/index.php/CYRM/issue/view/127
http://arxiv.org/abs/2001.03073
http://arxiv.org/abs/2001.03073
https://doi.org/10.1103/PhysRevLett.131.031801
https://cerncourier.com/a/first-collider-neutrinos-detected/
https://cerncourier.com/a/first-collider-neutrinos-detected/
https://doi.org/10.1016/j.physletb.2023.138378
https://doi.org/10.1016/j.physletb.2023.138378
https://doi.org/10.1103/PhysRevD.99.095011
https://doi.org/10.1103/PhysRevD.99.095011
https://doi.org/10.1088/1748-0221/19/05/P05066
https://doi.org/10.1016/0029-554X(80)90094-4

Bibliography

[10] F. Collaboration et al. “The Trigger and Data Acquisition System of the FASER
Experiment”. In: Journal of Instrumentation 16.12 (Dec. 1, 2021), P12028. ISSN: 1748-
0221. DOI: 10.1088/1748-0221/16/12/P12028.

[11] DAQling: A Software Framework for the Development of Modular and Distributed Data
Acquisition Systems. GitLab. URL: https://gitlab.cern.ch/ep-dt-di/
daq/daqling.

[12] Si5341-d-Evb, Skyworks. URL: https://www.skyworksinc.com/en/Products/
Timing/Evaluation-Kits/clock/si5341-evaluation-kit.

[13] VX1730. CAEN - Tools for Discovery. URL: https://www.caen.it/products/
vx1730/.

[14] SIS3153 USB3.0 and Ethernet to VME Interface. URL: https://www.struck.de/
sis3153.html.

[15] FASER DAQ: Top Level Software for the FASER Trigger and Data Acquisition System.
URL: https://gitlab.cern.ch/faser/online/faser-daq.

[16] ZeroMQ. URL: https://zeromq.org/.

[17] ERS - Error Reporting Service. GitLab. Apr. 17, 2024. URL: https://gitlab.
cern.ch/atlas-tdaq-software/ers.

[18] Redis. URL: https://redis.io/.

[19] InfluxDB. Sat, 15 Jan 2022 15:32:09 +0000. URL: https://www.influxdata.
com/home/.

[20] JSON Schema. URL: https://json-schema.org/.

[21] SCADA. In: Wikipedia. June 1, 2024.

[22] L. Pagliai. “V1730/VX1730 & V1725/VX1725 User Manual”. In: ().

[23] C++17 - Cppreference.Com. URL: https://en.cppreference.com/w/cpp/17.

[24] Faser / Online / Digitizer-Readout · GitLab. GitLab. Apr. 30, 2024. URL: https://
gitlab.cern.ch/faser/online/digitizer-readout.

[25] Struck Innovative Systeme Homepage. URL: https://www.struck.de/.

[26] Scipy.Special.Expit — SciPy v1.13.0 Manual. URL: https://docs.scipy.org/
doc/scipy/reference/generated/scipy.special.expit.html.

[27] Single Sign-On. In: Wikipedia. June 5, 2024.

[28] Mattermost. URL: https://mattermost.com/.

[29] Vue.Js. URL: https://vuejs.org/.

62

https://doi.org/10.1088/1748-0221/16/12/P12028
https://gitlab.cern.ch/ep-dt-di/daq/daqling
https://gitlab.cern.ch/ep-dt-di/daq/daqling
https://www.skyworksinc.com/en/Products/Timing/Evaluation-Kits/clock/si5341-evaluation-kit
https://www.skyworksinc.com/en/Products/Timing/Evaluation-Kits/clock/si5341-evaluation-kit
https://www.caen.it/products/vx1730/
https://www.caen.it/products/vx1730/
https://www.struck.de/sis3153.html
https://www.struck.de/sis3153.html
https://gitlab.cern.ch/faser/online/faser-daq
https://zeromq.org/
https://gitlab.cern.ch/atlas-tdaq-software/ers
https://gitlab.cern.ch/atlas-tdaq-software/ers
https://redis.io/
https://www.influxdata.com/home/
https://www.influxdata.com/home/
https://json-schema.org/
https://en.cppreference.com/w/cpp/17
https://gitlab.cern.ch/faser/online/digitizer-readout
https://gitlab.cern.ch/faser/online/digitizer-readout
https://www.struck.de/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.expit.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.expit.html
https://mattermost.com/
https://vuejs.org/

Bibliography

[30] Vite. vitejs. URL: https://vitejs.dev.

[31] Webpack. webpack. URL: https://webpack.js.org/.

[32] Vue.Js. URL: https://vuejs.org/guide/essentials/lifecycle.html.

[33] Flask Documentation (3.0.x). URL: https://flask.palletsprojects.com/
en/3.0.x/.

[34] Logging — Logging Facility for Python. Python documentation. URL: https://
docs.python.org/3/library/logging.html.

[35] Keycloak. URL: https://www.keycloak.org/.

[36] CERN Applications Portal. URL: https://application-portal.web.cern.
ch/.

[37] 20th International Conference on Calorimetry in Particle Physics. Indico. URL: https:
//indico.cern.ch/event/1339557/contributions/5898500/.

63

https://vitejs.dev
https://webpack.js.org/
https://vuejs.org/guide/essentials/lifecycle.html
https://flask.palletsprojects.com/en/3.0.x/
https://flask.palletsprojects.com/en/3.0.x/
https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/logging.html
https://www.keycloak.org/
https://application-portal.web.cern.ch/
https://application-portal.web.cern.ch/
https://indico.cern.ch/event/1339557/contributions/5898500/
https://indico.cern.ch/event/1339557/contributions/5898500/

	List of Abbreviations
	Introduction
	FASER at CERN
	Physics motivation

	The FASER Detector
	Overview
	Magnets
	Tracking system
	Calorimeter & Scintillator system
	FASERnu

	The Trigger and Data Acquisition System
	Overview
	TDAQ Hardware
	TDAQ Software
	DAQ software framework
	Event format
	Control and Monitoring Tools

	Upgrade to calorimeter split readout
	Motivation
	Proposed solution
	The digitizer
	The vx1730s digitizer

	Standalone tests
	Digitizer code structure changes
	Synchronization tests
	DAQling integration

	TI12 Installation
	Digitizer and Calorimeter installation
	High rate tests with the combined system

	The Run Control Implementation
	Motivation
	General Tour
	Implementation
	Technologies used
	Project architecture
	Logging system
	Authentication
	Interlock
	Actions
	Run Control Class

	Outlook

	Conclusion
	Bibliography

