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Section 2 Abstract

2 Abstract

Gamma-ray bursts (GRBs) are some of the most powerful and enigmatic events in the Universe.
These brief, intense bursts of gamma radiation can last from a fraction of a second to several
minutes, or even hours and are thought to be produced by some of the most violent events in
the Universe, such as the collapse of massive stars or the collision of two compact objects like
neutron stars.
Despite decades of research, many questions about the nature and origin of GRBs remain unan-
swered. One of the biggest challenges in studying these events is their rapid and unpredictable
nature. GRBs can occur anywhere in the sky, and their positions are often difficult to determine
accurately. These difficulties are, among other things, the reason it took decades to know that
their origins were extra-galactic. Their location is also an important piece of information for
other measurements, such as those which have to rapidly repoint to the GRB to measure it, or
other measurements which require an incoming direction-dependent detector response.
Currently, the most widely used method for localizing GRBs uses comparisons (via a χ2 fits) of
the measured signal to a database of simulated GRBs from different incoming angles and different
energy spectra. This method is fast but prone to systematic errors as the reconstructed location
depends on the spectrum, therefore one needs the combination of every possible location and
spectrum to perform this perfectly. There exist more advanced techniques like the Bayesian Low
energy GRB Localization (BALROG) method, which uses statistical techniques to calculate the
most likely position and spectrum of the source of a GRB based on the arrival times and energies
of the gamma rays detected by instruments such as the Fermi-GBM or POLAR experiment.
However, the BALROG method can be time-consuming compared to the χ2 fits, and a faster
method is needed to allow for rapid follow-up observations by other telescopes and instruments.
In addition, despite its high reliability, the BALROG method is not suited for a space application
because of the big computing power required.
In this Master’s thesis, we present a machine learning-based approach for rapid localization of
GRBs. Our method uses different types of neural networks to analyze the data collected by
the POLAR detector modules and quickly calculate the most probable position of the source
of a GRB. We have trained our models on a large dataset of simulated GRBs and achieved
localization accuracy comparable to previously applied methods but with much faster processing
times. In addition to rapid localization, our method also includes a spectral fitting component,
which can provide important information about the energy and composition of the gamma rays
emitted during a GRB.
Due to the positive results found in the localization and spectral studies, as well as the presence
of a GPU on the China Space Station (CSS), it was decided to expand the results into a full
GRB analysis algorithm. The goal of this algorithm is to automatically detect the GRB and
subsequently calculate the location and spectrum for these. All of this will be performed using
deep learning techniques. The whole algorithm was called HAGRID for High Accuracy GRB
Rapid Inference with Deep learning. The result is of great interest due to the known rapidity
of GPUs to make parallel computations such as predictions on trained deep learning models. If
implemented this method is capable of providing quick alerts with accurate information.
This thesis will start with a basic introduction to GRB physics (section 3). This is followed by
details on the theory part of particle detectors and particle physics in chapter 4 and 5, machine
learning in 6 and random number generators in chapter 7. The simulations are described in
chapter 8 and the analysis of the MC data in chapter 9 which details the localization studies and
chapter 10 which describes the results of the spectral studies. After those preliminary steps, the
POLAR data analysis is described in chapter 11, which details the GRB searching algorithms
and 12 which handles the localization and spectral analysis. Finally, the full GRB analysis is
described in section 13 this is followed by a discussion on the results and ideas for follow-up
studies in chapter 14.
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Section 3 GRB Introduction

3 GRB Introduction

After the Limited Test Ban Treaty that was signed in August 1963 by the United States, the
Soviet Union and Great Britain, the first pair of Vela satellites were launched by NASA. These
were equipped with X-ray, gamma-ray and neutron sensors that are able to detect a dreaded
nuclear explosion.

Figure 1: Historical measurement of GRB670702 detected by the the Vela-4 satellite. The double
peak signal is clear.

Less than four years after the commissioning, a bright burst of γ-rays lasting less than an eighth
of a second, followed by a longer peak of two seconds was simultaneously detected by two Vela-4
satellites (see figure 1). The hypothesis of a nuclear explosion was rapidly ruled out because
the signature of such a weapon is expected to be very short 1. It appeared that this burst was
also detected by the Vela-3 satellites, but without the double peak shape because of the lower
time resolution of Vela-3 detectors. After further research, it was also shown that no solar flare
nor supernovae happened on 2nd of July. This curious phenomenon was finally published in The
Astrophysical Journal in 1973 2, after which it was, due to being brightest in gamma-rays, called
Gamma-Ray Burst (GRB). During the whole Vela program, the satellites were able to detect a
total of 73 GRBs [33].

Almost 60 years after their discoveries, dedicated space-based observatories have been study-
ing them and were able to detect a few thousand GRBs, helping to better understand this
phenomenon. The great number of detections made it possible to produce some observational
evidence, Some of the most important are:

1An event was recorded in 1979 by one of the Vela satellites with the clear signature of a nuclear explosion.
See https://en.wikipedia.org/wiki/Vela_incident

2Fun fact: this paper was released exactly 50 years ago the month where this thesis is written
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Section 3 GRB Introduction

Isotropic distribution The BATSE mission, which was launched in April 1991 and took data
for 6 years, was able to detect and locate 2704 GRBs [44], which makes it possible to have
a good idea of their distribution in the sky.

Figure 2: Map of the position of the GRBs on the
sky detected by BATSE in Mollweide view. There
seems to be no preferred origin, which suggests an
extragalactic origin. [18]

As it can be seen in figure 2a, it is clear
that there is no preferred origin, which
suggests an extra-galactic origin. If
GRBs came from the milky way, their
distribution would not be isotropic but
would have a similar shape as the
milky way. The extra-galactic origin
was later confirmed by, among other
instruments, the Swift mission that de-
tected GRBs with a redshift up to
9.4 [44] deduced thanks to the UV
measurements this instrument can per-
form.
The ability to accurately locate the
GRB incoming direction is a crucial
parameter to infer its position. The BATSE observatory had an uncertainty of less than
a degree for the brightest GRBs but could be wrong by roughly 18 degrees in the worst
cases [44]. This uncertainty is partly due to its design: it is a wide field-of-view detector.
To achieve sub-degree precision, the field of view must be reduced as well as the observed
wavelength. For example, Swift has a typical error of a few arcminutes and is sensitive to
X-rays [44]. The downside of instruments with a narrower field of view is of course that
they have a smaller probability to see the GRB, for this, they often rely on alerts from
instruments like BATSE which can tell the instrument to repoint in the right direction.

Duration The duration of a GRB is quantified using what is called T90. This parameter cor-
responds to the time interval during which 5 to 95% of the total number of counts occurs.
The distribution of log(T90) is often described by a sum of two log-normal distributions.

Figure 3: 2D scatter plot of the GRB du-
ration vs its hardness. The dashed line in
the hardness histogram is for the short GRBs
whereas the solid line is for the long ones. In
the T90 histogram, the solid line represents
the raw data, and the dashed one represents
the error-convolved data. [26]

The "short" GRBs (shorter than 2s) peak
at ∼ 0.2s, whereas the "long" peaks at
∼ 20s and can range up to a few thou-
sand seconds. However, it is important to
keep in mind that this distribution depends
strongly on the hardness of the burst and
the detector’s sensitivity (which depends on
the energy), as with a more sensitive de-
tector it is easier to distinguish noise and
faint signal [43]. The hardness H23 is de-
fined as the ratio of the content in two given
energy bins (the first one ranging from 50
to 100 keV and the second one from 100
to 300 keV [4]). Additionally, the spec-
tral shape can evolve during a GRB, which
means that the T90 you measure depends
on the energy range an instrument is sen-
sitive to. As it can be seen in figure 3,
the short GRBs are often harder than the
longer ones. The Swift multi-wavelength
analysis indicates that those two different
populations have different progenitors [44].

aImage taken from:https://heasarc.gsfc.nasa.gov/docs/cgro/batse/
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Section 3 GRB Introduction

Band function spectrum The energy spectrum of thousands of GRBs has been studied
by different groups and experiments. It appears that it is a very complex task
to make a broad measurement of a GRB spectrum because it is a prompt emis-
sion, which implies that a lot of instruments have to point in the right direction
while the burst happens. A GRB happens to be very bright in the keV − MeV
range, which makes it interesting to build instruments that have a large field of view,
which makes it easier to detect the prompt emission in those energy ranges (even de-
spite such detectors having higher background rates due to the wide field of view).

Figure 4: Three numerical applications of
the band function as described in equation 1.
Note that A was chosen such that the integral
is 1.

Detectors observing in higher or lower (like
GeV gamma-ray, X-ray, UV, optical, and
radio) energy ranges need a smaller field of
view, hence have a smaller probability to
observe the burst. Such instruments there-
fore often rely on alerts from wide field-of-
view gamma-ray detectors to re-point their
own field of view towards the GRB in order
to observe part of the prompt emission.
However, some experiments (BATSE,
Swift, Fermi, POLAR) managed to mea-
sure GRB spectra. Such studies revealed
that the spectrum is not only the result of
a thermal process [29]. That means that
the main process that generates photon ra-
diation is not just black body emission but
rather a process that involves the acceler-
ation of charged particles. The reason is
that a thermal process would not explain
the high energy photons that are observed
during the prompt emission. On the other
hand, a non-thermal process is described by a power law (which decreases slower than the
exponential behaviour of the thermal process) and could explain the observed high-energy
photons detected.
However, even if only a small range of the spectrum is measured (typically between a few
keV and a few tens of MeV ), it appears that the most efficient way to describe a GRB
spectrum is by using a continuously differentiable broken power law: the Band function
[5], named after one of the major contributors of this research:

NE(E) =


A
(

E
100 keV

)α
exp (−E/E0) (α− β)E0 > E

A

(
(α− β)E0

100 keV

)α−β
exp (β − α)

(
E

100 keV

)
(α− β)E0 < E

(1)

This description is a purely phenomenological one and describes some physical models as
particular cases a. In figure 4 are shown 3 different numerical applications of this function.
Several theoretical models, such as synchrotron emission or photospheric emission, have
managed to explain the Band function-like shape of the GRB emission. As several models
explain it rather well it seems difficult to understand the origin of the emission using
spectral information only.

afor example if α = β, the power spectrum is recovered
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Section 3 GRB Introduction

Followed by an afterglow After the prompt emission, a multitude of lower energy photons (ie.
UV, X-Rays, optical, and radio) are observed. This phenomenon is called the afterglow. It
has been predicted even before the first afterglow measurement by [29]. The logic is that
whatever the centre of the GRB is, the energy is so enormous in a small region that it
has to create a fireball that expands into the interstellar medium at relativistic velocities.
This medium is auspicious for inverse Compton and synchrotron radiation processes, which
can explain the observed non-thermal emissions during the prompt emission. However, as
the fireball slows down, the released energy decreases and the spectrum becomes softer,
meaning that more low-energy photons are emitted [27]. The first GRB for which an
afterglow was measured is GRB970228 and was detected by the Gamma-Ray Burst Monitor
(GRBM) [11].

Figure 5: First joint multimessenger detection of
GW170817 and GRB170817A. The GRB is de-
tected 1.7 seconds after the merger [2]

Progenitors The energy released during
the prompt emission is comparable to
the energy released by a sun-like star
during its entire life, which makes it
one of the most energetic events in
the whole Universe. Their origin is
thought to be the result of either the
merger between two compact binaries
(Neutron Star-Neutron Star or Netron
Star-Black Hole), which are often asso-
ciated with short GRBs, or the result
of a Hypernovae which are thought to
be the cause of long GRBs. One of
the recent proofs of GRB progenitors
is the detection of GW170817 1.7 sec-
onds before GRB170817 [2] (cf. figure
5). This not only shows that the origin
is a stellar process, but it also allows to
put constraints on the speed of light or
gravitational waves.

Based on these observational pieces of evidence, a lot of models have been designed 3 To this date,
the model that is most widely accepted to describe GRBs is the fireball model, first published by
G.Cavallo and M.J.Rees [14]. The core idea of this model which was also detailed by P.Mészáros
[27] is that the main engine of the GRB causes a sudden fireball that expands in the circumburst
medium, producing forward and backward shocks in a region where strong magnetic fields are
present4. Even if GRBs were discovered more than 50 years ago, a lot of open question remains
open.

3By 1994, 118 models were trying to explain GRBs [44]
4In this work, we won’t detail this model for the simple reason that it could be an entire work for itself.
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Section 3 GRB Introduction

3.1 GRB open questions

There are still a lot of things that are not fully understood about GRBs. In the following we
review a few open questions from 2011 explained in [43] that remain open to this date.

What is the central engine? It should be noted that different types of processes can lead to
the same central engine (the unknown object that causes the particles to be accelerated).
It however needs to emit a luminosity similar to the observed GRB luminosity (Liso ∼
1047 − 1054 erg/s). The most discussed type are the following ones:

• Spinning black holes are good candidates for the central engine of GRBs. However,
to reproduce the observed GRB luminosity, the accretion rate should be in the range
0.1 − 1M�/s. The second constraint is on the spin, because the faster the black
hole rotates, the higher the magnetic fields are, which can more efficiently accelerate
particles. As a result, if a black hole is the main GRB engine, it should be rapidly
spinning and its accretion rate should be high.

• A millisecond pulsar has a power that depends on its magnetic field, its radius, and
its angular velocity: L = B2Ω4R6/(6c3). In order to reach a luminosity close to the
observed one, such an object should have a surface magnetic field of 1015G and an
angular frequency Ω of 104Hz. The accretion power in such a system is also not to
be forgotten. However, a high accretion rate would quickly turn the neutron star into
a black hole (a few seconds for a rate of ∼ 1M�/s). In the direct environment of the
neutron star being filled with matter, the matter outflow could however be produced
a few seconds after the shock.

• Other fancy central engines have been discussed like strange stars (even though they
have never been observed) that could satisfy some conditions that are hard to satisfy
for traditional stars.

What is the radiation mechanism responsible for the prompt emission? While the af-
terglow power spectrum is relatively well-modelled, the GRB prompt emission radiation
mechanism is still not fully understood. The most probable mechanism is synchrotron
radiation. Indeed, since the neighbourhood of the main engine is very probably highly
magnetized, it bends the charged particle’s trajectory (mostly electrons), which causes
synchrotron radiation. However, for such a model, the α parameter of the Band power
spectrum is expected to be −1, where the observations tend to show a tendency of α ∼ −1.5
[43]. Different modifications to the models have been made such as introducing a rapidly
decaying magnetic field, but it also reveals other inconsistencies. Due to the initial difficul-
ties in explaining the observed spectra, alternative models such as photospheric emission
have been proposed. In these models, the emission observed on Earth is a result of thermal
emission which is comptonized inside of the GRB jets. Overall, the emission mechanism
is a very complicated process to model due to the combination of intense and turbulent
magnetic fields interacting with highly energetic particles.
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Section 3 GRB Introduction

3.2 POLAR/POLAR-2 missions

Depending on the radiation mechanism and the distribution of the magnetic fields around the
central engine, the polarization differs and is thought to be a powerful method to constrain
the different emission models [45]. This is exactly what the POLAR detector was designed
for. POLAR was a Compton polarimeter that was launched in 2016 on the Tiangong-2 Chinese
space lab. After roughly 6 months, the high voltage power supply died and lead to the end of
the mission. The Spacelab was de-orbited in 2019. The main goal of the POLAR detector was
to analyse the polarization of the GRB prompt emission. The design of the detector is quite
simple since it is a 40× 40 = 1600 scintillator bar of dimensions 4× 4× 200mm3 array, grouped
in 25 modules. The high energy photons interact with the scintillator bars through Compton
scattering (the details on the physics of this process will be described in chapter 5). Depending on
the number of interactions a scattering angle can be inferred and thus determine the polarization
angle (PA) and polarization degree (PD).

Figure 6: Posterior distribution of the polarization
degree for the 14 GRBs that were bright enough to
perform a detailed polarization analysis. [25]

Even though the mission didn’t last very
long, POLAR still managed to detect
55 GRBs, out of which 14 were bright
enough to perform a polarization analy-
sis [25]. As it can be seen in figure 6, the
polarization degree is rather low and the
POLAR collaboration claimed that the
null hypothesis (ie. the beam is unpo-
larized) can not be rejected.
It is, however, important to understand
that any polarization analysis can not be
performed without knowledge of the GRB
location in the sky because a detector
response (as explained in chapter 4) is
needed to compare observations to mod-
els. POLAR used to rely on other in-
struments’ GRB localization. If these are
poor this can lead to rather big errors, as
the localization error propagates to the
polarization. In some rare cases, POLAR
was the only one to detect a GRB, in
which case it has to rely on its own lo-
calization method.
The method that was used for POLAR is the following: Depending on the incoming beam
direction and the spectral hardness, the trigger rate in each one of the 1600 bars changes. Note
that there could be different situations leading to the same result, for instance, a soft GRB with
a low θ value (see figure 18) would lead to the same trigger rate distribution as a harder GRB
with a higher θ value because more energetic photons have a longer mean free path in the plastic
that composes the scintillator bars.
The hitmap (the number of triggers per bar) is then compared through a χ2 fit to a lot of
hitmaps produced through simulations of GRBs coming from different directions and having
three different spectra ("soft", "medium" and "hard")[41]. Once the minimal χ2 value is found,
it is possible to provide a location. Using a discrete set of spectra implies that unless a GRB
has the same spectrum as the simulated one (which is never the case), the simulated hitmap
will never be the one corresponding to the real GRB. This will thus induce systematic errors in
both the spectral and localization analysis. A more precise method employed, for example by
Fermi-GBM, is to follow this initial location measurement with a spectral measurement (which
uses the best location fit found), this is then followed by a second localization study where the
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Section 3 GRB Introduction

simulated hitmaps are produced using spectra very similar to the best-fit result found in the
spectral fit. This longer iterative process results in better location fit, however, it is still prone
to systematic errors. This is because the initial localization relies on a poor spectral guess,
resulting in a systematic error, which propagates to the subsequent spectral fit and again to
the final localization. There are also other ways to proceed like the BALROG method [10] which
is a joint Bayesian localisation and spectral analysis. This analysis fits the location and the
spectrum at the same time, which eliminates the systematic errors of the χ2 method (because
it only compares the detector response to a simulation database). It also properly includes the
uncertainties of the location in the spectral parameter, which makes it a more reliable localization
method than the χ2 method. It is to note that while the χ2 method is faster, both methods are
time-consuming and are relatively highly demanding tasks computationally speaking. It was not
an issue for POLAR, because the data needed to be downloaded on Earth before being analyzed,
the time this takes is significantly longer than the computation time.
This will, however, be an issue for POLAR-2 [24] that is planned to be launched in 2025 to the
China Space Station (CSS)5. POLAR-2 is the next-generation GRB polarimeter that is supposed
to be much more sensitive than POLAR (especially at low energies). Part of this improvement
is due to the greater number of scintillator bars (6400 instead of 1600) and the use of silicon
photomultipliers (SiPMs) that are more sensitive than the traditional PMTs, and they also don’t
require a high voltage source to work.
On the CSS, there is a computer with a GPU, which will not only allow performing real-time
analysis but will also make it possible to alert other observatories, so that they can direct their
instrument to the correct location in order to observe the GRB/afterglow. This can provide
crucial information on the GRB mechanism, which makes a fast and reliable alert system of
great interest. In order to do so, a fast localisation method is needed, and the GPU onboard
makes it possible to run deep learning models, which can give predictions on data within a few
seconds.

5There seem to be some issues so a delay is not to be excluded
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Section 4 γ-ray detectors

4 γ-ray detectors

Since the whole thesis is on studying γ-ray, we have started by briefly explaining how gamma
rays are detected and measured. All types of detectors work on the same principle :

"The transfer of part or all of the radiation energy to the detector mass where it is converted
into some other form more accessible to human perception" [42, Chap. 5].

Unlike charged particles and as explained in chapter 5, γ-rays need to interact with matter to
produce charged particles or excitation, which can be detected. The sensitive range of a γ-ray
detector will have a direct impact on its design and material as the probability for a photon
to interact highly depends on the atomic number Z (the number of electrons per atom). In a
detector like POLAR, the goal is not only to detect photons, but they also need to undergo
Compton scattering (POLAR is a Compton polarimeter), which means that the material that
makes the POLAR detector should have a Z value high enough to maximize the probability for
a photon to interact in the detector, but Z should also be low enough so that the interacting
photons have a relatively high chance of being Compton scattered more at least once to perform
a polarization analysis. This is the main reason why POLAR is made out of Vinyltoluene.

Even though a detector is meant to count the interactions, it is not as simple as that, because
the reaction of the detector depends on a lot of parameters, including its shape, material, and
the energies of the incoming particles. As a result, the counts per pulse height bin cΩ(h) that the
detector measures are derived from many underlying quantities and also depend on the number
of sources [12] (by calling the wavelength λ ):

cΩ(h) = τeff

∫ ∞
0

dλDR(h, λ)

[∑
i

AΩ(λ, q̂)si(λ)

]
(2)

where τeff is the effective exposure time, DR(h, λ) is the function that encodes detector response
per energy bin as a function of the input energy (also known as the RMF), AΩ(λ, q̂) is the detector
response (often called ARF) which includes things like the detector filters, the effective area and
the quantum efficiency (the percentage of detected photons). This quantity depends on the
source location q̂. The term si(λ) is the spectrum of the ith source.

The RMF and the ARF can be obtained by detailed simulations which have to be verified with
calibrations of the detector. As a result, it is possible, given a count per energy bin h, to
reconstruct the detected spectral properties of the photons.
In the POLAR experiment, the ARF and RMF depend on the location, which means that for
each simulated incoming angle there are different ARF and RMFs (one for each simulated energy
and polarization). In order to perform a polarization measurement, the idea is to, given the lo-
calization invert equation 2 to have access to the polarization properties s(λ) of the source. Since
the localization has some uncertainties, this error propagates to the polarization measurement.
The same is true when one wants to perform spectral measurements.
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5 Particle physics theory

As mentioned in 2, a toy MC detector was built to both better understand the relevant interaction
of photons in a detector, to gain an intuition for the following analysis, and to predict what results
are to be expected from the real data which has a lot more unknowns. It is therefore important
to know how the particles will interact in the detector and how they are measured in order to be
able to simulate them. In this chapter, we will first introduce the mass attenuation coefficient,
which explains the fact a flux of γ-rays is partially absorbed when going through a material. We
will then detail its different components.

5.0.1 Mass attenuation coefficients

Let us take the ideal situation where the γ-ray source has a known intensity I0 and is directed
towards a material (the detector) of density ρ. The proportion of the beam that can go through
a thickness t can be expressed as an exponential decay that depends on the absorption coefficient
µ and the physical distance travelled t: I(t) = I0 exp(−µt). In this context, µ can be seen as
the inverse mean free path travelled by the particle. This equation is however often presented
differently by introducing the mass thickness : x = ρ · t (in g/cm2) and the mass attenuation
coefficient : µ/ρ (in cm2/g). As a result, the exponential decay can be rewritten as:

I/I0 = exp(−µ/ρ · x) (3)

The coefficient µ can be derived from direct measurements but can also be calculated because it
is simply proportional to both the material density and the total cross-section.

x

y

z

φ
γ

F

dΩ

θ

Figure 7: Scheme representing the con-
cept of the differential cross-section.
The interacting γ-ray is diffused in the
dΩ area element.

The cross-section gives information on the probability
two particles interact. It can be calculated by using the
Feynman diagrams and the laws of the standard model.
There also exist a quantity called the differential cross
section, which is formally defined as the probability of
having Ns particle scattered in the infinitesimal solid
angle dΩ, normalized by the particle flux F [42]:

dσ

dΩ
=

1

F

dNs

dΩ
(4)

A scheme of the representation of the differential cross-
section concept is shown in figure 7. If we call A the
molecular weight and σ the total cross-section, we have
(note that µ depends on the energy):

µ = µ(E) = Nσ = σ
Naρ

A
(5)

The total cross-section is then the only part to evaluate.
For X-rays and γ-rays, the three interactions are Comp-
ton scattering, photoelectric effect, and pair production.
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Compton scattering is the process in which a photon scatters on an electron (see figure 8)
(γe− =⇒ γe−).

γγ
e−

e−e− e−

e−

e−γ

γ

Figure 8: Two first-order Feynman diagrams of the Compton process.

After this interaction, the direction and the energy of both the photon and the electron
are changed. If we call E the photon energy, θ the photon scattering angle, and γ the ratio
between the photon energy and the electron rest mass energy E/mec

2, we can write the
energy of the outgoing photon as

E′ =
E

1 + γ(1− cos(θ))
(6)

The scattering angles are, however, not uniformly distributed, but follow theKlein-Ninshina
[22] differential cross section. There are two interesting photon beam cases: the polarized
case and the unpolarized one. Each individual photon in the flux is polarized since it is an
intrinsic property of the photon [21], but a fraction of the flux can have the same polar-
ization angle (PA), which makes the whole flux polarized to some degree, hence the name
Polarization Degree (PD). The unpolarized case is reached when there is no preferred PA.
The Klein-Nishina differential cross-section reads :

dσKN
dΩ

=
r2
e

2

(
E′

E

)2 [E′
E

+
E

E′
− 2 sin2(θ) cos2(φ)

]
(7)

where θ and φ are respectively the polar and azimuthal scattering angle, and re the classical
electron radius. It is clear that the distribution is not isotropic both in the θ and φ angles.
Moreover, it is to be noted that since the differential cross section depends on cos2(φ), the
flux has a higher probability of getting scattered in a direction that is perpendicular to the
polarization of the incoming one.

If the incoming photon flux is unpolarized, the cross-section can be obtained by taking the
average over the φ dependant term: 〈cos2(φ)〉 = 1/2, leading to the following expression :

dσKN
dΩ

∣∣∣∣
unpol

=
r2
e

2

(
E′

E

)2 [E′
E

+
E

E′
− sin2(θ)

]
(8)

As a result, when an unpolarized photon flux interacts via Compton scattering with the
material, the photons can be scattered at an angle θ (given by the Klein-Nishina polarized
cross-section), and their energy is modified according to equation 6. The remaining energy
is the deposited energy. Since we won’t do any polarization analysis in this work, we will
be interested in the unpolarized case. There is a special case that particle physicists are
often interested in, which is the case where the photon is backscattered (ie. θ = π). As
it can be seen with equation 7, this case has a rather high probability to happen, and the
deposited energy is

Edep = E − E′ = E − E/(1 + 2γ) (9)

As shown in figure 9, at this energy, there is a peak in the energy spectrum and its location
is coherent with the above equation.
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Figure 9: Histogram of the deposited energy for Nγ = 104 interacting photons, all of them having
an energy of 511 keV . The last bin edge is located at 340.6 keV , which is coherent with equation
9, which leads to 340.6 keV with E = 511 and γ = 1.

Photoelectric effect The photoelectric effect is the process in which an incoming photon kicks
an electron out of the atom while being absorbed. It can be shown using four-momentum
conservation that this process cannot happen with a free electron, which implies that this
process necessarily takes place in an atom and the recoil momentum is absorbed by the
nucleus. The energy of the kicked electron can be expressed as (BE is the binding energy
of the kicked electron):

E′ = E0 −BE (10)

As one can expect, the binding energy depends on the atomic shell to which the electron
belongs. The electrons in the outer shell are less bounded, which means that a photon with
relatively low energy (typically a few keV , which corresponds to X−rays) will be able to
kick those electrons off the atom easily, while more energetic γ rays are required to eject
electrons from the most inner shells.

In the toy MC detector simulations, the photoelectric effect will be taken into account,
but it is very difficult in practice to get numerical values for the differential cross section
because the Dirac equation for the atomic electrons is very hard to solve [42]. There exist
approximations but they are typically valid for low-energy photons (typically E � me).
As it will be explained later, the cross-section for this process will therefore not be fully
computed but will be deduced from the total cross-section. As it is explained later in this
chapter, the cross-section will be converted from an online mass absorption coefficients
database for various materials. Using equation 5, and the fact that the Compton cross
section is analytically computable, it is possible to relatively easily and computationally
quickly, infer a value for the photoelectric cross-section.
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Pair production Is the process that corresponds to the Feynmann diagram shown in figure 10.

γ
e−

e+

Figure 10: Feynman diagram of the
pair production process.

It is straightforward to show that for this process to
be possible the minimal photon energy needs to be
greater than E = 1.022MeV , because this process
creates two electrons having a rest mass of 511 keV .
There exists development that allows computing the
value of the pair production differential cross sec-
tion but the computations are relatively complex. To
keep things simple in the toy MC detector, the choice
has been made to simply ignore this phenomenon by
generating a photon with an energy smaller or equal
to 1MeV . Of course, in the true POLAR simula-
tions, this process is taken into account by GEANT4, although its influence is minimal as the
sensitivity range of POLAR and POLAR-2 is below 1 MeV.

In the simulations that will be described in chapter 8, the total cross section will be taken from
online tables found on https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients
(tables for "Vinyltoluene"). The Compton cross section will be computed analytically using 7 and
since only energies lower than 1MeV will be generated (allowing us to ignore pair production),
the photoelectric cross section will be deduced :

σphoto = σtot − σCompton,tot
= σtot − ZσCompton

where Z is the average number of electrons per atom in the material. Vinyltoluene is composed of
91.5% of Carbon and 8.5% of Hydrogen. It implies a molecular weight ofMscint = 11.083 g/mol,
an average number of electron per atom of : Zscint = 5.575 and a density of ρscint = 1.032 g/cm3.
Figure 11a are shows the graphs of σtot, σCompton and σphoto as a function of energy. In order to
get data for all the energies in the range of interest, the data were interpolated with a first-order
polynomial, which explains the fact that the function doesn’t look smooth. Figure 11b shows the
ratio σCompton/σtot and σphoto/σtot as a function of the energy. It is clear that at low energies,
the photoelectric effect dominates, whereas, at higher energies, it is the opposite.

(a) Total cross section and its different compo-
nents as a function of the incoming photon en-
ergy. The total cross section is obtained thanks
to the NIST tables

(b) Relative probability of interaction for both
the Compton scattering and photoelectric ef-
fect. At low energies, the photoelectric effect
dominates.

Figure 11: Plots of the cross-section and the relative importance of its components.
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6 Machine Learning

Even though machine learning was originally developed in the late 50’s [3], it is only in the
last ten years that this field really exploded, with a tremendous number of applications such as
license plate recognition, bank account safety checks, image recognition or even building chatbots
like ChatGPT. Essentially, machine learning is an algorithm that learns a given dataset and its
distribution, and can eventually do predictions on something the algorithm has never seen. In
this thesis, supervised learning will be used to be able to infer and estimate the correct location
and energy spectrum of a given GRB. For this thesis, models were trained using TensorFlow
[1], a Python package developed by Google in 2015 that is very popular to train models in a
relatively user-friendly manner. In the following, all the key components will be explained, but it
won’t be a complete description of the subject, as the focus is on its application to physics rather
than machine learning. Only the basics of the concepts relevant to this work will be presented.
All explanations are taken from [13] and [6] where a more complete description of all the covered
topics can be found.

In this Master’s work, Deep learning will be used for two tasks: Regression and binary classifi-
cation. Regression can be defined as the task that consists to approximate a function’s output,
given an input feature. It will be used to find the incoming direction of a GRB as well as its
spectral Band function parameters α, β and E0. This task will be investigated using both fully
connected neural networks and convolutional neural networks. On the other hand, a classifica-
tion task is, as its name already explains, to classify an event given the input features. If there
are only two classes, it is called binary classification and is widely used in image recognition
algorithms (the ones that recognize if the input image represents a cat or a dog). The binary
classification will be used to detect GRBs in a lightcurve (which is the number of detected pho-
tons by a detector as a function of time). As it is a time-dependent quantity, recurrent neural
networks will be used. All those model types will be explained later on.

6.0.1 Basis

First, and as it is often a source of confusion, it is a good idea to emphasize the difference
between "machine learning" and "deep learning". Machine learning is simply the ensemble of
algorithms that are available in order for a machine to learn a dataset, whereas deep learning
is one specific way. Deep learning uses an Artificial Neural Network (ANN) to learn the data.
Artificial neurons are meant to reproduce neurons from the human brain which are interconnected
in multiple layers. We here label the layers with index L, and the reaction of one neuron depends
on the reaction of the other ones.
Each neuron has a trainable weight wLj and a trainable bias bLj that are summed and are the
input of the activation function σ that modulates its output aLj (j is the label of the neuron
index in layer L and k labels neurons in layer L− 1). As a result, the output of a given neuron
can be written as :

aLj = σ(zLj ) , zLj =
∑
k

wLjka
(L−1)
k (11)

At the creation of the model, the weight values are randomly initialized. The task that the algo-
rithm has to perform in this work is, given a training set D of pairs (x, y) (x = detector response
and y = localization/spectral parameters) the model will have to approximate a function f such
that the function applied to the input and the trained parameters w∗ (ŷ = f(x,w∗)) is a good es-
timator. As one could expect, the goodness is computed with a function L, which should ideally
be as small as possible (and vanishes when y = ŷ). The learning phase of the algorithm consists
of updating the weights w such that the function L(w∗) is minimal. The model is trained for
a given number of epochs, which is the number of times the algorithm looks through the whole
dataset.
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Losses The loss defines what quantity should be minimized, and is, therefore, a crucial com-
ponent of the model. In the context of localization, for example, it can be useful to set the loss
as the angular distance, because the physical angular separation between the actual incoming
direction and the predicted one should be as small as possible.
It is good to note that in practice, the loss is computed by taking the average over a small sample
called batches, with L being the loss computed on the target and predictions:

L(w) =
1

N

N∑
n=1

ln(w) , where ln(w) = L(f(x,w), y) (12)

where N is the number of samples in a batch. The loss used in a model should be coherent with
the task the model has to fulfil (classification, regression, etc. . . ). Since the main goal of this
work is to perform a regression, let’s introduce the losses used:

1. Mean Absolute Error (MAE) is the most straightforward loss function in a regression
problem. As its name already explains, it is computed by taking the mean of the absolute
errors between true labels and predictions:

MAE =
1

n

n∑
i=0

|ytrue − ypred| (13)

where ytrue is the correct value and ypred is the one predicted by the model. Note that this
function is already pre-defined in TensorFlow.

2. Mean Squared Error (MSE) is another widely used loss in deep learning. It has the ad-
vantage to grow fast, hence big errors are more penalized. The analytical expression is the
following:

MSE =
1

n

n∑
i=0

(ytrue − ypred)2 (14)

This loss is also pre-defined in TensorFlow since it is quite a quite common one.
3. Angular distance is the physical angular separation between two points on a sphere. For

the work performed here this quantity, which is a derived physical quantity, can be used
as a loss. It is defined as :

θ = arccos[cos(θ1) cos(θ2) + sin(θ1) sin(θ2) · cos(φ1 − φ2)] (15)

x

y

z

θ1

φ1

θ2

φ2

Ψ

Figure 12: Representation of the angular separa-
tion Ψ between two points defined by spherical
coordinates (θ1, φ1) and (θ2, φ2).

This relation comes from the scalar
product of two vectors pointing in two
directions (θ1, φ1) and (θ2, φ2). If the
angle between the vectors, the argu-
ment of the arccos is close to 1, whereas
if they are directed "back to back", the
argument is −1. This loss is used in
directional regression problems as can
be seen in [36]. This quantity has the
advantage to be a single number and
if it is small (ie. the two points are
close one to another, it necessarily im-
plies that the angles θ and φ, which
define the two points, are close to one
another.
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4. Binary crossentropy Is the most widely used loss for binary classification (true/false or 1/0)
and is therefore also pre-defined in TensorFlow. Its analytical expression is the following:

BCE = − 1

N

∑
i

yi log(pi) + (1− yi) log(1− pi)

Even though this equation seems complicated, it is relatively simple to understand its
working principle. Suppose the target label y is equal to one. As a result, the second part
of the equation vanishes and the first part simplifies to a simple log. pi is the probability
of having a label predicted as 1. The loss of the predicted event to be closer to 0 should
be large while a predicted label close to 1 should have a small loss. This need justifies the
− log because it exactly satisfies those properties (− log(x) is very large for x close to 0).
This loss is therefore also often called the log loss [16].

A range of other pre-defined losses exist, an overview can be found on the

Gradient descent Once the loss is computed, the weights have to be updated. The way to
proceed is to compute the gradient of the loss with respect to all trainable parameters w, and to
adapt the weights from a small quantity in that direction:

wn+1 = wn − η∇wL(wn) (16)

where the wn index represents the weights at the nth iteration and η is the learning rate, which
allows the user to set the speed at which the minimization will be performed. η is one of the
parameters the user can change, which are called hyperparameters. It is relatively complex to
set a value for η because if it is too small, the process will take a lot of time and can be stuck
in a local minimum (defined by wn such that ∇wL(wn) = 0, but the value of L(wn) is not the
minimal one). On the other hand, if it is too large, it can oscillate around the minima, without
reaching it, so the weights will never minimize the loss.
There exist algorithms called optimizers like Adam (it is not an acronym [7]) that have the ability
to compute rapidly the gradient descent with minimal memory requirement, with the possibility
to adapt the learning rate as the model is training. This optimizer is known to be very fast and
efficient [13] and will therefore be used in this work.
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Activation Functions Are a class of functions that modulate the output of the neuron based
on its inputs.

x1

w1

w1x1

xn
wn

wnxn

... z =
n∑
i=1

wixi + b
σ(z)

Figure 13: Scheme describ-
ing how the activation func-
tion is related to the output
of the previous neurons and
their weights.

Let’s call σ the activation function and xi, wi respectively the
output and weights of the previous neuron (n in total). As a
result, the output of the considered neuron can be expressed as
σ(z), with:

z =
n∑
i=1

xiwi + b

b is the bias element used to shift the whole output. Figure 13 is
a visual representation of this equation. Activation functions are
very important since they can help the model to converge faster
and they can also help to catch some of the non-linearity of the
problem. The choice of the activation function often depends on
the task the model has to fulfil (classification/regression), and it
is even possible to define custom functions. Nevertheless, there are a few well-known functions,
shown in figure 14. Each one has its pros and cons, but the ReLU (Rectified Linear Unit) is a
common usage for all regression problems.

Figure 14: Plots of four different activation functions widely used in deep learning.

Backpropagation is the core of deep learning, because it is the mechanism that allows to
update the weights in the correct direction. Once the loss is computed, the weights need to be
updated, and backpropagation answers the question: "How much should the weight of a given
neuron be changed?".
Since the neurons are interconnected, their output depends on the previous weights and biases.
The effect on the loss of the activation of neuron ak in layer (L− 1) can be determined through
the chain rule :

∂L
∂a

(L−1)
k

=
∑
j

∂z
(L)
j

∂a
(L−1)
k

∂a
(L)
j

∂z
(L)
j

∂L
∂a

(L)
j

=
∑
j

w
(L)
jk σ

′
j(z

(L))
∂L
∂a

(L)
k

(17)
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As a result, the dependence on the weights w(l)
jk on any layer l can be recursively computed by :

∂L
∂w

(l)
jk

= a
(l−1)
k σ′(zlj)

∂L
∂a

(l)
j

, where
∂L
∂a

(l)
j

=
∑
j

w
(l+1)
jk σ′(z

(l+1
j )

∂L
∂a

(l+1)
j

(18)

This task is quite demanding in terms of computational resources, and the required computing
power was only reached a few years ago, which explains why machine learning became a hot
topic in the last ten years, whereas it has been developed in the 60s.

Sample division It is standard in machine learning to divide the dataset into three different
subsets: training, validation, and testing. The main objective of any deep learning problem
is to ensure good training. By separating the full dataset it is possible to test the model on
the validation sample during training (hence the name validation), which makes it possible to
monitor the effects of the model on a different set. It is important to note that the validation
set is only to monitor the performances and the training is only done on the training sample.
The measure is called a metric and is not necessarily the same function as the loss, it can be
MSE for the loss and MAE for the metric for instance. The test set is used only for the final
test with data that the model has never seen before. No optimization is done for this sample.
A quite standard ratio is to use 80% of the dataset for the training, 10% for the validation, and
the rest for the testing sample. Note that it can vary a bit, the relevant parameter is the order
of magnitude.

Overfitting Over the epochs, the model is trained to reduce the loss. What can happen is that
the model manages to be so accurate that it begins to train on irrelevant data (like statistical
fluctuations). In this case, the model finds a local minima that is different from the validation
set minima. The result is that the models get worse at predicting the validation data, and the
monitored quantities will grow. As a result, it is quite standard to define the point at which the
validation performances are at their best as the point where the model should stop training.
There exist different architecture types one can build. In this work, three types of networks will
be explored: Fully Connected Neural Networks (FCNN), Convolutional Neural Networks (CNN),
and Recurrent Neural Networks (RNN), which will all be explained in greater detail in the next
paragraph.

6.0.2 Fully Connected Neural Networks

Fully connected neural networks are the simplest types of neural networks one could think of,
as they are composed of NL layers, each one of them made of a given amount of neurons all
connected, where each layer can have a different activation function. The fact that they don’t
do any special operation (unlike the convolutional networks which will be discussed next) makes
them a good choice to start experimenting with neural networks. It is, however, possible to make
more complex architecture by separating the network into different branches, which only changes
the complexity of the network, not its working principle. A typical use of such a separation is
for a model that has multiple outputs.
A network is always separated into three different stages: the input layer is the one that receives
the data, followed by the hidden layers: The number of layers in the hidden part of a network can
vary as well as the number of neurons in each one of them. Their aim is to catch the underlying
relations between input data. The last part is the output layer, where the model provides the
final prediction. As one can expect, there are many different types of layers that one can use in
the hidden part of the network. However, it is possible to distinguish three layers which are the
most widely used: Dense, Dropout and BatchNormalization layers which are defined as:
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1. Dense layer: is the most simple type of layer one can define. It is an ensemble of neurons,
all of them having learnable weights and biases. The activation function is the same for all
neurons in one Dense layer. This type of layer will naturally be the main building block of
the FCNN that will be trained in this thesis.

2. Dropout is a type of layer that has no learnable parameters. It has the same number of
neurons as the previous layer, and its only task is to turn off a given percentage of the
neurons at each training step (obviously, when the model is trained, all the neurons are
turned on). The use of such a technique forces the model to learn with different paths. It
is known to prevent overfitting [37].

3. BatchNormalization is a type of layer that has two learnable parameters per input dimen-
sion (the shape of the array that constitutes the model’s input) and is meant to modify
data provided to a given layer. This layer type is widely known to accelerate the learning
process [8]. It is used to solve the fact that deep neural networks are very sensitive to
the distribution of the inputs by standardizing the data provided to a given layer at each
batch. Its learnable parameters gamma (the scaling factor) and beta (the offset factor) are
used to normalize input data after the training phase is done. It is hence important to
perform inference on data that has similar statistics as the training data [38].

6.0.3 Convolutional Neural Networks (CNN)

These types of networks are well known for their great performance on image recognition prob-
lems. They achieve those good results by having the possibility to have a complex architecture
while keeping a reduced amount of parameters. As their name explains, their working principle
is based on convolutions. It is a mathematical operation on two functions f and g that is defined
as (for the continuous case, the sum becomes an integral over da):

(f ∗ g)(c) =
∑
a

f(a) · g(a− c) (19)

This operation is often compared [28] to a test function (f) on which a kernel (g) is moving and
all possible configurations are summed over. In the context of neural networks, it is exactly how
it works, except that the function f is an image (it can be in general a N -dimensional array, but
in practice, it is mostly used for 2D arrays and rarely on 3D arrays). The function g is an array
with an equal number of dimensions and is called a kernel. For 2D arrays, the product is the
scalar product and the kernel moves in two dimensions, along the horizontal axis but also along
the vertical one. The output of the convolution is a 2D array. Note that convolutions are also
used by image treatment programs for many applications, like blurring an image or detecting
the edges, for which the following kernel is applied [15]:

g =

0 1 0
1 −4 1
0 1 0


This kernel has a size of (3×3), which is the kernel size. Note that several kernels can be applied
to the same image (eg. detecting the edger, then blurring). The reason why CNN can keep a
relatively low number of weights while being deep is that the weights (the numbers in a given
kernel) are used multiple times over the full image.
When analyzing 2D arrays with CNN, there are usually two types of layers that are combined:
the Conv2D and the MaxPool2D.
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1. Conv2D is the basis layer for 2D convolutions. It allows to define the number of filters
that will be applied on the 2D array (it determines the output dimension), the kernel size,
but also the activation function. It is also possible to set parameters such as strides
and padding that are useful to make the dimension of the output the same as the input
dimension as explained in [39].

2. MaxPool2D is a type of layer that is often placed after the Conv2D ones. It is used to
reduce the dimension of the output by returning the maximal value of the 2D array over
a window of a given size. There also exists the MinPool2D or AveragePooling2D, whose
names are self-explanatory.

After the convolutions and pooling layers, one generally places a fully connected neural network
to analyze the convolutions. However, it needs to have a 1D vector as input, which justifies the
use of a Flatten layer that converts any multi-dimensional input into a 1D one.

6.0.4 Recurrent Neural Networks

Recurrent Neural Networks (RNN), are widely known for their ability to analyze/forecast time
series [40]. The core idea of RNN is that the output of the neurons is also part of its inputs (it is
folded) as can be seen in figure 15. Since the neuron weight is the same for the whole time series,
it is easy to understand that if the time series are long (�1) and the weight is different from
one, the neuron’s output can either explode or vanish. This is known as the vanishing/exploding
gradient problem. As a result, RNNs have difficulties learning long time series. There exist
solutions such as the LSTM (Long Short Term Memory) networks [20] that are designed to hold
information for a longer period. Because of the great results it showed, LSTM can be a subject
on its own, but it would go far beyond the scope of this work. To learn more, one can visit the
blog of Olah [28]. In this work, RNN/LSTM will not be used differently from a fully connected
neural network since TensorFlow features both the simpleRNN and the LSTM layers that can
be combined easily with the Dense layers. They both accept an integer as a parameter that
represents the number of neurons in the layer. The input x of an RNN/LSTM cell is composed
of its time evolution, each one being a number xt. The same is true for the output y.
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Figure 15: Scheme of an unfolded recurrent neural network. The input is labelled as x and the
output y. Since x is a time series, it consists of several time dependents components xt (t is the
time), and so does y. U , V , and W are respectively the weights of the input, the feedback loop,
and the output. Note that the weights are the same for the whole sequence but the state ht
depends on all the previous elements of x.
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7 Random number generation

Since we need to build a Monte Carlo simulator, many random quantities have to be computed.
The main problem in those simulations is to draw random numbers according to a given proba-
bility density function (pdf ) f(x) defined on the interval [a, b]. There are two popular methods
to do so: The Accept-Reject method (also known as the Von Neumann method) and the inverse
transform method [31]. Both are described below.

Inverse Transform This method is computationally speaking the fastest because all computed
random numbers are used. Let’s assume that the integral of f(x) can be computed on the
range [a, b]. As a result, its Cumulative Density Function (CDF) is expressed as:

F (x) =

∫ b

a
f(t) dt (20)

Since f(x) is a pdf, it is a non-negative function whose integral is equal to 1, hence the
CDF is a non-decreasing function on the interval [0, 1].

Assume now that U ∼ U(0, 1) is a uniform random variable between 0 and 1. Then,
according to lemma 2.4 of [31], F−1(U) has the same distribution as F .

As a result, it is possible to generate random numbers according to a distribution f(x) as
long as the integral can be computed. This is however not always the case. A simple ex-
ample of a commonly used distribution is the normal distribution f(x) = 1√

2π
exp
(
−x2/2

)
whose integral cannot be computed easily. For such functions, the accept-reject method
can be used instead.

Accept-Reject This method, which is illustrated in Figure 16, allows to draw of numbers
according to f(x), without the condition that the integral of f must be computable. Let’s
note m the max of f on the interval [a, b]. The problem is to generate a set of two random
variables :

(X, U) ∼ U{(x, u) : 0 < u < f(x)} (21)

It, however, appears that to sample directly from this joint distribution is often hard, and
the problem can be solved in a much simpler manner. It can be done by sampling (x, U)
on a bigger set (say (Y, U)) that is easier to simulate6 and then select or discard events
that satisfy a given condition. More precisely, it means that it is easier to generate the
pair (Y, U) such that Y ∼ U(a, b) and U ∼ U(0,m). If only the pairs where u < f(y) are
taken, then Y has the same distribution as X. The reason is that, by the definition of Y ,
we have :

P (X < x) = P (Y < x |U < f(Y ))

=

∫ x
0

∫ f(y)
0 dudy∫ b

a

∫ f(y)
0 dudy

=

∫ x

a
f(y) dy

where the integral on the numerator represents the proportion of elements accepted and
the integral on the denominator represents all the elements generated.

Note that this algorithm also works if X is sampled from a distribution g that satisfies
g(x) ≥ c · f(x) (with c ∈ R) from which it is easy to sample from and y ∼ U(0, g(x)).
This property can be very useful when the desired distribution is not close to the uniform
distribution, which means that a lot of points are rejected. in this work, it will be used to
sample from a Band distribution (see 8.1.1)7.

6It often means to sample from a uniform distribution
7The idea is that where the function g is low, the probability to draw a low number U is high (because

U ∼ g(x)) but there is also a lower probability for X to happen for the same reason.
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(a) Illustration of the accept-reject algorithm
as described in the first part of 7 using the un-
polarized Klein-Nishina to build a probability
density function (as explained in 8.1.1). All the
3000 θ coordinates are generated uniformly be-
tween 0 and π, while the height is distributed
uniformly between 0 and 1.05 times (for vi-
sual purposes) the maximal value reached by
the probability density function on the inter-
val. The points above the function are rejected
and the ones above are accepted. The black
line is obtained by binning the θ coordinates of
the accepted points.

(b) Illustration of the accept-reject algorithm as
described in the second part of 7 using the Band
probability density function in red. All the 3000
energy (x) values are generated as a power law
whose spectral index α, β, and Ebreak are de-
rived from the Band parameter such that the
power law is always greater than the Band func-
tion. The points above the function are rejected
and the ones below are accepted. The black
line is obtained by binning the energy values of
the accepted points.

Figure 16: Accept-Reject method applied for two different distributions used in the simulations.
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8 Toy Monte Carlo detector

Before applying ML methods to complex instrument data a toy MC was built. This allowed to
produce test data that is fully controlled and misses the complexities from real data or POLAR
simulation data which, in some cases cannot be distinguished from issues in the ML analysis.
The aim of the Toy MC is therefore not to be a better version of the official POLAR simulations,
but rather to be more familiar with the detector physics, to control the data more easily than
the true POLAR simulations (that are far more complicated) and to develop intuitions on the
topic.
Even though the aim is not to reproduce GEANT4, the simulations have to respect the laws of
physics. The two important elements that will be simulated are the sources (ie. the background
and the GRB) and the detector. In practice, the background photons are coming from outer
space, which includes solar flares, activity in the galactic plane, and extragalactic sources like
blazars. However, most of the photons come from particles decaying in the higher layers of
the atmosphere and emitting X or γ-rays. Therefore, the background will be considered as
homogeneous and isotropic (ie. the density of γ-rays is the same in any direction). For the real
POLAR simulations, since the background data will be real flight data, this won’t have to be
simulated.
The final goal of the project is to, given counts per bar and the energies measured during a GRB,
predict accurately its incoming direction and spectral parameters. Those data will be obtained
from the simulations that simulate the effect of GRBs having different incoming directions in the
detector.
Here is the list of elements that the simulations will have to fulfil:

Sources

• The incoming direction of the population of GRBs must be isotropic (ie. there is no
preferred incoming direction).

• The GRB spectrum is defined by the Band function as defined in equation 1.
• The GRB is simulated by a disk larger than the detector that emits photons in the

direction of the detector. Thereby ensuring that the full detector is irradiated during
the simulations.

• The background is homogeneous and isotropic and its spectrum is defined as a power-
law spectrum with a fixed index.

Detector

• The detector is composed of a multitude of small units that represent the scintilla-
tor bars, this ensures that the detector resembles POLAR and allows it to perform
localization analysis in a similar method as POLAR.

• The bars are made of Vinyltoluene, the same material as the real POLAR scintillator
bars.

• Photons that enter the detector can interact via Compton scattering or the Photo-
electric effect.

• The detector has an uncertainty of 10% on the energy measurement.

As there are many elements to verify in those simulations, two toy Monte Carlo detectors were
built. The goal is to verify things separately in order to avoid numerous unknown errors. The
first of these detectors is made of 4×4×4 scintillator bars. All photons (background and source)
have an energy of 50 keV . Photons can enter the detector and interact with the material through
Compton scattering or the photoelectric effect. The detector, however, only records whether an
interaction has taken place in a bar, it doesn’t record the deposited energy.
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The second detector is the final version and looks more like POLAR. It is composed of 8 × 8
scintillator bars. The background photons have energies defined by a power law of index n = −3
and the GRB photons have energies defined by the Band function. The distributions of the α, β
and E0 parameter will be described later. Photons can interact through Compton scattering and
via the Photoelectric effect. The energy is recorded and has a 10% error.

8.1 Code description

In this section, we describe all the classes and functions used in the code. However, only the
meaningful methods will be described (that means, not the traditional getters8 and drawing
methods.) In order to make the code much faster (at least 10 times) and maintain a reasonable
computing time, using Numba9 is recommended.

8.1.1 Random Generators

In the following are described the different random generators used in the simulations. For more
details on random number generation, see chapter 7.

Spherically Uniform distribution The goal of this generator is to generate random N in-
coming directions (θ, φ) of the photons with respect to the detector. This is a well-known
problem and the key is to generate φ uniformly from 0 to 2π and θ as arccos(1− 2u), where
u is a random number between 0 and 1. The arccos (1− 2u) is obtained by the inverse
transform method by imposing that the density on a small area dA around any point v on
the sphere is uniform, which means :

f(v) dA =
1

4π
dA = f(θ, φ) dθ dφ

Because dA = sin(θ) dθ dφ, and the φ angle has to be uniformly generated, it follows that
f(φ) = 1/2π and f(θ) = sin(θ)/2. By applying the inverse transform method, it is then
clear that θ ∼ arccos(1− 2u). A random point on the sphere is hence defined as (θ, φ)
with θ ∼ f(θ) and φ ∼ U(0, 2π).

If the θ angle was chosen uniformly between 0 and 1, the points would have been accumu-
lated on the poles as explained in [34].

Unpolarized Compton Since photons entering the toy Monte Carlo detector can scatter, a
proper angle generator has to be implemented. The probability function is derived from
the unpolarized Klein-Nishina differential cross section (see eq. 8) by first computing the
total cross section:

σKN =

∫ π

0

(∫ 2π

0

dσKN
dΩ

∣∣∣∣
unpol

sin(θ) dφ

)
dθ (22)

where the integral over dφ can be expressed as dσKN
dθ = 2π dσKN

dΩ sin(θ). Note that the total
cross-section is the same for both the polarized and unpolarized cases. Finally, f(θ) can
be obtained by simply dividing the differential cross-section by the total cross-section :

f(θ) =
1

σKN

dσKN
dθ

This random number generator was done with the accept-reject method because f(θ) has
no simple integral.

8The easy method that allows getting access to the class instance
9See https://numba.pydata.org/
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Mean free path In order to simulate the path of a photon in the detector we need to generate
a mean free path. To do so, equation 3 has to be used. For a given energy, the ratio
I/I0 ≤ 1. That means that in order to generate a random path t, it is sufficient to generate
u = I/I0 ∼ U(0, 1) and invert the relation. The path travelled by the photon reads :

t = − log(u)

µ(E)

As a reminder, the µ value is obtained from a database found online, where the µ/ρ values
for the Vinyltoluene are given as a function of the photon energy (see chapter 5.0.1).

Cosine distribution This distribution is very useful to generate background photons. For
spherical volumes, as mentioned in [32]: "Isotropic angular emission from the surface leads
to non-isotropic fluence in the volume". This is not the case if the angles follow the cosine
law. This law is explained in [17] where the probability density functions for θ and φ can
be derived from the constraint that the flux dn across a surface A follows this specific law
(let N0 be the total flux):

dn =
N0

π
cos(θ)dΩ (23)

where dΩ is the infinitesimal solid angle element. Since the above doesn’t depends on φ,
it can be generated uniformly : φ ∼ U(0, 2π). On the other hand, f(θ) can be found by
integrating the above on dφ: f(θ) = sin(2θ). By applying the inverse transform method, θ
can be generated θ ∼ arcsin(

√
u).

Broken power spectrum This kind of random generator is particularly useful when generating
energies from background or source photons. Since the integral of a power law f(E) ∝ E−n
is well known (ie. ∝ E1−n), it is possible to use the inverse transform method for this case
because a broken power law is simply defined as two power laws of indices α and β separated
by a breakpoint Ebreak. The total integral is simply given by the sum of the two power
laws I = I1 + I2, and their relative weights w1 and w2 can be computed easily: w1 = I1/I
and w2 = I2/I.

The only difference with respect to the other previous uses of the inverse transform method
is that in order to generate N random numbers it is necessary to generate two uniform
samples (one for each power law) with relative length n1 = N · w1 and n2 = N · w2 and
apply the inverse transform to both lists. The list formed by the concatenation of list 1
and 2 has a broken power law distribution as shown in figure 16b, where the broken power
law distribution was used to sample from a Band distribution.

Band Even though it is possible to integrate the Band function10, the integral is defined with
the incomplete Gamma function in which one would have to provide negative arguments.
There is a solution, however, it is faster to use the accept-reject method. Since the band
function is essentially defined by power laws, it is easy to understand that a lot of computing
power is wasted, because there is a very low acceptance rate (because the function drops
very fast on the very wide range being used: [1 kev, 1MeV ]). The solution is to generate
the pair (Y, U) more cleverly than using a uniform distribution. The idea is the same as
what is described in chapter 7. Hence, both the Y and U random variables were sampled
from a broken power law that was close to the desired shape. The result is a fast and
reliable Band power spectrum random generator as can be seen in figure 16b.

10With Mathematica it is possible to use clever assumptions to make this integration easier.
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8.1.2 Classes

Since the toy Monte Carlo simulations involve different components, oriented object programming
is a good way to proceed11. Apart from the function libraries, there are four different classes:
Photon, Source, Volume, and Detector. Those classes are described below. Since different
detectors were built, the code was different. The classes and functions explained below are the
complete versions.

Photon class is the class that describes a photon, its direction, and its energy. The position
is simply defined by two vectors, namely the initial position ~x0 and the direction ~xd (both in
Cartesian coordinates). As a result, the trajectory can be computed with

~xγ = ~x0 + t · ~xd , t ∈ R (24)

The principal component of this class is the scatter method, which allows the photon to scatter
(ie. change its direction and energy according to equations 6 and 8).
The way to proceed is to generate a random unit direction ~xscat,0 = (1, θkn, φkn) with θkn and
φkn random angles generated with unpolarized Compton random number generator (see 8.1.1).
Converting the photon direction ~xd in spherical coordinates directly gives the ~θγ and ~φγ angles.
The direction of the scattered photon ~xscat is obtained by rotating the random direction ~xscat,0
of angles θγ and φγ about a given point using rotation matrices12:

~xscat = Rθ,φ · ~xscat,0 = Rφ ·Rθ · ~xscat,0 (25)

=

cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 · ~xscat,0
In order to verify this method, Nγ = 104 Photons, all of them having an energy of 511 keV
were created and scattered. The deposited energy (∆E = Eγ − E′γ) was then computed using
equation 9 for all of them. The result is shown in figure 9. We see two peaks. The first one
comes from the higher probability that a photon gets forward scattered, which implies a small
deposited energy. The origin of the second peak (the Compton edge) is the same, except that
the probability is higher. Its position can easily be computed with equation 6 and in this case,
it should be at an energy of 340.67 keV , which is the case.

Volume class is the class that represents the scintillator bars. They are defined by an Axis-
Aligned Bounding Box (AABB, which is widely used in video games), itself defined by two
vectors: the position of the bottom left corner and the one of the upper opposite corner. The
methods are the following :

ray_intercept takes a photon as a parameter. If the cube is on the path of the photon, the
method returns the point (a vector) where the photon gets in contact with the cube. On
the other hand, if the photon does not hit the cube, the method returns None. The principle
is to solve the intersection between the ray and the AABB in each direction (x̂, ŷ, ẑ). For
example for the x direction, the system to solve is the following :

xγ(t1,x)
!

= xmin and xγ(t2,x)
!

= xmax

11The code was written in Python. After using and making the code more complicated, it appeared that it
was too slow, which required the use of Numba, a package that allows compiling Python functions. It made the
code ∼ 10 times faster but it is not optimal. If I had to do those simulations again, c++ for speed purposes.

12In general this point is the location of the position of the photon but for testing purposes, this point can be
defined by the user
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which leads to 13:
t1,x =

xmin − x0

xd
and t2,x =

xmax − x0

xd

A visual representation of the computation is shown in figure 17a.

After performing this computation on the x, y, and z direction, we can check if the photon
has entered or not by checking that in all directions, t2 > t1. If it is not the case, the photon
does not collide with the AABB and the function returns None. If there is a collision, we
can compute the (x, y, z) coordinate of the collision by finding the minimal time value and
computing the photon position with equation 24.

In order to verify that this method worked as expected, an instance of both Photon and
Volume was created. The 511 keV photon has its origin at ~x0 = (1.2, 1.2, 1.5) and is directed
along ~xd = (−1,−1,−1). The AABB has a cubic shape and has its low left corner located
at the origin. All the sides have a length of 1. In figure 17b we can see the Photon, the
Volume and the intersection point. Everything is working as expected.

x = xmin x = xmax

~x0 ~xd

~xγ = ~x0 + t · ~xd

AABB
t1 = xmin−x0

xd

t2 = xmax−x0
xd

(a) Scheme of a 2D Axis-Aligned Bounding Box and a
photon.

(b) Intersection of an AABB and a pho-
ton. The red dot shows the calculated in-
tersection

Figure 17: Visual representation of two AABBs interacting with a photon

is_In is a function that returns True if the point that is given as a parameter is in the volume,
and False if not. In order to do so, it checks for the x̂, ŷ, ẑ directions if the corresponding
component is in the range defined by the two edges that define the AABB. For instance,
in the ẑ direction, it checks if:

zBL ≤ zpoint ≤ zTR
where zBL is the z coordinate of the bottom left corner and zTR the one of the top right
one.

Detector class inherits from the Volume class (because a detector is composed of several bars).
It is defined by an integer that represents the number of bars by side and two floats that represent
the height and width of a bar. At the creation of a Detector instance, a Volume with the same
size as the Detector. It represents the shell of the detector and is useful for speed purposes as
it will be explained. The functions are the following:

inWhich takes a photon as parameter. It loops over all the Volume instances that the detector
is made of and applies the is_In method. The output of that function is the bar index
(the number that determines the detector element) in which the photon is. If there is no
photon in the detector, inWhich returns None.

13Before doing the division we check that none of the direction components is zero. If it is the case there
are different ways to get around. we simply replaced the zero with infinity as explained in https://pyrr.
readthedocs.io/en/latest/_modules/pyrr/geometric_tests.html#ray_intersect_aabb
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rayCapture is the generalised version of ray_intercept. It also takes a photon as an option.
It starts by checking if the detector shell is in the direction of the photon, which is faster
than doing this check for each bar in the detector. If it is the case, the inWhich method is
called and the function returns both the bar index in which the photon is and the photon’s
position. If the detector shell is not on the photon’s path, the function returns None, None.

absorbRay is the most important method for the Detector class. It allows to track the photon
in the detector, taking into account the Compton process and photo-absorption.

The first step is to know where the photon comes in the detector (if it does so). For that,
the method rayCapture is used. If the result is not None, it means that the photon hits
the detector. If it is the case, a mean free path is generated (as explained in 8.1.1, it
depends on the energy of the photon). Additionally, a random number between 0 and 1 is
drawn. This number is then compared to the probability for the photon to interact via the
Compton process. This probability is simply obtained by the following ratio :

PC =
Zscint · σc
σtot

where σc is the Compton cross section and Z is the average number of electrons per atom
in the scintillator bars. If the generated number is smaller than this probability, it means
that the photon interacts via Compton, otherwise it interacts via the photoelectric effect.

Let’s suppose the photon interacts via the Compton process. The procedure checks that
after travelling the random path, the photon is still in the detector, in which case the
photon is scattered, and the deposited energy is measured with a 10% accuracy. Then,
a path and a probability are generated and the loop continues until the photon gets out
of the detector or the photoelectric effect is chosen. In this case, a check is performed to
verify that the photon is in the detector, and the deposited energy is measured with an
accuracy of 10%.

Source class is the class that defines all the sources that "emit" photons, namely the back-
ground and the GRBs. As a result, this class has two main methods, one for each kind of
source.

GRBs are simulated by a disk of radius r (bigger than the detector size) and distance d. The
disk centre is located at spherical coordinated (d, θ, φ).

A point on the circle can be defined by ~xrand = rrand

(
sin(θrand)θ̂ + cos(θrand)φ̂

)
. Using

the fact that the infinitesimal number of emitted photons per unit area is dn = ρ · dA
(with ρ the constant density), it can be shown (using the inverse transform method) that
θrand ∼ U(0, 2π) and rrand ∼

√
u · r, where u ∼ U(0, 1).

All the photon’s initial position can be defined by the sum of the disk centre and the rotated
random direction (in order for the random direction to stay on the tilted disk) :

~x0 = ~xdisk,cent +Rθ,φ · ~xrand

All photons have ~xd given by (in spherical coordinates) ~xd = (−d, θ, φ) so that they are
all directed towards the detector. Their energies are distributed according to the Band
function (see equation 1 and chapter 7).

background is the method that generates a given number of background photons. In order
for the background to be homogeneous and isotropic near the detector, the photons are
emitted from a sphere of radius dBG, centred at the origin. The photons are emitted from
random points chosen uniformly on the sphere, once the random point is defined, a random
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Figure 18: Scheme of the different sources defined in the Source class. In green is the sphere
that emits the background photons in a homogeneous and isotropic way. The pink is the disk
that emits the GRB photons, whose energies are distributed according to the Band function 1.
At the origin is shown an 8× 8 bar detector.

direction is drawn according to the cosine law, then rotated such that the generated photons
tend to be directed towards the centre of the sphere. The energy of the background photons
is distributed according to a power law of index α = −3 which matches roughly the power
law spectrum as seen by POLAR.

8.1.3 GRB generation

Using all the classes presented above, it is relatively straightforward to generate a lot of GRB
simulations that will be passed to the different models as training samples.
In order to keep things simple, the only parameters the user has to provide are:

1. The sample size (The number of GRBs).

2. The number of GRB photons that are requested to interact with the detector.

3. The ratio allows the program to compute the number of background photons that will
interact with the detector.
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In real conditions, the background can not be selected and depends on the GRB incoming angle.
Here the simulations are done with a fixed ratio such that it is possible to analyze the sensitivity
of the different models on the ratio.

To be faster, the script starts by building a background photon database so they don’t have to
be generated at each iteration. The detector must be on the path of all photons in this database
such that they all interact with it. The size of that database contains typically tens of times the
number of background photons that interacts with the detector in each GRB simulation.
Each GRB simulation is done by first selecting a random pair (θ, φ) uniformly on the sphere.
This point will be the location of the GRB. Three random values for the Band spectrum are also
generated as follows 14:

αBand = {α | α ∼ N (−1, 0.482) ∧ (−3.1 < α ≤ 1.5)}

βBand = {β | β ∼ N (−2.3, 0.92) ∧ (−3.1 < β ≤ αBand)}

E0 ∼ U(300, 1000)

Then, batches of 2 · 104 GRB photons are generated, and their interaction are computed (it
appeared that this size is a good time/efficiency balance). If the desired number of interacting
GRB photons is not reached, batches can be generated in consequence. Once the desired number
is reached, the process is the same as the background photons, except that they are drawn
randomly in the database.
Once these steps are done, all that is left is to count the interactions and deposited energies in
each one of the scintillator bars. The count per bar is represented by a single number whereas
the energies per bar are binned in a histogram with 32 logarithmic bins. The result of a typical
simulation is shown in figure 30.

14Those are the distributions of the Band parameter used in the POLAR simulations that will be described
later
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9 Localization analysis with the toy detector

In this section, different deep learning models are trained using the data provided by the code
described in section 8. The main objective of this section is to study the details of the various
models by applying these to well-understood data and testing the analysis methods that will be
applied to the real simulations.

As there are many parameters to understand/optimize, the choice was made to first build a
simple Fully Connected model that allows to make the first predictions. The model architecture
and the hyperparameters are not that relevant in the beginning because those simulations are
not meant to make new discoveries.

Additionally, since two detectors were built (see chapter 8), it is relevant to show results for both
of them as long as it is not redundant. Hence, the basis of the analysis will be developed using
the first detector (the 4×4×4 detector with photons having fixed energy and that doesn’t record
the energy per bar, but only the counts). The spectral analysis methods will be developed in
section 10 using the second detector which looks more like POLAR.

9.1 Training data

The training data depends on which detector is used (one uses the deposited energy, and the
other does not). Here we describe the more complex data, which are being analyzed by the 8×8
detector. Since the detector response varies with the incoming GRB direction and its spectrum,
it is important to provide both the rate per bar and the measured energy to the model. As there
are 64 bars, the rate is provided to the model as a vector of length 64. On the other hand, the
measured energy in a given bar is stored in a 32 logarithmic bin histogram. Consequently, the
energy data are represented by a 64× 32 array.

The data that are provided to the models need to be reprocessed, for example by normalizing
it, in order to simplify the learning process. This procedure is quite standard and in almost
any example that one could find online (for instance the MNIST dataset), the data are modified
before being provided to the model. Standard techniques are to take the maximal value reached
in the dataset (call itM) and divide all the others by that. This way, all the model will experience
is values between 0 and 1. This was the first tested normalization method. More formally, if we
call ci the counts in the ith channel, we have:

ci,norm =
ci
M

Page 34/80

https://www.kaggle.com/datasets/hojjatk/mnist-dataset


Section 9 Localization analysis with the toy detector

9.2 Model definition for localization studies

A basic fully connected neural network was built in order to compare the other models with
respect to it, but also to make all analyses in the same way. The architecture of this model is
presented in figure 19. There is no particular reason to use this kind of architecture, except that
it has worked for the first tests done on these datasets. Note also that all models are initialized
using the same random seed to be able to reproduce the results.

...
...

...
...

Base Model

D
ropout

=
0.2

O
utput

Input layer
64 Neurons

Hidden layers
160 Neurons 60 Neurons 30 Neurons

linear elu elu

Output layer

Figure 19: Scheme of the neural network architecture used for the various analyses in this project.
The base model is the same for all models used. The only differences are the input and output
layers which will vary depending on the model being used

9.3 Target selection

Since the neural network has no physical interpretation by itself, we can define the target the
way we want as long as it provides good and physical results. Three possibilities for this have
been tested.

θ and φ in one array A straightforward choice is to minimize θ and φ directly. However, by
doing this, the model wouldn’t understand that the φ coordinate is cyclic (ie. that φ = 0.01
is actually close to φ = 2π). Therefore, it is a good idea to minimize the angular distance
because this measures the physical angular separation between two points on a sphere (see
equation 15).

It appears that directly setting the angular distance as the loss leads to predict NaN
(Not a Number)15. Many alternatives were therefore investigated tried, but none of
these was successful. The decision was made to change the loss because the whole in-
formation is contained in the argument of the arccos, which is only useful to convert
the scalar product int an angle, but any arbitrary quantity that is small when x =
cos(θ1) cos(θ2) + sin(θ1) sin(θ2) · cos(φ1 − φ2) is close to 1 (ie. the two points are close) and
big when x is close to -1 is fine. This motivates the use of the following function :

f(x) = etanh(1) − etanh(x) (26)

It will be shown later that using this loss was not enough to get good results. A graphical
comparison between f and the angular distance is shown in figure 20.

15An hypothesis for this issue is that the arccos has a derivative that diverges at x = 1, which is the exact
point we want the model converges to.
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cos(θ), cos(φ) and sin(φ) in one array In order to get cyclic values (ie. to make 2π close to
0) it is convenient to take the sin and the cos of the desired quantities, namely θ and φ.
However, since the θ angle lies in the range [0, π], it is entirely determined by cos(θ), hence
it is sufficient to set cos(θ) as the target. The φ value can be obtained from the cos and sin
with the arctan2 function and by taking the modulus to achieve a result between 0 and
2π :

φ = mod(arctan2(sin(φ), cos(φ)), 2π)

As a result, a model that tries to fit trigonometric identities has 3 output neurons instead
of 2.

Figure 20: Comparison between the angular distance as defined in equation 15 and the custom
loss function as defined in equation 26. Their derivatives are the dashed curves.

θ, cos(φ) and sin(φ) in two arrays The architecture of the model is not different than the
cos / cos / sin model, except that the two output leads to two output arrays: one for the θ
value and one for the cos(φ) and sin(φ). It will be shown later that the two previous models
have some difficulties in accurately analyzing GRBs located at the zenith (with respect to
the detector). Having two different outputs for the same network can help to make better
predictions since each output can have its own loss. The downside is that the two outputs
don’t have access to the other, so it forces to use independent losses on each output, like
the mean squared error.

To know which solution works the best, three different models, all having the same architecture
(except the output layer that differs from one to another) have been trained. The training data
consists of 200′000 GRB simulations, with 1000 source photons and a signal-to-noise ratio of
3.33 (i.e. 300 background photons). The number of epochs has been chosen such that the model
converges without overfitting. After each epoch, the mean angular distance was computed on the
validation sample, which is very useful to quantify the accuracy of the model even though they
have different outputs. It is also useful to verify that the chosen losses effectively minimize the
angular distance (which is the desired physical effect). The dependencies of the angular distance
as a function of the epoch number are shown in figure 21a. It is clear that the θ/φ model is the
one that performs the worst. The two other models seem to be better, and the θ/ cos / sin model
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is the one that has the lowest noise (the fluctuations on the monitored quantities evaluated on
the validation sample). A general behaviour that is easily observable here and will also be in the
next analysis is the sudden drops in the monitored quantities. The reason for this is thought to
be the combination of two elements: the log scale and the adam optimizer. This optimizer has
the ability to adapt its learning rate, which changes the improvement rate.

(a) Evolution on the mean angular distance be-
tween target and predictions on the validation
sample for the three different model architec-
tures.

(b) Distribution of the angular distance for the
three different models, with some statistical
quantities. It should be noted that the MPV
(most probable value) depends on the number
of bins in the histogram.

Figure 21: Study of the angular distance between target and predictions on the testing sample
for the different architecture investigated.

In order to further analyze the results, it is worth considering the distribution of the angular
distance between the target and predictions on the validation sample (figure 21b). For each
model, the different statistical quantities such as the mean, the standard deviation, and the 68%
percentile are shown. As one could imagine, the smaller those values are, the better the model
performs. Note however that the most probable value (MPV) is computed using the coordinate
of the highest bin, which is not very representative and explains the big difference between the
cos / cos / sin model and the θ/ cos / sin one. It is here again evident that the models cos / cos / sin
and θ/ cos / sin are the best ones. The reason why the θ/φ model performs the worst becomes
evident with figure 22 because it tends to predict a wrong location for events near φ = 0. That
means that the model didn’t properly learn that the data are cyclic, which is the case for the
two other models.16

Even though the cos / cos / sin model has better statistical values, the preferred model is the
θ/ cos / sin model because the noise during the fitting procedure is much lower. Indeed, the noise
can be very high and reach values of tens of degrees.

16Note that this kind of map allows guessing the shape of the detector because it is harder to predict events
coming from the edge of the detector so at φ = 45◦. It is also a nice verification that both the simulations and
the analysis make sense.
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Figure 22: The angular distance between target and prediction as a function of the incoming
direction. It is evident that the θ/φ model has big difficulties in accurately providing the correct
location for GRBs near φ = 0, which justifies the use of trigonometric identities instead. The
’Top’ row is for the upper half sky whereas the ’Bottom’ one is for the lower half sky.

9.4 Training sample dependence

Once the model is selected, an important thing to know is whether more training data should be
generated. For the toy detectors, generating more data is easy but with the POLAR simulations,
it takes more time and if the results do increase with the training sample size, it is a simple way
to increase the model’s performance.
To do so, different training sample sizes are generated and for each one of them, a model is
trained. The simulations are the same as the ones used in the previous analysis. Each model is
trained for the same number of epochs and the model is saved at the epoch where it performs
the best. At the end of the training, the models are evaluated on the test sample, and the
performances are computed. The important criteria are the statistical quantities of the angular
distance histogram. As it can be seen in figure 23, it is clear that the bigger the training sample,
the better the model performs.
As it can be seen, all the statistical quantities seem to be decreasing at the training sample size
used in this chapter (ie. 138′285), which means that the results could be improved. However,
this is not the aim of those simulations and the training size will be the same for all the other
analyses done on the toy MC detectors. This analysis will be performed again with the real
POLAR simulations since qualitative results will be expected.
Finally, as the training sample should typically contain hundreds of thousands of simulations, it
is clear that the analysis of POLAR data needs to rely on simulations, for the simple reason that
the 55 detected GRBs won’t be enough to train the model.

Page 38/80



Section 9 Localization analysis with the toy detector

Figure 23: Evolution of the distribution of the angular distance between target and predictions
on the testing sample. The bigger the training sample is, the lower the statistical values are.
The right graph shows their evolution as a function of the training sample size.

9.5 Signal to noise ratio dependence

As it was already explained in chapter 8.1.3, all the simulations are done with a fixed signal-to-
noise ratio in order to be able to study the effects on the model predictions. It is expected that
the higher the ratio, the easier it is for the model to make accurate predictions. In a real case,
the signal-to-noise ratio is different for each GRB, so it is important to know whether the model
can make accurate predictions on different GRB ratios.
To test this dependency two models were trained on different datasets. The first one is trained
on data that results from simulations of 200′000 GRBs where 1000 source photons and 300
background photons interact with the detector while in the second dataset, 3000 source photons
and 300 background photons interact with the detector. For clarity, let’s call M1000 the model
that has been trained using the first dataset (that we will call data1000) and M3000 the model
that has been trained using the second dataset (whose name will be data3000). The background is
the same in both cases, which leads to a signal-to-noise ratio of 3.33 in the first case and of 10 in
the second one. The evolution of the mean angular distance between the targets and prediction
on the validation sample is shown in figure 24a. It is evident that the higher the ratio, the more
accurate is the model. This is also verified by the statistical quantities of the distribution of a
model (M1000 or M3000) on ’its’ dataset (data1000 or data3000). Those statistical quantities are
shown in black in figure 24b and refer to the green histograms. Since the two models are trained
using a fixed SNR, they should perform worse if a prediction is made on a different dataset. To
verify that, it is interesting to make predictions on data1000 using M3000 and vice-versa. The
distributions are shown in magenta in figure 24b. Interestingly, the behavior is very different:
the predictions of M1000 on data3000 (labelled as M1000/data3000 on figure 24b) are significantly
more accurate than the predictions of M3000 on data1000.
To be complete, it is also interesting to see where M3000 performs the worse. It is also relevant
to compare it to predictions and errors of M1000 as shown in figure 25. Overall, as one could
have expected, GRBs having a higher signal-to-noise ratio are much easier to predict accurately.
Additionally, it is important, considering figure 24b that the training sample includes GRBs
having a low SNR because they are able to analyze GRBs with a higher SNR quite accurately.
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(a) Evolution of the mean angular distance be-
tween target and predictions on the validation
sample, as a function of the training epoch. It is
evident that the SNR has a big impact on the
angular distance. The green curve represents
the evolution of M1000 (trained on data1000)
and magenta shows the evolution of M3000

(b) Distributions of the angular distance be-
tween target and prediction on the test sample.
Green shows the distribution for the predictions
on data that are similar to the training data
(e.g. the predictions of M1000 on the testing
sample of data1000). Magenta shows the result
of when the trained model is used on the dif-
ferent dataset (e.g. the predictions of M1000 on
the testing sample of data3000)

Figure 24: Study of the angular distance for the different signal-to-noise ratios that have been
investigated

Figure 25: Angular distance between target and prediction as a function of the incoming GRB
direction for the two different models M1000 and M3000. It is clear that both models have
difficulties to predict events at the poles. However, M3000 performs best on average. While for
the M1000 model the poorer performance at φ angles corresponding to the edges of the cube is
also observed.
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9.6 Photon number dependence

Similar to the signal-to-noise analysis, it is important to know how the model reacts to different
rates with a fixed signal-to-noise ratio. The reason why this is important is that the GRB
prediction will be performed on the integrated counts over the full GRB duration, which means
that a very short and bright GRB can have the same number of counts as a longer and fainter one.
In this context, it is important to study its impact to ensure that all GRBs are well-predicted.
Therefore, three models were trained using 200′000 GRB simulations: the first one with 1000
source photons per simulation, the second one with 3000 GRB photons per simulation, and the
last with 5000 GRB photons per simulation. The signal-to-noise ratio is fixed at 3.33 for all
simulations.
In order not to create confusion with the previous chapter and to make it easier, the first model
will be denoted by M300, the second one M900, and the last one M1500. They have been trained
respectively on data300, data900 and data1500. Those names refer to the number of background
photons in each simulation.
The evolution of the mean angular distance as a function of the training epoch for the three
different models are shown in figure 26a. Without surprise, the model that performs the best
is M1500, which was trained on data1500, which has the best statistics since for each simulation
a total of 6500 photons are interacting, whereas 1300 and 3900 photons are interacting for
respectively data300 and data900.

(a) Evolution of the mean angular distance be-
tween target and prediction on the testing sam-
ple as a function of the training epoch. The best
model is the one trained with data1500.

(b) Comparison of the distribution of the angu-
lar distance between target and predictions on
the testing sample for M300 (top), M900 (mid-
dle), and M1500 (bottom)

Figure 26: Study of the dependency of the total number of photons with a fixed SNR.

As before, it is relevant to see where the models have difficulties to predict events accurately. As
it can be seen in figure 27, for the three models, events at the poles are difficult to predict.
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Figure 27: Angular distance between target and prediction as a function of the incoming GRB
direction for the three different models M300, M900, and M1500. It is clear that all the models
have difficulties to predict events at the poles. The poorer performance at φ angles corresponding
to the edges of the cube is also observed.

9.7 χ2 fit comparison

An important thing to do is to compare the results obtained by the deep learning models with
the standard method, which is basically the χ2 fit method which was applied to POLAR data
in the past [41]. To do that, a database of 106 background photons are computed, as well as
a database of the counts per bar for 3072 GRBs, one for each Healpix bin. Healpix bins are
regions in the sky defined in such a way that they all have the same surface. They are derived
from spherical harmonics and are a common use in astrophysics, because they are defined the
same way for everyone [19]. Each simulation computes the counts per bar for 5·104 GRB photons
(as we want the detector responses to be free of statistical uncertainties). Then, given a ratio, it
is possible, using ROOT17 to add two histograms with respective weights. The first histogram is
the counts per bar due to the background photons. The second one is the counts per bar due to
GRB photons coming from a given Healpix bin, without background. Since the SNR ratio is
known, it is possible to compute the weights accurately, using the number of photons from the
background (nBG) and from the GRB (nGRB):

wBG =
nBG

nBG + nGRB
wGRB =

nGRB
nBG + nGRB

Once it is done for all Healpix bins, the result is a database of detector responses for each healpix
bin. Any detector response can then be compared to those expectations with the χ2 test function
Chi2Test function. The database element that minimizes the χ2 value is the best fit and thus
gives a location. This operation was done on a testing sample of 20′000 GRB simulations with
different background values to check the dependency of this quantity on the predictions. In all

17The useful function to do that is Add
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cases, the SNR ratio is fixed at = 3.33. The knowledge of the best fit and the true incoming
direction makes it possible to draw the distribution of the angular distance between those two
quantities. Those histograms are shown in figure 28 for the different datasets.
The deep learning models perform better since the corresponding distributions are more centred
than the ones for the χ2 method. This is crucial because it motivates the use of such deep
learning models to make localization analyses on POLAR data.
It is also interesting to know where the χ2 method has difficulties to make accurate predictions,
which is shown in figure 29. Two things are to be noted. The first one is that the general
shape is the same as the one obtained with the deep learning models (see figure 27 for instance),
which means that both the simulations and the analysis make sense. The second thing to note
is that the χ2 is more accurate at the poles than the deep learning models, indicating that this
inaccuracy is an artifact of the deep learning method.

Figure 28: Comparison of the angular distance between target and prediction for the deep
learning models (in green) and the standard χ2 fit method (in magenta). The deep learning
models perform better for the 3 different signal-to-noise ratio samples it was tested on here.
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Figure 29: Map of the angular distance as a function of the incoming direction for the χ2 method
and different datasets.
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10 Spectral analysis with the toy detector

This section describes the analysis methods for the toy detector that looks more like POLAR.
Precise differences with respect to the 4 × 4 × 4 detector are explained in chapter 8, but the
biggest one is that in this case photon energies are recorded and distributed as a power law for
the background photons and as a smooth broken power law for GRB photons.
200′000 GRBs were simulated for this analysis, and the distributions of the GRB parameters are
shown in figure 30. Each GRB simulation is the result of the interaction of 3000 GRB photons
and 900 background photons. The count normalization being used is the same as for the first
toy detector. For the energy, the method is the same: all values in the dataset are divided by
the maximal one.

Figure 30: Left: Distribution of the different GRB properties as simulated in the toy Monte
Carlo. The ratio is fixed and the spectral parameter are chosen such that they look like the real
POLAR simulations. Right: Typical hitmap resulting from a GRB simulation.
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Figure 31: Architecture of the model
taking into account both the counts
per bar and the deposited energy per
bar. A few Dense layers have been
added to keep the number of neurons
low.

Even though the full analysis (meaning localization and
spectral analysis) could be done using a single model
with multiple outputs, it was decided that the spectral
analysis will be performed by a separate model to have
more flexibility. Since the data are generated differently,
it is also interesting to see how the localization predic-
tion changes with a more complex dataset, however, no
further localization analysis will be performed in this
chapter, however, the effect of the new data format used
for spectral analysis on the localization is studied. In
terms of model architecture, there are major differences
since the detector records the energy. As the localization
depends on both the incoming direction and the spec-
trum, it is important to provide the counts (64 numbers)
but also the energies (64 histogram containing 32 bins)
to the model. In order to keep the number of neurons
relatively low, a few layers were added just after the in-
puts, as shown in figure 31. The rest of the model is the
same as in section 9.
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On the other hand, for the model that does the spectral predictions it is irrelevant to provide
more than the measured energies to the model. In order to make the model converge faster (and
it also showed better results) the energy bins are all summed such that the model’s input is a
single 32 bin histogram. The output of the model that predicts the spectral parameters will be
detailed later in this chapter.

10.1 Localization results

The evolution of the mean absolute error of those quantities over the epoch is shown in figure
32a, which shows that the model has converged.

(a) Evolution of the monitored quantities over
the training epochs. It is clear that the model
shows some clear overfit signs from epoch ∼
9000, but the model has been saved where the
mean angular distance between the target and
predictions on the validation sample is at its
lowest.

(b) Distribution of the angular distance be-
tween target and predictions on the testing
sample. It should be noted that the distribution
is wider than the one shown in figure 24b

Figure 32: Analysis of the distribution of the angular distance between target and predictions.

As in chapter 9, the performances of a model are determined by the distribution of the angular
distance between the target and predictions on the testing sample. It is also important to know
where the model has difficulties to predict accurately the events. Those two analyses are shown
respectively in figures 32b and 33a.
The fact that the distribution is broader than the one shown in figure 26b for M900 shows that
the dataset is more complex. It should be noted that contrary to the model studied in section 8,
this one doesn’t show any special difficulties to predict events at the zenith (a hot pixel is to be
noted). This is thought to be a result of a difference in the geometry. Since the two detectors
used for the two studies are different, they have different sensitivities. Interestingly enough is
the fact that the shape of the detector can also be guessed from figure 33a, because it is harder
to accurately locate events coming from the edge of the detector.
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Another way to characterize the model performances is by studying the correlations between the
predicted θ and φ values and the angular distance. This is what figure 33b shows. Note that
both the predictions and targets have been normalized to one to avoid binning effects. The π/2
periodicity can also be seen on the bottom right graph, which represents the angular distance as
a function of φ.
Overall, the method used to predict the location of the incoming GRB seems to be good. The
fact both the counts per bar and the energy histograms constitute the model’s input helps to
accurately predict the GRB location. This method will hence be applied to the real POLAR
simulations.

(a) Polar histogram of the mean angular dis-
tance between target and predictions on the
testing sample as a function of the incoming
location.

(b) Correlations between the targets and the
predictions on the testing sample. Quantities
labelled by ”t” are the targets whereas the ”p”
index refers to the predicted values. The red
dashed lines represent the ideal case.

Figure 33: Localization analysis for the model that takes the energy into account.
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10.2 Spectral fit

The targets for this study are obviously the three Band parameters. However, the values of these
3 are very different since β is often negative while E0 can be as big as a few hundred (see figure
30). It is therefore a good idea to transform those values such that it is easier for the model to
converge. More precisely, those target values must be in the range [0, 1], which motivates the
following transformations:

αtarget = −α+ 1 (27)
βtarget = β + 3.1

E0,target =
E0 − 100

1000

With these transformations, all target values are in the desired range, which makes it possible to
use the ReLU activation function (because it only outputs positive numbers). Additionally, since
there are some physical constraints on the parameter (α > β by definition), it is crucial that the
model learns them properly. Two options are available :

1) Each Band parameter has its own independent output and the model learns the constraints
by itself.

2) The Band parameters are fitted together and a custom loss is defined such that it applies
the mean squared error on each parameter but penalizes the model when it predicts a set
(α, β, E0) that has no physical meaning.

In the first case, the loss can simply be the mean squared error as it showed great performances
for the localization analysis. Since the three parameters outputs are independent, let’s call this
model Msep. For the second case, the loss is very similar to the mean squared error, but it adds
an extra penalty of 10 times the difference between α and β (if β > α). It is also a good idea
to reduce the loss in some cases due to the intrinsic degeneracy of the Band function. Indeed,
if the α and β values are very close to one another, the produced spectrum is very similar to
a power spectrum, in which case E0 has no meaning. It is therefore a good idea to weight the
mean squared error on E0 by the difference α− β (only if α > β). The desired effect is that the
closer the spectral indices are to each other, the less impact the error on E0 has on the loss. This
model will be denoted by Mblock since it outputs a block containing the three Band parameters.

To compare the two methods, the two models were built and trained using the same data as for
the localization (see 10.1). At each epoch, the mean absolute error is monitored on each spectral
parameter. The results are shown in figure 34a and 34b (respectively Mblock and Msep).
The first thing to be noted is that the model Mblock seems to show a smaller mean absolute error
for all parameters. However, the mean error on the α parameter is noisier than for model Msep

and even shows a period of overfitting that coincides with the one where the mean error on E0

starts to decrease. For both models, it should be noted that the β mean error starts to decrease
only when the α mean error reaches a plateau phase.

Similar to the localization analysis, the model has to be evaluated on its predictions on the
testing sample. As it was seen in chapter 10.1, the correlations between the target parameters
are a good way to characterize it. Hence, those are shown in figure 35a and 35b. The red lines
are the ideal cases where the model predicts the target. Since the ranges are different for each
subplot, the bin content has been normalized such that they all have the same range.
The first element one can notice is that even though the evolution of the monitored quantities
is relatively different for the two models, the two correlation analysis looks fairly similar (it is
not even easy to spot the differences). Furthermore, the α parameter is the easiest to predict
since it almost follows the red dashed line in both cases. This accuracy is due to the higher
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(a) Evolution of the mean absolute error be-
tween target and predictions on the validation
sample on the three Band parameters for the
model Mblock. The loss applied here penalizes
the model for non-physical predictions.

(b) Evolution of the mean absolute error be-
tween target and predictions on the validation
sample on the three Band parameters for the
modelMsep. The model has three outputs hav-
ing the mean squared error as a loss.

Figure 34: Comparison of the evolution of the mean absolute error for the three Band parameters
that the two different models are fitting.

detector sensitivity of the detector in this range. On the other hand, the β parameter is harder
to predict, especially for very low values. The reason could be that with a very low β parameter,
the spectrum drops very quickly and so does the number of photons available for the analysis.
The very important element to note is that both models always predict α > β as can be seen
in both the top middle graph and the middle left one. Besides that, it is clear that the E0

parameter is the hardest to predict. This difficulty is thought to be caused by the fact that E0

has no meaning if α and β are very close because the resulting spectrum would essentially be a
power-law spectrum. It furthermore makes no sense to predict an E0 value that is far beyond
the sensitivity region of the detector.
To verify what we see for E0, a filter was applied to the testing sample, to select events where
|α− β| ≥ 1 and E0 < 550 keV . The result is shown in figure 35c (using the model Msep). There
is no difference to be noted on the α parameter, and very little on β (very low values of β are
still hard to predict). On the other hand, the tendency for the E0 prediction seems to be better
in this case, which confirms the hypothesis of the previous paragraph.
After a lot of tries and verification, it was decided that a good moment to save the model is the
epoch at which the mean absolute error is at its lowest. All the models in this section and the
following have the same criterion.
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(a) Correlations between targets and predic-
tions on the testing sample with the Mblock

model.

(b) Correlations between targets and predic-
tions on the testing sample with the Msep

model.

(c) Correlations between targets and predic-
tions on the testing sample done by the model
Msep. A filter was applied to take only the
events with |α−β| ≥ 1 and E0 < 550 keV . The
E0 predictions seem to be better in this case,
whereas the α and β predictions are similar.

Figure 35: Correlations between targets and predictions on the testing sample for the two models
that were investigated. The bin content has been normalized such that they all have the same
range
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11 GRB detection

The first challenge one encounters when having a large field of view detector is to detect the
transient burst. For this work these studies were performed chronologically after the localization
studies provided good results, thereby motivating the choice to detect GRBs in the lightcurves us-
ing deep learning. This way, the analysis process includes both the detection and the subsequent
analysis.

The task the models will be trained on is, given the 60 past seconds of counts and energy per
module, to predict if a GRB is happening at time t = 0 or not.

11.1 Training data

The training data were already available from the GRB simulations since each one of them is
essentially a database from background and GRB photons coming from a specific direction. The
training data in this case consists of lightcurves of 60 seconds. 50% of the training sample has
a GRB at t = 0, and the rest is composed of pure background (25%) and GRBs that are not
happening at t = 0 (25%). This way, the model trains on various types of signals.
To build the lightcurve, the background rate is simulated by a third-order polynomial. On the
other hand, as there exist many GRB shapes. Not only does the length of the GRB differ by
many orders of magnitude, but also the number of pulses in a GRB and the time and relative
height of these vary significantly. Therefore a lot of GRBs must be simulated. To do so, the
function norris from the cosmogrb framework [9] was used and modified to create more realistic
GRB shapes. This function describes the shape of the ideal, FRED (Fast Rising Exponential
Decay) like, GRB with a few parameters: tstart, trise, K and tdecay:

f(x, t) =

{
K · exp

(
2
√
trise/tdecay

)
· exp

(
− trise
x−tstart −

x−tstart
tdecay

)
if x ≥ tstart

0 else
(28)

As true GRBs can be composed of several sub-pulses, a simulated GRB is defined as a sum of
Np functions (one for each pulse). The distribution of pulse number was here chosen to follow
a Poisson distribution with a mean of 1: Np ∼ P(1). The time parameters of the functions are
adapted such that the full duration of the GRB roughly follows the log-normal distribution of
T90 as described in 3.

Since the model must learn when a GRB is happening, an event (60 seconds of lightcurve) is
labelled as 1 if the GRB is happening at t = 0, while the event is labelled as 0 if the GRB
happens anywhere else (or if the lightcurve only consists of background). Note that even if there
was a GRB during the last 60 seconds, the model should not predict 1 unless the GRB is still
happening.

For faster training, it was decided to use the counts and energy histogram grouped by the detector
module (so reducing the number of channels by a factor of 25). As a result, the files containing
the 131′582 lightcurves are smaller and the training time is drastically reduced18.

18Note that this work was done at the very end of the master’s work. This choice was hence motivated by
intuition gained during experimenting various models trained on similar datasets.
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(a) Simulation of an event without any GRB at
the end of the lightcurve this event is labelled
as ′0′.

(b) Simulation of an event with a big GRB at
the end of the lightcurve this event is labelled
as ′1′.

Figure 36: Evolution of the monitored quantities as a function of the training epoch for FC NN
and the 2D Conv.

11.2 Data normalization

Figure 37: Scheme describing how the data
are centred and normalized.

Since a GRB can be detected at any time, any rate
of background should be simulated. A background
rate distribution that reflects the real one is bet-
ter, and in this case, energy follows a power spec-
trum (which was verified by analysing a few days
of real data.). Additionally, the model should be
as sensitive in a low background rate period as in
a high rate background period, which implies that
the data have to be centred and normalized. To do
so, a first-order polynomial was used to catch the
general background time dependency. The slope
and the intercept are inferred by taking the mean
rate (see figure 37) in the first and last 10 seconds
of the event (respectively m55 and m5). The first-
order approximation hence reads:

y(x, t) ≈ ax+ b where

{
a = m55−m5

55−5

b = m55 − 5a
(29)

The last step is to centre and normalize the signal (ie. subtracting the mean µc and dividing by
the standard deviation σc):

ci,norm =
ci − µc
σc

Note that both the counts per module and the energies per module are normalized this way.
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11.3 Analysis

For this task, different models will be used and the best of them will be selected. The quality
criterion will be the area under the ROC (Receiver Operating Characteristic) described in detail
below, which is a commonly used criterion in such analyses, and one often refers to it as "AUC"
(Area Under the Curve).

ROC curve This curve allows to compare the results of a binary classifier. A standard way
to do it is to set a threshold above which all events are classified as 1 and below as 019.
Then, given the predictions and true labels, it is possible to build a confusion matrix that
compares the number of true positives (the model makes a right prediction on a 1 event), true
negatives (the model makes a right prediction on a 0 event), false positive (the model predicts
a 1 instead of a 0) and false negatives (the model predicts a 0 instead of a 1). However, as any
threshold between 0 and 1 can be set, it can be confusing to distinguish which threshold is the
best. The ROC curve makes it easy to compare all thresholds at once [35].
For a given threshold, two values are computed: the true positive rate and the false positive rate.
Those values are defined by :

True Positive Rate =
True Positive

True Positive + False Negative
(30)

False Positive Rate =
False Positive

False Positive + True Negative

Note that in mathematics, one could refer to those values as the sensitivity and 1−specificity.
Nevertheless, it gives crucial information on how the model performs and especially if it manages
to predict events accurately (high true positive rate), without too many errors (low false positive
rate). When performing this operation for a range of different threshold values and plotting the
true positive rate as a function of the false positive rate, one obtains a ROC curve. This allows to
easily identify which threshold offers the best-desired performances. Note that the choice highly
depends on the task which, in the context of GRB detection, is that no GRB is missed 20.
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Figure 38: Confusion matrix to evaluate predictions. Elements in the main diagonal are events
that are correctly predicted.

19Remember, in a binary classifier, the predicted value is a probability.
20This situation is similar to rare and dangerous diseases like Ebola. It is not a big deal if a predicted carrier

case has not the disease but if one has it, it is critical to detect it.
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11.3.1 Models

Counts (25× 60)

40× cell

40× cell

40× cell

Energy (32× 60)

40× cell

40× cell

40× cell

20× Dense

20× Dense

20× Dense

Dropout(0.2)

Output

Figure 39: Common architecture for all the
models that have been investigated. The
"cell" refers to the type of network being
tested ie. FC, RNN or LSTM.

As explained earlier, different types of neural net-
works were investigated: Fully connected neural
networks, Recurrent neural networks (RNN) and
Long Short Term Memory (LSTM). The RNN and
LSTM models are famous for their high capabilities
in analysing time series. In all cases, the model ar-
chitecture is the same, it is just the type of layer
that changes. The models have two inputs: the
counts per module and the energy histograms per
module. The output is a single neuron with the
sigmoid activation function which represents the
confidence level that a prediction is a GRB. In all
cases, the loss is set to be the binary crossentropy
(see 6.0.1). The common architecture is shown in
figure 39. The reason why the inputs are both the
energies and the counts is that it is important that
the model learns that a GRB leads typically to
higher energy depositions, so it doesn’t predict a
GRB for low energetic events.

11.3.2 Results

Figure 40: Evolution of the accuracy eval-
uated on the validation sample as a func-
tion of the training epoch. Some models are
trained for too long, which leads to overfit-
ting signs. However, the models have been
saved at the epoch where the accuracy is
the highest.

After some tests, it was clear that the models were
converging at different speeds, so a Checkpoint21

was used to assure storing the best validation ac-
curacy. The evolution of the accuracy evaluated on
the validation sample is shown in figure 40. It is
easy to see from this figure that due to its higher
accuracy on the validation sample, the model that
performs the best is the LSTM one, which confirms
the fact that those kinds of models show great ef-
ficiency for time series.
However, as mentioned above, the accuracy is not a
sufficient criterion to fully characterize the models,
it is important to build the ROC curves. Those are
shown in figure 41a, and it is clear that the model
that performs the best is the LSTM one due to the
highest AUC (being 0.940). From this graph, it
seems that to keep a true positive rate high while
having a relatively high false positive rate, a thresh-
old of ∼ 0.97. Indeed, this way a good proportion
of GRBs are predicted as so, and the proportion of
undetected GRBs stays relatively low.
It is expected that once applied to real data, a lot
of false positives will be predicted, because the real
background contains events that haven’t been sim-
ulated, like solar flares, particle-induced events (ie. when clouds of trapped charged particles
from space hit the detector and are suddenly triggering bars.), and even unknown events. Also,
the POLAR detector was turned off as it passed in the South Atlantic Anomaly (SAA) as the

21A useful Tensorflow class that allows saving the model when it performs the best.
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rate increases dramatically, which will cause a lot of false positives. Therefore, some filters will
be applied to reduce the number of uninteresting events. This complete analysis (detection,
localization and spectral analysis) is performed in chapter 13.

(a) ROC curves for the three different models
that have been investigated. The best one is the
LSTM, having an AUC of 0.940 (and respec-
tively 0.897 and 0.929 for the FC and RNN).
The grey dashed line represents the case where
the model randomly predicts 1 or 0 (a random
classifier).

(b) Confusion matrix for the LSTM model, us-
ing a threshold of 0.97. As can be seen, very few
GRB events were classified as non-GRB events.

Figure 41: Detailed comparison between the three investigated models, and the corresponding
confusion matrix (for the LSTM model).

Page 55/80



Section 12 POLAR Analysis

12 POLAR Analysis

In this section, the methods developed in sections 9 and 10 will be applied to data produced
using the official POLAR simulations. As those datasets have much more complications than
the self-made simulations (for example due to the effects of electronics), a verification of the
methods will be applied to the POLAR simulation of the unrealistic case where all the GRBs
have the same energy spectrum (but a varying SNR). The objective is to verify the methods,
but also to further develop them in order to improve the results. More specifically, different
model architectures will be compared in order to provide the best results, even though no real
hyperparameter optimization will be performed.
After this preliminary verification, the full analysis will be performed and tested on real GRB
data. The obtained predictions will be compared to the best-fit localization from POLAR to
evaluate the possibility to deploy the algorithm onboard the CSS.

12.1 Data

The official POLAR simulation software was used to simulate GRBs with various signal-to-
noise ratios, and different spectral parameters (for the complete analysis only). In order for the
simulations to be as close as possible to the real data, the background is taken from POLAR
flight data, which means that they include hot pixels (ie. bars that suddenly record a very high
rate). The distributions of the 156′212 GRB parameters for the full analysis are shown in figure
42. It should be noted that in this case, the E0 values are simulated up to 2000 keV . The
distribution for the constant spectrum analysis is the same, except that the spectrum is fixed
(there are 50′376 such simulations). Note that the distribution of GRBs in the sky is isotropic,
which explains the θ distribution.

Figure 42: Left: Distribution of the different GRB properties of the POLAR simulations. The
GRBs are distributed homogeneously on the sphere. Right: Typical hitmap from a POLAR
simulation. The modules are clearly delimited and hot pixels are also easy to visualize.

The normalization technique as used in chapters 9 and 10 have shown great results, and will
hence be used in this analysis as well. The training target will be θ and [cos(φ), sin(φ)] for the
localization model. The model that will predict the spectral parameters will have (−α + 1),
(β + 3.1) and E0−100

1000 as targets (see chapter 10.2).
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12.2 Constant spectrum Analysis

In this case, all the simulated GRBs have the same spectral parameters as GRB170114. This is
a GRB which was observed by POLAR and has a high signal-to-noise ratio making it relatively
easy to analyze. By keeping the spectrum constant, while the data are already far more complex
than for the toy Monte Carlo detector, the complexity of the problem is greatly reduced, which
makes it an ideal dataset to verify localization methods.
In order to ensure better results, two models were investigated: the fully connected neural
network and the convolutional one.

12.2.1 Architecture choice

In pursuit of having the best results, it is crucial to determine which kind of model performs the
best on this kind of dataset. Both the Fully connected neural networks and the 2D Convolutional
neural networks have shown great results and are compared in this section (their architectures
are shown in figures 58 and 59).
Since both architectures are intrinsically different, it is difficult to have points of comparison
apart from the results, so in order to regularize the process a bit, the same architecture as in
19 is used at the end of both models. Beyond that, it is clear that in order to ensure the best
results, proper hyperparameter optimization would be necessary. However, such a study will
require significantly more time than that available during this project.
Both models were trained on the same training data and targets. The loss is in both cases the
mean squared error and both models are trained with a batch size of 400 over 15′000 epochs.
Such training sessions take several days on a GPU. As before, the mean absolute error and the
angular distance between the targets and predictions on the validation sample are monitored
and their evolution is shown in figure 44. In both cases, the model has been saved at the best
validation angular distance22

Figure 43: Distributions of the angular dis-
tance between target and predictions for the
fully connected neural network and the con-
volutional one.

As it has been seen in chapters 9 and 10.1, the
mean angular distance can not be the only criterion
to decide which model is the best, so it is impor-
tant to compare their performances on the test data
as shown on figure 43 that shows the distribution
of the angular distance between target and predic-
tions on the testing sample for the two investigated
models. It is interesting to see that even though
the fully connected neural network has many more
trainable parameters than the convolutional one
(respectively 4′164′191 and 224′095 trainable pa-
rameters.), the performances are not better. An
important thing to notice is that the shape of the
distribution and the statistical quantities of the dis-
tributions are comparable to the results obtained in
the two previous chapters.

Previous analysis has shown that depending on the
geometry of the detector, some incoming directions
might be harder to predict accurately than others
(eg. GRBs coming from the poles were hard to lo-
cate accurately in chapter 9 but not particularly in
10.1). In this context, figures 44c and 44d show the correlations between targets and predictions
on the testing sample. It is evident that for both models, the pole is a region where it is hard to
get an accurate localization.

22This is obviously a naive calculation.
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(a) Quantity evolution graph for the FC NN. It
shows a short period of overfitting, after which
the model didn’t improve a lot.

(b) Quantity evolution graph for the 2DConv.
It is much more stable than with the FC
NN and the model barely improves after 3000
epochs.

(c) Correlations between targets and predic-
tions on the testing sample for the fully con-
nected network trained using the energies in the
1600 bars. The model has difficulties to predict
events coming from the equator. On the other
hand, the predicted φ values are close to the
targets (the ideal case is marked with the red
line).

(d) Correlations between targets and predic-
tions on the testing sample for the convolutional
network trained using the energies in the 1600
bars. Considerable errors are to be noted for
events coming from the equator.

Figure 44: Top graphs : Evolution of the monitored quantities as a function of the training epoch
for FC NN and the 2D Conv. Both models were saved at the epoch where the mean angular
distance was the smallest. Bottom graphs: Correlations between targets and predictions on the
testing sample for two models that were trained using the energy histogram per bar.
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12.2.2 Reduced data

After testing different kinds and architectures of models, it appeared that the different models
were taking considerable time to converge. For instance, the 2D convolutional neural network
took over three days to finish, with roughly 5000 epoch/day). The reason is largely due to the
considerable weight of the training data, and especially the energy, as there are 32 energy bins
per bar. The file containing the energies of the 50376 simulations weighs 9.7GB, whereas the file
containing the counts and target values represents only 309MB. The size of this dataset poses
a challenge as it exceeds the available RAM capacity of many personal computers.

It was therefore investigated to reduce the data size by summing all the energies by module of
8× 8 scintillator bar. This means that instead of having an array of 1600× 32 energy bins per
simulation, the data is reduced to 25 × 32 energy bins, which reduces the needed storage by a
factor of 64. The models converged significantly faster since roughly 3 hours were needed for
the models to converge. Additionally, grouping the energies helped the model to converge much
faster as the fully connected neural network shows clear overfitting signs from epoch ∼ 800, while
the monitored quantities of the convolutional model don’t seem to decrease after ∼ 3000 epochs.

Figure 45: Angular distance between target and
prediction on the test sample made by the con-
volutional model and fully connected one, both
have been trained using the energy histograms
grouped into modules. The statistical quanti-
ties refer to the convolutional one that seems to
be the best based on those criteria. The black
dashed line represents the distribution obtained
using the convolutional network trained on the
energies by bars (see figure 43)

The angular distance distribution is shown in
figures 45 and it is to be noted that there are
no big differences between the distributions,
even though the convolutional neural network
is slightly better. The black dashed line rep-
resents the distribution obtained using the en-
ergies by bars, which is the best one.
As can be seen in figure 46c and 46d that
show the correlations between target and pre-
dictions on the testing sample, both models
are providing accurate predictions on the φ
angle as it follows the red dashed line, rep-
resenting the ideal case. Both models seem
to have some difficulties to predict events at
the equator since the angular distance is big-
ger for those events. On the other hand, the
events on the zenith are rather well predicted
for both models, even though the angular dis-
tance seems to increase a bit for those events.
It is important to note that by grouping the
data, the models converged much faster, but
the interesting point is that the obtained an-
gular distance distribution is essentially the
same. The faster convergence of the models
and lower number of parameters makes it pos-
sible to test a lot of different architectures both
rapidly and at lower computational costs.
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(a) Evolution of the monitored quantities as
a function of the training epoch for the fully
connected model, trained using the energies
grouped by modules. Clear overfit signs are to
be noted from epoch ∼ 800. The model was
saved at the epoch where the "val_Angular dis-
tance" is the lowest.

(b) Evolution of the monitored quantities as a
function of the training epoch for the convolu-
tional neural network, trained using the ener-
gies grouped by modules. No overfit signs are
to be noted.

(c) Correlations between target and predictions
on the testing sample for the fully connected
model. It shows great results, even though
the angular distance increases for events at the
equator (ie. θ = π/2) and slightly at the zenith.

(d) Correlations between target and predictions
on the testing sample for the fully connected
model. Contrary to the FC model, the angu-
lar distance doesn’t seem to be increasing for
events at the zenith, but it does for events at
the equator.

Figure 46: Top graphs: Evolution of the monitored quantities as a function of the training
epochs for the two investigated models. Both are trained using the energies grouped by modules.
Bottom graphs: Correlations between target and predictions on the testing sample for the two
models trained using the energies grouped by modules.
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12.3 Deeper model

As grouping the energy data by module helped to train models much faster without penalizing
the performances, different architectures could be tested. The investigated architectures are
thought to keep a relatively low number of trainable parameters. This can be done by using
fewer neurons per layer, but more layers, making a deeper model.

Figure 47: Predictions of the deeper convo-
lutional neural network on 1000 simulations
of GRB170114A. The produced blob is well-
centred on the cross which is the best-fit
location.

In this chapter is shown a convolutional model (its
architecture is shown in figure 60) that achieved
better performances on the testing sample as can
be seen in figure 48a that compares the three con-
volutional neural networks studied in this work. It
is clear that this model is the best one since the
statistical quantities of the angular distance distri-
bution are the smallest. It is also clear from the
bottom left graph of figure 48b that this model is
better at predicting GRBs coming from high θ val-
ues (ie. cos(θ) ∼ 1), even if the error for those
events are the biggest. Consequently, this model
will be used for the complete analysis.
As a final test, it is interesting to see the predictions
of simulations of 1000 GRBs, all of them having the
same properties as angular and spectral properties
as GRB170114A. The predictions are shown in fig-
ure 47. Predictions are forming a blob centred on
the best-fit location, indicating that the simulations
are consistent with the best-fitted GRB parameter.

(a) Distribution of the angular distance be-
tween the target and predictions for the deeper
convolutional neural network. The green his-
togram is the distribution corresponding to the
model that has been trained using the energies
grouped by module, and the black line is for the
one trained using the energies per bar.

(b) Correlation between the target and predic-
tions for the deeper convolutional neural net-
work. The model is performing well, except for
events that are coming from the equator. The
φ predictions are good since very few outliers
are to be reported.

Figure 48: Detailed analysis of the deeper convolutional neural network.
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12.4 Varying spectrum

For this part, the dataset that is used is composed of 156′212 POLAR simulations, having the
GRB parameter distributions shown in figure 42. The model that has been chosen to perform
the localization analysis is the convolutional one because its angular distance distribution (see
figure 48a) was the best one. For the spectral analysis, since the models tested in chapter 10.2
didn’t show any big difference, both are investigated.

12.4.1 Localization

For this part, the model that will be used is the one that performed the best with the constant
spectrum dataset. It was trained for 2000 epochs. The evolution of the monitored quantities
is shown in figure 49a. Note that the model was saved at the epoch where the mean angular
distance between targets and predictions is the lowest.

(a) Evolution of the monitored validation quan-
tities over the training epochs for the localiza-
tion model. There seem to be some overfitting
signs from epoch ∼ 1000. The model has been
saved at the epoch where the "val_Angular dis-
tance" is the smallest.

(b) Histogram of the distribution of the angular
distance between target and predictions done
by the localization model. The obtained distri-
bution is the wider distribution ever obtained
in this work which indicates that the dataset is
complex to analyse accurately.

Figure 49: Analysis of the model evolution over the training epoch and of the resulting angular
distance distribution.

The distribution of the angular distance is shown in figure 49b and it is clear that this dataset
is harder to analyse because the mean of the distribution is at 7.35 degrees, which is the highest
encountered in this work. The reason is obvious once the correlations are studied (see figure 50).
Events at the equator are quite badly predicted since the angular distance is ∼ 0.2 rad ≈ 11.5◦.
Events at the poles also seem to be hard to predict since the bottom left graph clearly shows a
correlation between high cos(θ) values and the angular distance. The error is comparable to the
one near the equator, but more outliers are to be reported. The error seems to be independent
of φ, whose values are overall well predicted.
In order to verify the method, it is interesting to see how the model predicts a simulation of
GRB170114A (real data will be analysed in chapter 51). The scatter plot on the left shows the
predictions on 1000 simulations, all of them being generated using the same band parameters
(the ones from the best fit). Predictions are forming a blob that is close to the best-fit location,
but it is not centred on it. The result is the same for the scatter plot on the right which shows
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Figure 50: Correlation between target and values as predicted by the localization model trained
on the complete dataset. The red lines are showing the ideal cases. Big errors have to be reported
for events at the zenith and near the equator.

predictions on 5000 simulations for which the Band parameters were slightly varying from the
est fitted ones. This could indicate that the best-fit location is not perfect, but as the model have
considerable difficulties in accurately predicting the θ values, this hypothesis is very pretentious.

The same analysis as in chapter 8 can be performed in order to know if the training sample
should be increased to get better results. To do so, 8 models were trained using an increasing
fraction of the maximal training sample size. Each model is saved at the epoch where the angular
distance between the target and predictions is the lowest. Finally, all the models are evaluated
on the testing sample size and the statistical quantities of the angular distance distributions are
computed. The result is shown in figure 52 which shows both the angular distance distributions
and the evolution of their statistical quantities. It is evident that the actual training sample size
is not optimal, because all statistical quantities are almost decreasing exponentially (it forms a
line in log space). This result could have been expected. If one wants to reach an accuracy of
the order of magnitude of one degree, it means that for each square degree in the sky (∼ 40′000),
several combinations of band parameters are needed. Let’s assume O(10) different values of α
for which O(10) values of β are to be simulated, and this for O(10) different E0 values. The
resulting number of simulations to be performed is :

Nsim ∼ 40′000× 103 = 4 · 107

which is much more than what we have in this work. Note however that in this case, the SNR
doesn’t change, if several SNRs are simulated, Nsim is bigger.
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Figure 51: Predictions on GRB170114A simulations. The left plot shows predictions on simula-
tions where all the GRBs have the same parameters (defined by the best fit), whereas, on the
right, the parameters slightly vary. The resulting blobs are in both cases not perfectly centred
on the best-fit location.

Figure 52: Evolution of the statistical quantities of the distribution of the angular distance
between target and predictions on the testing sample for different models trained on an increasing
training sample size.
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12.4.2 Spectral Inference

The two models presented in section 10.2 had similar results, so it is relevant to train both of
them on the POLAR simulation. As a reminder, the output of the first model (which we will
again call Mbloc) is a vector with three components and the loss is similar to the mean squared
error but adds a penalty if the model predicts α < β and reduces the weight of the E0 prediction
by α − β (if it is positive) to take into account the fact that if α ≈ β, the power spectrum is
recovered and E0 has no meaning. The second model (which we callMsep) has three independent
outputs and the loss is the mean squared error. In both cases, the input of the models is a 32
bin histogram, obtained by summing the 1600 histograms (one for each bar).

The two models were trained using the POLAR simulations and as it can be seen on figure 53a
and 53a, the evolution of the spectral parameters is very different from what was obtained in
chapter 10.2. Indeed, for the model Mblock, there are clear signs of overfitting after epoch 9.
During this phase, the E0 MAE also increases, while the MAE on the β parameter decreases.
The three curves finally decrease but a lot of noise is to be noted on the α evolution curve. On
the other hand, for the model Msep the three evolution curves are decreasing, even though the
E0 MAE is not evolving a lot. The α MAE is also noisy but less than with Mblock. Even though
the scales of the two graphs are different, it is still clear that the model Msep has lower MAE
values.
In order to better compare the models, the correlation between the spectral parameters has to
be studied in detail, as it was done and explained in 10.2. Those are shown on figure 53c and
53d (for Mblock and Msep respectively.)
Taking into account the strange epoch evolution of model Mblock, it is not surprising that the
α parameter is badly predicted. Even if the model was saved after only 9 epochs, it managed
to learn that α should be greater than β as it can be seen in the top middle and middle left
subplots of figure 53c. It is also to be noted that the β parameter is rather well predicted only
for β ≥ −1.5 similar to what was seen in the toy MC analysis. Concerning the E0 parameter, it
seems to be rather well predicted below 1000 keV which makes sense because the sensitivity of
POLAR is between 50 keV and 500 keV .
The α predictions of modelMsep on the other hand are good since they follow the red line (which
is the ideal case). On the other hand, the β parameter is not well predicted, especially for low
values. Note however that all the β parameters are predicted smaller than α, which is good.
Concerning E0, the comment for Msep is also valid here.

Overall, and even though the β parameter is not well predicted, the model Msep is the best
because it manages to predict α quite accurately. The reason why β is hard to predict is thought
to be the same as in chapter 10.2, ie. when β is very small, the number of high energetic photon
is low, which leads to imprecise prediction. This effect is more severe with the POLAR data than
on the toy MC probably because the toy MC has only 10% of energy measurement uncertainty
(where POLAR has ∼ 40% [23]) and all the energies are measured, while on POLAR, energies
are measured by an ADC (analogue to digital converter) and very high energies are binned in the
overflow bin, which is not analysed here. The fact that the E0 is difficult to predict is also due to
the intrinsic degeneracy of the Band function. Indeed, when α ≈ β, the spectrum is essentially
described by a power-law spectrum, in which E0 has no meaning.
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(a) Evolution of the mean absolute error (MAE)
between target and predictions on the valida-
tion sample for the model Mblock. It is evident
that the evolution is not optimal as the α pa-
rameter starts to overfit while the other evo-
lution curves are essentially stable. It is only
after the overfit period that the MAE of the
other parameters starts to decrease. A lot of
noise is to be reported.

(b) Evolution of the mean absolute error
(MAE) between target and predictions on the
validation sample for the modelMsep. The evo-
lution of the E0 parameter is very subtle. On
the other hand, the α and β parameters don’t
seem to overfit. A considerable noise is to be
noted on the α evolution curve.

(c) Correlation between target and predictions
of model Mbloc. This model is clearly not per-
forming well as the α parameter is badly pre-
dicted. Nevertheless, the model always predicts
α > β.

(d) Correlation between target and predictions
of model Msep. This model predicts the α pa-
rameter quite accurately, whereas the β and E0

parameters are harder to predict. Note however
that the model always predicts α > β

Figure 53: Top graphs: Evolution of the mean absolute error between targets and prediction.
The models have been saved at the smaller mean absolute error on the α prediction. Bottom
graphs: Correlation between the targets and predicted Band parameters for the two spectral
models. The red lines represent the ideal case. The bin content has been normalized such that
they all have the same range.
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To verify the above suspicions, two filters have been applied to the correlations of model Msep

and the results are shown in figures 54a and 54b. The first filter is meant to take events where
β ≤ −1.5. Those events have well-predicted α values, bad β predictions and E0 seems to be
relatively well predicted below 1000 keV , probably because a lower β implies fewer photons but
makes it easier to predict E0 which is characterized by the knee of the Band function. The second
filter selects the events where |α− β| < 0.3. This way, and as it can be seen in figure 54b, the α
predictions are good. The β predictions are not very good because there is an offset between the
ideal case (the red line to what the model should tend) and the actual distribution. The cause
of this offset is unknown but could be caused by the fact that the training sample contains all
the possible cases, including the degenerated ones, which could create a bias. Using this second
filter makes the predictions on E0 very bad, which confirms the hypothesis of the degeneracy.

(a) Correlation between target and predictions
of model Msep, using a filter that only selects
events β ≤ −1.5. It shows that the bad predic-
tions of the β parameter are probably caused
by the low number of photons induced by the
steep power spectrum tail.

(b) Correlation between target and predictions
of model Msep, using a filter that only selects
events |α − β ≤ 0.. It shows that the bad pre-
dictions of the β parameter are probably caused
by the low number of photons induced by the
steep power spectrum tail.

Figure 54: Correlation between target and predictions of modelMsep using different filters meant
to verify the hypothesis causing the bad predictions on both β and E0.

Overall, the Msep model performs well but is limited by the intrinsic degenerate cases that the
Band function allows and its performances are thus reduced. The predictions on the energy
values above 1000 keV are thought to be caused by the lower sensitivity of the detector at those
energies. The complete analysis of real data (detection, localization and spectral analysis) will
be performed in section 13.

Rapidity Since the aim of the project is to make rapid predictions, it is good to provide
some results. The two testing samples were composed of 15′621 events and the required time
to perform predictions was 1.53s for the localization and 1.2s for the spectral analysis (model
Msep). The computation time for a single event was also computed and is ∼ 83ms. Note that
the predictions could be faster by using tools such as TensorRT, which are dedicated tools (the
speed could be improved up to 36× according to Nvidia23).

23Source: https://developer.nvidia.com/tensorrt
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13 Complete analysis and discussion

To finish this work, it is interesting to perform a complete analysis, which means detecting GRBs
with the LSTM model developed in section 11 and then analysing their location using the model
from section 12.4.1.
For this analysis, real POLAR flight data are used. Data are converted to form a time series of
counts per bar and energies per module. The data can be reshaped or grouped by modules to
be provided to the different models. A typical POLAR lightcurve is shown in figure 55 and has
been chosen because it contains two GRBs. This particular lightcurve represents almost a day
(∼ 23hours).

Figure 55: Example of a typical POLAR lightcurve. The moment when the POLAR detector
is over the SAA is easy to see due to the cutoff. Two known GRBs are in this lightcurve. The
background colour indicates the rate per module on the top graph and the rate per energy bin
on the bottom one.

13.1 Detection

The first step is to detect the signals to analyse using the LSTM model. To do so, the lightcurves
are separated into 60s lightcurves whose counts need to be grouped by module and normalized
in order for the model to make predictions on it. In the lightcurve shown in figure 55, the model
was able to detect 376 events that have a confidence level above 97%. As it was explained in
chapter 11, this high number is expected because the real background is quite different from the
simulated one as it contains other events than just GRBs. Therefore, filters need to be applied.
After some tests, it turned out that the following criteria were good filters :

• Select events only if the rate during the two previous minutes was greater than 100 (in
order to avoid events near the South Atlantic anomaly where the instrument is switched
off).

• Select events only if there is an event before having a confidence level of at least 95%. Note
that by applying this filter, very short signals are penalized.

Of course, those filters can be improved, but they gave good results on the few lightcurves that
were tested, by filtering events that had no noticeable event and by allowing interesting events.
Using those two filters, the number of triggers on the above lightcurve was reduced to 97. Note
that some events are triggered tens of times, for the simple reason that they last longer. Overall,
21 different events were recorded.
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Figure 56: Exhaustive list of the detected GRBs in the few analysed days. All known GRBs
were detected. From left to right and top to bottom: GRB161218A, GRB161218B, GRB170202B,
GRB170206A, GRB170206C, GRB170207A, GRB17020C. Events, where the predicted proba-
bility is ≥ 0.97, are shown in magenta.

The analysis of the above light curve and others was successful because all the known GRBs
were correctly detected, and all the corresponding lightcurves are shown in figure 56.
However, other signals were detected, such as the one characterized by three consecutive peaks in
figure 57. Note however that the model only classifies the first peak as being a GRB. Interestingly
enough, this signal has the same shape as a GRB but no GRBs were reported at this time. This
however does not mean that this is not a real GRB, this has to be confirmed with follow-up
studies. Other examples are the ones where the rate increases from a few thousand to tens of
thousands in less than two minutes (the lower one in figure 57). After an internal discussion24

and a short analysis, it was clear that this signal was not caused by induced particles. Indeed,
the typical characteristic of such an event is that a row (or a column) of bars is triggered, which
was not observed. Additionally, the spectrum of this event was too energetic to be only due
to the background or solar flares. It is to be noted that long signals are only detected at their
beginning, which is certainly due to the fact that by training the model on 60s lightcurves, a
clear bias is introduced towards the detection of GRBs having a duration of tens of seconds or
less.

13.2 Localization and spectral analysis

Once the signals are detected, they can be located, by using the deeper model of chapter 12.4.1.
To do so, the counts per bar and the energy histograms need to be integrated over the full GRB
duration, and normalized (ie. all values should be divided by the maximal count value of the
training sample). However, by doing so, it is clear that the normalization that was used was not
optimal, because if the analysed GRB is long, the maximal count value can be bigger than the
one in the training sample. As a result, the predictions are completely wrong (one of the θ values
was a few tens of thousands, which makes no sense). To get around this problem, the counts

24Merlin and me
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Figure 57: Three examples of GRB candidates detected during the lightcurves analysis. Other
ones could easily be found by applying the model to the whole mission duration.

will be divided by the maximal value of the true GRB, which guarantees that all the values are
between 0 and 1. Obviously, this is not optimal. For the spectral analysis, this method was
also used, but it always provided the same results, which means that the model is not predicting
anything interesting. This analysis must hence be improved in order to be tested on real data.
In order to be constant, the counts will always be integrated from T90/2 seconds before the burst
to T90/2 seconds after the end of the burst, where T90 taken from the GCN25 reports.
In table 1 we show the predicted location and spectral parameters for different GRBs (all of
them have been detected by the LSTM model).

GRB θp/φp θt/φt Ang.Dist.
GRB161218A 43.2/356.8 24.3/356.6 18.9
GRB161218B 79.1/209.8 77.8/252.2 41.5
GRB170202B 90.1/185.5 - -
GRB170206A 68.1/174.0 19.5/148.7 50.8
GRB170206C 85.0/195.46 - -
GRB170207A 85.8/334.5 70.6/357.8 27.33
GRB170208C 107.3/271.6 93.2/310.0 40.2

Table 1: Table of predicted location for the detected GRBs. All values are in degree

The number of detected GRBs is too low to perform any statistical analysis, but it is still
possible to see that overall, the predictions have large errors. This is partly due to the fact that
the model was trained with shorter GRBs. Generally, however, these first results look promising
and prompt to continue such studies in the POLAR-2 collaboration.

25url: https://gcn.gsfc.nasa.gov/
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14 Discussion

14.1 GRB detection

This analysis was quite successful since for all the analyzed lightcurves that contained known
GRBs, the model was able to detect them. However, a large number of events that looked like
GRBs were reported. Since they haven’t been yet properly analyzed, it is difficult to make a
clear conclusion. If they turned out to be GRBs that were not detected up to now, that means
that the model is better than the current methods, which is a pretentious assumption. On the
other hand, if those events are caused by the background, it means that the filters have to be
improved in order to have a reasonable number of triggers per day. This is very important since
the aim of this work is to build a reliable alert system, and hence, sending false positive alerts
should be avoided. In this context, an additional model that classifies an event in different classes
(eg. GRB, Background, solar flare, particle-induced events, etc. . . ) is a good idea. This however
requires a very good knowledge of which events constitutes the background as they need to be
simulated to provide an exhaustive training sample. It would also be interesting to see if the
model that was trained on using bins of 1s can make accurate predictions on lightcurves having
bins of smaller time intervals.
Overall, this analysis showed great results, which were verified by discovering interesting events
that could be GRB candidates as they looked like GRB signals, but no alert was reported by
any other instrument in the past.

14.2 GRB localization

The analysis of the complete dataset showed that this task is not easy and needs to be improved
if one wants to analyse GRBs directly on the CSS.
The reason is that real GRBs are more complex than the simulation since they can be very long.
In order to properly analyse them, they should be normalized independently, and the length of
the GRB should not be an issue. A good idea would be to centre and normalize the counts per
bar (i.e. to each count per bar, subtract the mean and divide by the standard deviation of the
hitmap). This way, the localization analysis is based on the relative counts per bar and not on
the absolute count per bar (dividing the counts by the maximal value only changes the scale).
The few real GRBs that were analysed were quite badly predicted, mainly due to a big error on
the θ angle. As it was explained in 3.2, the hitmap can be similar for a soft GRB coming from a
low θ value (close to the zenith) as a harder GRB coming from a larger θ value. Consequently,
all the models used in this work (and trained on POLAR data) were having difficulties to analyse
events coming from the equator. It doesn’t seem to be an artefact due to the convolution since
this effect was also present by using fully connected neural networks. This could also be induced
mathematically, but it is less probable since Additionally, the effective area of POLAR is strongly
reduced for cos(θ) < 0.4 [30], which can also explain why GRBs coming from θ ≈ π/2 are harder
to predict accurately. Finally, it is clear from figure 52 that the training sample size must be
increased in order to have better results. Rough calculation showed that a training sample size
of O(107) would be appreciable.
Overall, the localization analysis showed interesting results on the real POLAR data, it is clear
that more work is needed to achieve a sub-degree level of accuracy. Indeed, a better normalization
method has to be defined and more importantly, a proper hyperparameter optimization has to
be done in order to ensure better results. Note that more models could be tested by reducing
the data size as the results are similar while reducing the training time.
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14.3 GRB Spectral analysis

This analysis is by far the most unsuccessful one since it was not possible to test it on real data,
which again motivates the search for a clever normalization method. Nevertheless, using the
POLAR simulations, the best model (Msep) showed that the degenerates cases that the Band
function allows (eg. when α ≈ β, the function is essentially a power spectrum, in which case E0

has no meaning.) are very hard to analyze. This was proven by using filters that showed that if
β is very small, the number of high energetic photons being detected is low (due to the steepness
of the power spectrum), which leads to a poor prediction on β, but a better prediction on E0

since it is characterized by the knee of the power spectrum. This effect was more important on
the POLAR data than on the toy MC simulations because POLAR has an energy measurement
uncertainty of ∼ 40% (10% for the toy MC) and high energy measurement are placed in the
overflow bin (which is not the case for the toy MC detector). A second filter, selecting GRBs
for which |α − β| < 0.3 showed that for those events, the β prediction was better, even though
they were not ideal since a clear offset between the obtained distribution and the ideal case was
reported. In this case, the E0 predictions are poor. This analysis leads to the conclusion that
the Band function does not always describe a GRB power-law spectrum in a way that is easy to
analyze with deep learning.
Even though a proper analysis hasn’t been performed, it is highly probable that to achieve better
results, more simulations need to be done.
Overall, this method showed that analyzing GRB spectra using a Band function is a difficult task.
Additionally, a proper normalization method would certainly improve the results and definitely
allow testing the model on real data, which was not possible in this work.

14.4 HAGRID in space ?

It is clear that in its current version, the analysis method is not well suited for a space application
due to the results not being satisfactory or enough to justify its installation on the CSS.
Nevertheless, the method is promising since with an insufficient amount of training data, the
models were able to predict relatively the location of the simulation. The method needs to be
improved to analyze GRB location and spectral parameters reliably.
There are very good elements that justify further investigation to use deep learning for the
localization and spectral analysis of POLAR-2. Since this detector will be much more sensitive
than POLAR, it should be able to achieve better results with a similar training sample size
as the one used in this work. Additionally, deep learning is by nature well suited for alerts
applications since once the model is trained, predictions can be done in a few milliseconds and
at low computational costs, which is much shorter than the χ2 method that is currently being
used (which takes several seconds).
Note however that part of the method could be implemented in the POLAR-2 mission relatively
easily. Indeed, the GRB detection method showed great results and it is both reliable and
rapid. Note, however, that to ensure better results, the background should be simulated in a
more conscientious way than what was done in this work. Another idea could be to take real
background lightcurves and artificially add GRBs.
Overall, besides the GRB detection model that could be implemented relatively easily, the local-
ization, and spectral models should be improved.
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15 Conclusion

The goal of this work was to investigate the feasibility of rapidly and accurately inferring the
location and spectral parameters of an incoming GRB.

Using simulations, proper analysis techniques and a strong intuition could be developed. Those
methods were applied to POLAR simulations that provide a training sample of 156′212 GRBs, all
of them having different incoming directions and spectrums, characterized by the band function.
The localization analysis showed good results on the simulations as the mean angular distance
between targets and predictions on the testing sample was 7.35◦. Different model architectures
were investigated and showed that convolutional neural networks are showing good potential to
accurately analyse GRB incoming direction as they seem to be more accurate than the fully
connected neural networks for some specific angles, like the zenith (θ = 0). It was also shown
that reducing the data sizes by grouping the data into modules of 40 × 40 bars can help to
make better predictions and to reduce the training time, which could allow more models to be
investigated.
The test performed on real GRB data showed that some methods used in this work were not
optimal as they are rate-dependent. All the GRBs on which predictions were made were located
up to ∼ 50◦ off the best-fitted location. To increase the accuracy, it is thought that a training
sample size containing at least 10− 100 times more GRBs should help.

The spectral analysis showed that the Band function is not always the best way to describe a
GRB spectrum. The reason is that due to the degenerates cases of the band function (ie. when
α ≈ β), the model doesn’t manage to make predictions on the energy, because this quantity
has no meaning in this case. It was also reported that for GRBs having very low β values, the
predictions on β were very poor due to lower statistics, but also to the fact that high energy
measurements are placed in the overflow bin, which is not analysed.
The model has not been able to be tested on the real data due to the normalization method that
was not optimal.

The part of this work that showed the best result is the one that was originally not planned:
GRB detection. Using POLAR simulation and rather simple lightcurve simulations, which were
used by an LSTM (Long Short Term Memory) neural network. This model was tested on
real POLAR lightcurves, which showed great results since all known GRBs were detected by
the model. Additionally, numerous GRB candidates were detected indicating that the model
performs well.

Overall, to rapidly analyse GRBs on the CSS (China Space Station), deep learning models are
thought to be an option with a lot of potentials as this method allows to make predictions in
a few milliseconds. Detecting GRBs onboard the CSS is a task that would not require much
improvement from the current state. On the other hand, accurately locating an incoming GRB
and reconstructing its spectral properties would require more work.
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Figure 58: Architecture of the fully connected neural network used on POLAR simulation. This
model was trained using the energy histogram by bars which implies that the number of trainable
parameters is considerable.
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Figure 59: Architecture of the convolutional neural network used on POLAR simulation. This
model was trained using the energy histogram by bar.
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Figure 60: Architecture of the deepest convolutional neural network used on POLAR simulation.
This model was trained using the energy histogram by module, which accelerated the training
process.
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