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Chapter 1

Introduction

Cancer is one of the leading causes of death worldwide and the number of

new cases is on the rise globally [1]. Diagnosing, staging, and follow-up of

various malignancies, as well as the planning and monitoring of cancer treat-

ment, have commonly been linked to anatomic imaging with magnetic reso-

nance imaging (MRI) or computed tomography (CT). These anatomic imag-

ing modalities provide essential details that are useful for guiding surgical

intervention and radiotherapy. On the other hand, they have limitations in

their ability to characterize tissue reliably as malignant or benign and cannot

demonstrate abnormal metabolic activity in organs that as yet do not show

an abnormal appearance based on morphologic criteria [2]. That is why, to

accurately discriminate benign from malignant tissues, the nuclear medicine

community has developed positron emission tomography (PET). The aim of

the TT-PET project (Thin Time-of-Flight PET) is to develop a PET scanner

with a very high time resolution. Enhancing the time resolution of a typical

PET scanner allows to determine with higher precision the position of the

malignant tissue. With PET we measure the activity of an injected radionu-

clide similar to glucose, such as the Fluorine-18-deoxyglucose (FDG). This

technique is based on the fact that malignant tissue typically exhibits signifi-

cant increased rates of glucose metabolism. FDG, having a similar behaviour

to glucose, is actively transported into cells mediated by a group of struc-

turally related glucose transport proteins so that we can find tumour cells on
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the basis of the number of glucose transporters ([2], [3]). In this way, PET pro-

vides imaging of the whole body distribution of FDG, thus highlighting the

markedly increased metabolic activity of tumour cells. A whole-body FDG

PET scan of a patient with cancer is shown in Figure 1, where the dark spots

represent widespread metastatic.

FIGURE 1.1: A whole-body 18F-fluorodeoxyglucose PET scan
(injected activity 370MBq) of a patient with cancer, showing
widespread metastatic disease (dark spots). The scan took 14
minutes to acquire (7 overlapping bed positions to cover tho-
rax and abdomen, 2 minutes per bed position), with imaging

commencing 60 minutes post-injection [4].

The FDG is not absorbed only by cancer cells but can accumulate in any

areas of high rates of metabolism and glycolysis. Therefore, increased uptake

can be expected in all sites of hyperactivity at the time of FDG administra-

tion, at sites of active inflammation, and at sites of active tissue repair. FDG
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also is used diagnostically in conjunction with blood flow tracers to evaluate

cardiovascular disease (myocardial viability, coronary artery disease). In the

brain, PET is used diagnostically in a range of neurodegenerative diseases

(Alzheimer’s disease, Parkinson’s disease) and dementia, for epilepsy, neu-

rodevelopmental disorders and in psychiatric disorders [4]. Many other PET

radiotracers are used for research studies and are being developed for fu-

ture clinical use. They are first evaluated in animal models using a dedicated

animal PET scanner. The experience gained with the construction of the de-

tectors at the CERN Large LHC Hadron Collider has been transferred into

medical physics applications, PET is one of them. In the TT-PET project, thin

semiconductor detectors in combination with a very fast reading electronics

and very low background noise, developed for the LHC ATLAS experiment

[5], are proposed for the realization of the PET system with high precision

and will be shown in this thesis.

1.1 Organization of the manuscript

This manuscript is composed of 5 parts. In the next chapter we will present a

general overview on the PET techniques and benefits for the human health-

care. Chapter 3 is dedicated to the description of the TT-PET scanner and the

construction of the detector, giving the main physical characterisations. In

Chapter 4 the performance analysis of the detector will be presented. Chap-

ter 5 will focus on image reconstruction. Finally in Chapter 6 I will summa-

rize the results achieved with the thesis.
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Chapter 2

Positron Emission Tomography

Positron emission tomography (PET) is based on the detection of back-to-

back γ rays coming from the annihilation of a radio-emitted positron with an

electron of the surrounding matter. Small amounts of radioactive materials,

called radiotracers, are used to map the metabolic activity of the body. A ra-

diotracer is composed by the carrier and the radionuclide. The first one is a

molecule with the biological function of transporting the radionuclide to the

zone of interest. The second one is an unstable atom that allows the tracking

of the radionuclide in the body, through the use of appropriate instrumenta-

tion.

PET is one of the major techniques for tomographic imaging in modern

nuclear medicine. Tomographic images are 2-D representations of the struc-

tures that are within a particular plane of a 3-D object. Modern Computed

Tomography (CT) techniques, including PET, use detector systems placed

around the object in order to obtain many different angular views (projec-

tions) of the object. From these projection data it is then possible to recon-

struct images of selected planes within the object of interest using mathe-

matical algorithms. The process of reconstructing the images from multiple

projections obtained by detecting the emissions from radionuclides within

the body is known as emission computed tomography (ECT).
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2.1 Positron Emission

In radioactive decay by positron emission we indicate the process in which, a

proton (p) in the nucleus is transformed into a neutron (n) with the emission

of a positron (e+) and an electronic neutrino (νe). The positively charged

electron—or positron (β+)—and the neutrino are ejected from the nucleus.

Schematically, the process is:

p→ n + e+ + νe (2.1)

The PET tomography uses positron emitting radionuclides in order to ob-

tain the production of the back-to-back γ rays. After the source decay the

emitted positron loses its kinetic energy interacting with the surrounding

matter until it comes to rest, usually within a few millimetres from the de-

cay site. Near the end of its path the positron annihilates with an electron

and in this process are produced two back-to-back γ rays that have identical

energies, 0, 511MeV if annihilations is at rest.

FIGURE 2.1: β+decay mechanism that lead to the production of
the two γ rays detected by the PET.

The detection of the two prompt γ rays in the PET scanner allows the
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localisation of a line between the two detectors (line of response) in which

the two rays have been produced. This mechanism is know as annihilation

coincidence detection (ACD). Due to the granularity of the detector the line

of response is not a simple line, instead what is defined is the volume from

which they are emitted.

Coincidence logic is used to analyse the signals from opposing detectors.

A coincidence event is assumed to occur when two events, with given char-

acteristics, are recorded within a specific coincidence timing window. The

timing window is necessary to take into account the different distances trav-

eled by γ rays before being detected as well as the finite timing resolution of

the PET scanner.

2.2 Basics Concepts about PET reconstruction

With the aim to have a simpler approach to the basic concepts used in PET

imaging a one-dimensional configuration shown in Figure 2.2 has been used.

In this case data are collected with a detector, a gamma camera, fitted with

a parallel-hole collimator. While using this configuration provides a good

example for explaining many PET features, it is important to point out that

the configuration is different from the one used in TT-PET project. The col-

limated detector is assumed to accept radiation only from a thin slice direct

perpendicular to the face of the detector. This slice defines the line of response

for the collimator hole.

The sum of the counts recorded for each collimator hole measures the

activity along the line of response. This quantity is called line integral for

the line of response and a full set of line integrals is called projection profile.

Detectors acquire a set of N projections at equally spaced intervals around

the object of interest, then the 2-D distribution of activity is reconstructed

using mathematical algorithms.
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FIGURE 2.2: Cross-section of the response characteristics of an
idealized gamma camera. Image taken from [4].

One of the most important steps in the image reconstruction algorith pro-

cess is building the sinogram. A sinogram is based on line integral and Radon

transform. When considering an object represented by a two dimensional

function f (x, y) it is convenient to introduce a new coordinate system, (r,s),

that is stationary with respect to the detector. If the detector is rotated by an

angle φ with respect to the (x,y) coordinate system of the scanned object, the

equations for passing from a coordinate system to the other are:

r = x cos φ + y sin φ (2.2)

s = y cos φ− x sin φ (2.3)

In this way we obtain an object represented by a two dimensional func-

tion f (x, y) and each line integral by (φ, r) parameters. Using equation 2.2
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and the delta function is now possible to express the relationship of line in-

tegral Pφ(r) as:

Pφ(r) =
∞∫
−∞

∞∫
−∞

f (x, y)δ(x cos φ + y sin φ− r)dxdy (2.4)

The function Pφ(r) is known as the Radon transform of the function f (x, y).

A projection is then formed by combining a set of line integrals. The full set

of projection data is displayed as a 2-D matrix p(r, φ), the representation of

this matrix in called a sinogram, Figure 2.3.

FIGURE 2.3: A set of 1-D projection profiles mapped in a 2-D
sinogram. Image taken from [4].

2.3 Time-of-Flight PET

These type of PET scanners use the information about the time at which

the coincidence γ rays are detected by the scanner to determine the location

where the annihilation occurred along the line between the two detectors.
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FIGURE 2.4: The addition of time-of-flight information con-
strains the back-projection of data along one particular line to a

smaller region of the reconstructed image matrix.

Given the arrival times of the two γ rays and their difference, ∆t, the

location of the annihilation event, with respect to the midpoint between the

two detectors is:

∆d =
∆t× c

2
(2.5)

We can find the expected TOF resolution from the full width at half max-

imum (FWHM) of the distribution of the time difference between the times

of arrival of the two coincidence γ rays. The TT-PET project aims to obtain

a time resolution of 30ps. According to equation 2.5 reaching the project’s

goal for the time resolution would mean to achieve a depth resolution of less

than half a centimeter. The convenience of using TOF detectors is shown in

Figure 2.4. We consider the case of a pair of γ rays emitted by a source and

detected in coincidence by opposing detectors, A. In B is shown the conven-

tional back-projection case, where no time information in known. The prob-

ability distribution is uniform and the particles could have been originated
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in any of the pixels in the line of response. When time-of-flight information

is added, C, the probability distribution follows a Gaussian centered on the

pixel that has the highest probability of being the one in which the annihila-

tion occurred. The timing resolution of the detector gives us the FWHM of

the distribution.

It is possible to see how the TOF technique helps in finding the true origin

of the annihilation by comparing the results obtained by a PET detector that

does not have a TOF reading system and another one with TOF information.

In Figures 2.5 and 2.6 a traditional PET is shown. For each pair of γ rays is

associated a line of response. The points where the lines cross each other are

candidate emission points. It is evident that reducing the lines of response to

segments reduces the noise and thus is easier to locate the radiation source.

FIGURE 2.5: Some line of responses obtained by a PET detector
without ToF.

FIGURE 2.6: Adding time of flying information reduces signifi-
cantly the number of fake coincidences.
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Chapter 3

TT-PET Scanner

The aim of the TT-PET (Thin TOF-PET) project is to develop a novel compact

TOF-PET scanner for small animals, based on fast silicon detector featuring

30 ps time resolution, intended to be inserted in an existing commercial MRI

scanner. This value is well beyond the state-of-the-art for time-of-flight PET

systems [6], and is obtained with a radically different approach compared to

traditional scanners.

The TT-PET project started on March 2016 involving the department the

physique nucleaire et corpuscolaire (DPNC) of the University of Geneva,

the Geneva Cantonal Hospital, HUG, and the Laboratory for High-Energy

Physics (LHEP) of the University of Bern and is developed in collaboration

with CERN, the Department of Physics of the University of Rome Tor Ver-

gata, the INFN and IHP Microelectronics.

3.1 Scanner Layout

The scanner and its supporting mechanics are designed to be placed inside

the removable RF-coil of the nanoScan 3T MRI machine [7]. While all the

readout electronics and power supplies will be located outside of the MRI

machine, and connected using long flat shielded kapton cables. This configu-

ration is done to remove sensitive electronics from the magnetic fields inside

the MRI machine, making shielding and cooling simpler. The design of the
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TT-PET scanner is shown in Figure 3.1, the scanner is divided in 16 tower

modules and 16 cooling blocks arranged in an alternating pattern. Each

tower module is composed by a stack of layers of high-Z photon-converter

and 100 µm think silicon sensors, the result is a scanner with 0.5 × 0.5 ×

0.2mm3 granularity with precise depth-of-interaction measurement. The main

feature of the detector is to combine high granularity to a fast time response.

The high time resolution is achieved by using thin silicon layers.

FIGURE 3.1: Scanner overview

The scanner has a total length of 4.8 cm, an internal radius of 1.8 cm and

an external radius of 4.2 cm. The active part of the detector ring is made of

the 16 wedge-shaped units called towers (Figure 3.1) and each one of these

towers is composed by:

• 60 detection layers of three different sensor widths (7,9,11 mm).

• Each detection layer is made of 50 µm thick converter layer, a 55 µm

thick flex layer (for signal transmission and sensor control) and a 100

µm thick silicon layer (Figure 3.2)
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• Each silicon layer is formed by two 2.5 cm long chips like shown in

(Figure 3.5). The active area of the chip is segmented in detection pads

of 0.5× 0.5mm2.

The three chip types differ in the number of pads, the total number of read-

out channel in the scanner is 1’474’560. The geometrical acceptance of the

scanner has been studied with a Monte Carlo simulation for 511 KeV γ-rays

produced in a point at the center of the scanner and isotropically emitted.

The resultant geometrical acceptance is 78% [8].

FIGURE 3.2: View of one of the cells of the detector.

FIGURE 3.3: Cell dimension compared to 2 cents coin.
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Every tower module is separated from the next one by a cooling block

in order to maintain constant the temperature of the detector. The silicon

sensor system generates around 20 mW/cm2 of heat; to deal with this heat

production a cooling plate has been implemented in the inner-cell gap. The

plate is made by 3D-printed A1− nitride, this material has been chosen for its

relatively high thermal conductivity (20 Wm−1k−1) and for the possibility of

operating inside an MRI. The result is a very stable and homogeneous overall

detector temperature, with expected stability at the order of 0.1◦C. This is

crucial because the detector temperature is directly linked to its performance.

3.2 Detection layer

The basic detection element is the module in Figure 3.2. Each module is made

of a 50 µm lead layer, which is the converter of the photons in electrons. The

thickness of this layer was kept as low as possible in order to have a good

ratio between the probability from the photons to be converted by the lead

and the probability of the outgoing electron to not be absorbed by the lead

layer and reach the sensitive part of the module. The necessity of thin lead

layer but together with the necessity to have a sufficient stopping power to

be able to convert a significant percentage of the incoming photons has led to

the developing of the final design of the towers that consists of 60 thin layers

stacked together (Figure 3.1). After the lead converter layer a 50 µm dielectric

spacer layer was placed in order to keep the sensor capacitance small. Finally

there is a 100 µm monolithic silicon layer that is the sensitive part of the layer.

The different parts of the single detection element are glued together by a

5 µm double-sided coated tape. The efficiency of a single element for 511

KeV photons is 0.6%. Each layer is made by two chips, bump bounded on a

module flex, these modules are then combined five by five in a super-module.

Each super-module is connected with his own data flex for data readout.
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The whole tower is composed of twelve super-module and has a detection

efficiency of 27% for photons of the same energy arriving perpendicularly at

the centre.

FIGURE 3.4: Representation of two consecutive detection layers

3.2.1 The Monolithic Pixel Sensor

The development of the monolithic pixel sensor has been one of the main

challenges of the project because, traditionally, silicon pixel detectors focus

on accurate position measurement instead of time resolution measurements.

The target 30 ps sensitivity for 511 KeV photons represents an improvement

of around two orders of magnitude compared to the existing monolithic sil-

icon pixel sensors. Reaching this goal has required to push the limits in the

detector design, in the electronics technology and design and to take advan-

tage of the physical properties of the sensor. The time resolution of the de-

tector depends mainly on the performance of the amplifier. To achieve the

challenging time resolution required by the TT-PET, the sensor uses a high

frequency Si-Ge BiCMOS technology for signal amplification and digitaliza-

tion. An additional challenge has been to reach these goal with a monolithic

structure, so with both sensor and electronics integrated in the same chip.

The convenience of having a monolithic sensor with integrated front-end,
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time to digital converter (TDC), logic and serializer is that semplifies inter-

connections, which is a fundamental characteristics for a compact scanner.

The 500x500 µm2 area pixel are organized in matrices of different dimen-

sions, from 18× 46 to 26× 46, depending on the chip size. The pixel size is

a compromise between input capacitance, space resolution and power con-

sumption. The small pixel size was selected to reduce noise, by reducing the

pixel capacitance, and to remain within the power budget of the scanner, that

is set by the cooling system. In addition the quality of the images produced

by the scanner would not benefit from smaller pixels since a PET image has

an intrinsic resolution of about 500 µm ([9]). A demonstrator chip containing

a 3× 10 pixel matrix , (shown in Figure 3.5) was realized and tested with ra-

dioactive sources and in the SPS beam test facility at CERN [10]. The results

showed full effective operation for MIP and state of the art time resolution.

FIGURE 3.5: Layout of the TT-PET demonstrator chip, with a
3x10 pixel matrix.

3.3 Read-out System

The read-out system is one of the main factors that could influence the count-

ing rate capability of the scanner. In addition it also dictates the capability of

the scanner of avoiding saturation and the loss of coincidence events, this

will be explained in detail in the next chapter. The read-out system, or data
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acquisition (DAQ) system, has been designed to be scalable, that is why it

has a modular structure. Since the TT-PET scanner is intended to be placed

inside an MRI, the daq system was structured so that the electronic compo-

nents are kept outside of the bore of the MRI to avoid interference with the

magnetic fields. The daq system is divided in three different stages [11] as

shown in Figure 3.6.

FIGURE 3.6: Overview of full data aquisition chain of the TT-
PET scanner, showing from left to right; Central Trigger Pro-
cessor (CTP), Versatile Link Demo Board (VLDB), and TC Main

board.

To reduce the number of flex cables that connect to the scanner the 60

layers of a tower are grouped in 12 super-modules of 5 layers each. From

the super-modules the signal is sent, via shielded kapton flex cables, to the

Tower Control (TC), which is the first stage of the daq system. The Tower

Control boards organise the event data and associate them with a clock cycle

identifier (ccID) which is sent to the Central Trigger Processor (CTP) for com-

parison. The CTP is a large powerful commercial FPGA board that is the last

stage of the daq system and controls the whole daq chain. Here is where coin-

cidence checks are performed and if the ccID values for the recorded events

pass the coincidence trigger, the full event data to be sent along the full daq

chain to the CTP

The second stage of the daq system is a multiplexer board, named, Versa-

tile Link Demo Board (VLDB) which accepts electrical signals from multiple

TC boards and multiplexes their output to a single bitstream before being
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buffered and converted to an optical signal. The multiplexed data is then

sent to the CTP using a single data link and fiber optic cable at a maximum

link speed of 4.28 Gbps.
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Chapter 4

TT-PET Scanner: Expected

Performance

The expected performance of the TT-PET scanner has been estimated using

a GEANT4 [12] simulation designed following the NEMA procedure [13].

This procedure defines a standardized methodology for evaluating the per-

formance of positron emission tomography (PET) designed for small-animal

imaging. The main target of our study is to measure the capability of the de-

tector to accurately select the coincidence events while reducing as much as

possible the background noise. We can say that a coincidence event happens

when two particles hit the detector within a selected time window. The time

window opens when the first particle arrives in the detector, if one or more

signals arrive during this period we will have a coincidence, or a multiple

coincidence. Selecting the correct time window value is crucial for this anal-

ysis because a small value will cause a significant loss of real coincidences

while a large value will increase the noise in the measurement generated by

random coincidences. The coincidences that we detect are not all of the same

type, on the contrary, they depend on several factors like the origin of the

γ rays, the path that they have taken before entering the scanner and what

happens to them inside the scanner. Different type of coincidence events will

be analyzed hereafter. Consequently it is important to define those events in

detail before further proceeding with the analysis of the performances of the
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scanner.

4.1 Scanner simulation

The simulation of the performances of the TT-PET scanner was performed

using the GEANT4 software. The simulation provides hit information in

terms of position, time and energy deposit in the silicon sensor. A cus-

tom software was developed to process the information obtained from the

GEANT4 simulation.

In developing this custom software several effects were taken into ac-

count. To represent the exponential decease of the intensity of the source

the time interval between two disintegration was distributed as e−It, with I

represents the intensity of the source. Another important correction was to

assign the real position of the hit to the centre of gravity of the pixel. This

is because with the simulation we have precise information about where the

particle was detected, while in reality we will only know in which pixel the

particle was detected. A further effect to consider is the dependance of the

time resolution on the energy deposit Edep in the sensor, which is propor-

tional to the charge collected. To do so we applied a gaussian smearing to

the true signal with a standard deviation parametrised according to an en-

ergy dependence as in Equation 4.1:

σt = σ0
t ∗

EMIP
dep

Edep
(4.1)

Where for σ0
t we used the value of 106 ps that was measured in [14], and

EMIP
dep is the most probable energy-deposit value for minimum ionising par-

ticles passing through 100 µm of silicon. Finally the custom software takes

into account the geometry of the TT-PET scanner and all the different type of

coincidences that we have, to ensure the possibility of an accurate analysis of
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our results. To take into account the count losses, the dead time due to the

data transfer from the modules to the tower control, and from the latter to

the PC, have been taken into account.

The expected TOF resolution was studied analysing the distribution of

the TOF between two hits in coincidence, as described in [8]. The full width

at the half maximum (FWHM) of this distribution was 80 ps, from this value

we obtain a standard deviation of 34 ps. Considering that a coincidence event

is triggered by two detector, if we assume that the response of the two detec-

tor is the same we can find the time resolution of a single detector simply by

dividing the previous value by
√

2. The result is that the expected time reso-

lution of a single detector is 24 ps which is coherent with the time resolution

goal of 30 ps.

4.2 Type of Coincidences

In order to study the sensitivity of the detector we can divide our events

based on the γ rays’ path before and after entering the scanner. The main

difference among the events that we can detect in a PET scanner is based on

where the two γ rays came from before reaching the sensor. There are four

main different types of events: true, scattered, random and multiple events.

Once the particle enters the scanner it can behave in different ways, we can

collect these informations and use them to further classify the events on the

basis of those differences.

4.2.1 True, Random and Scattered Coincidences

As seen above, four main different types of possible coincidences for PET

scanners exists: true, scattered, random and multiple (Figure 4.2.1). A true

coincidence (Figure 4.2.1A) occurs when the γ rays do not have any interac-

tion while traveling from the annihilation point to the detection point. This
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is the type of coincidence that carries the correct information about the anni-

hilation point, that is why we will focus on maximizing the number of true

coincidences detected while keeping the other types as low as possible. A

random coincidence (Figure 4.2.1C) occurs when two γ rays not produced

in the same annihilation are detected within the coincidence time window of

the system. We have a scattered coincidence (Figure 4.2.1B) when at least one

of the γ rays undergoes to at least a Compton scattering during its path to

the detector. Random and Scattered coincidences effect the precision of our

reconstruction because they cause a wrong LOR to be assigned to the event.

FIGURE 4.1: PET coincidence event types: true, random, scat-
tered and multiple coincidences.

Multiple coincidences events (Figure 4.2.1D) are those coincidences for

which more than two γ are detected within the coincidence time window.

Since in this situation it is not possible to determine the LOR to which the

event should be assigned those type of events will not be considered in our

analysis.
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In addition it is possible to divide our events in different categories also

based on what happens to the incoming γ rays after they enter in the detector.

A γ ray, in fact, can interact in different ways with the material in it. Ideally

the γ ray will be converted and detected by one of the 60 layers of one of

the towers. This case will be considered as a normal event and will have no

further classification. However a couple of different cases can happen. The

first one is the one in which the charge generated by the converted electron

will be collected by more than one sensor, in this case we talk about shared

charge events. The second one is when the γ ray, after leaving a signal in a

layer is scattered and reaches an outer layer inside the tower, thus generating

two signals.

Finally lost coincidence are those events that are registered in the recovery

time of the read-out. Since they occur in the dead time of the read-out we also

refer to them as dead time coincidences. Those events become significant

when the intensity of the incoming radiation increases. We have design the

detector to keep this kind of events as low as possible.

4.2.2 Noise Equivalent Count Rate

The noise equivalent count rate (NECR) is used to estimate the number of

true counts acquired per second exempt of scattered and random coinci-

dences and contribution from the intrinsic radioactivity of the system. This

quantity gives important information about the capability of a detector to

have a clear reading of the true events. Noise equivalent count ratio is de-

fined by the following equation:

True2

(True + Random + Compton)
(4.2)
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4.3 Time Coincidence Window

It is important to study how the data rates are effected by time coincidence

window values because different values of the time coincidence window

could change the sensitivity of the detector to lost coincidences. This con-

sideration is also valid for Compton and random events, it is easy to expect

that if we set an higher value for the time window we will detect more of this

events.

FIGURE 4.2: The plot shows the evolution of True, Random,
Compton and NECR events rate for different time window val-
ues. If we focus on NECR rate we see a peak round 300 ps, we
don’t see a deterioration in the rate value after this value. In
addition, we see that Compton and Random rates values are
low compared to the True events rate, this means that the back-

ground noise is low.

The crucial result that we obtain from this study is the value for the time

window at which we minimize the losses of true events. This is important

because we will use this ideal value for the time window when we will mea-

sure the variation of the rates in comparison with the variation of the inten-

sity. The precise purpose of this operation is to find the value of the time

window for which we have a drop in the true coincidence rate, so that we
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are sure to operate above this value. Since the random events decrease lin-

early with the time window this step will allow us to minimize the random

coincidences detected while avoiding the loss of a significant fraction of true

coincidences.

For this simulation we have used a mouse-like phantom made of a solid

cylinder of high density polyethylene 50 mm long and 25 mm in diameter, as

described in NEMA procedure for a mouse like phantom, but with reduced

length to reproduce the exact dimensions of our detector. The radionuclide

used is 18F and is placed in a 3.2 mm cylindrical hole parallel to the central

axis at the radiance distance of 10 mm. The intensity of the flour source is 50

MBq, and the study varying the time window from 50 ps to 2000 ps.

The results of the study are shown in Figure 4.2. For values of the time

window above 200 ps the loss of true event is negligible. In addition we see

that the rate of Random and Compton events remains low compared to the

True events rate even for time windows up to 2000 ps. For the purpose of our

intensity rate studies we will not need to use such wide time windows and

we will only use time windows of 350, 500 and 1000 ps, sufficiently above

the true events drop.

4.4 Coincidence rate

As mentioned at the beginning of the chapter the study was developed fol-

lowing the NEMA procedure, [13], that defines the international standards

used to asses the performance of small-animal PET systems. Studying how

the scanner behaves as a function of the source activity is important both to

understand which are the strengths and weaknesses of the detector and to

have useful information that can help in the design of the scanner and the

data-acquisition system.
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For the study of the coincidence rate as a function of the source activity

the phantom used was a cylinder of 18F, 50 mm long with a radius of 1.6 mm.

The simulation was repeated for a wide range of source activity, starting from

5 MBq up to 300 MBq. We made this choice to test the scanner response to

extreme condition that are far beyond of the operational activities at which

the detector will operate.

The condition that we have chosen to define a coincidence event are: a

time window, ∆t, of 500 ps; line of response (LOR) that intercepts the phan-

tom and an energy deposit in the pixel above 20 KeV for both the hits. With

the definition of our constraints for the coincidence events we can now give

a definition of the event rates that we studied:

• The Total rate represents the total number of coincidence events that

are detected by the scanner. We decided to divide this category into

two further ones, to take into account also the total rate including lost

coincidences. This allowed us to study the intensity level at which the

scanner begins to saturate.

• The Random events rate shows the coincidence events that are not gen-

erated by the same annihilation but are detected within the selected

time window.

• The Compton events rate shows the coincidence events in which at least

one of the γ rays undergoes a Compton scattering during its path to the

detector.

• The True events rate is defined as the difference between the Total rate

and the Random plus Compton rates. Random and Compton rates are

generated by different annihilations and will result in a false line of

response.
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• The NECR, or noise equivalent count rate, was already defined in para-

graph 4.2.2 as indicated in equation 4.2:

True2

(True + Random + Compton)
(4.3)

The data acquisition system has an important effect on the performances

of the scanner and needed to be taken into account in our simulation. In

particular, it effects the count losses, and consequently effects the saturation

of the detector.
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FIGURE 4.3: Simulation of a cylinder 50 mm long, with a radius
of 1.6 mm as described in NEMA. Coincidence events occurring
during the dead time of the read-out generates count losses, we
have estimated to be able to keep those losses under 0.1% even
at intensities much higher than the ones at which the TT-PET

scanner will operate.

Figure 4.3 shows the expected count losses for the TT-PET detector at dif-

ferent source intensities, we can observe that we have been able to keep the

expected lost coincidences at less than 0.1% for incoming intensity up to 75

MBq. It must be pointed out that this is a very good achievement because
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this level of intensity is much higher than the one at which the TT-PET scan-

ner should operate. For the simulation we have chosen an high value for the

time window, 1000 ps in this case, the reason for this choice is that a larger

interval for coincidence selection will result in an higher event rate and con-

sequentially in an higher probability of incurring in count losses. We expect

the count losses due to dead time coincidences to be even lower for the 500ps

time window used in our scanner simulation. To achieve this excellent effi-

ciency in avoiding count losses a fast read-out system was needed, to keep

the recovery time as low as possible. From this study some states of buffer

both at chip and tower control level have been taken into account in order

to maintain the performance optimal. We added respectively 8 states for the

chip and 128 for the tower control. In this way, in case of a statistical fluctua-

tion in the rate of detected signals, we are able to store some of those events,

and later transfer them to the read-out system. To simulate this effect our

custom software had to take into account the dead time of 2 µs, as well as the

dead time to transfer data from the tower control to the board, 40 ns.
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FIGURE 4.4: Coincidence rate as a function of the activity for a
cylindric phantom as described by NEMA.
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Figure 4.4 shows the results of the simulation of the different rates as a

function of the activity for the cylindric phantom and the condition described

above. First we look at the Total rates, that are represented by the red and

orange dotted lines in the plot, we can see that the scanner saturates around

100 MBq, this proves that our configuration is very resilient to count losses

even at higher activity levels then those needed. It is important to point out

that the Random and Compton rates rise with the intensity but remain small

compared to the True rate, especially at low intensity values. This is particu-

larly important because the structure of the TT-PET scanner, with thin silicon

detection layer, while being excellent to measure the depth of interaction,

does not provide a measurement of the energy loss by the γ ray. For this rea-

son our detector can not distinguish a true coincidence from a Compton one,

so having a Compton rate as small as possible, compared to the True rate, is

crucial. The results show that the Compton events rate is small and so does

not effect significantly the performance of the scanner. Finally, we see that

the noise-equivalent count rate saturates at intensities above 200 MBq.

The study was repeated with other two different phantoms. The first of

those phantoms was the ideal case of a point-like source placed in the center

of the scanner and surrounded by a cylinder of water with length the full

length of the scanner and diameter of 3,6 cm. The same conditions used for

the previous study for the time window and the dead times of the acquir-

ing system were used. The outcome of the simulation with this phantom is

shown in Figure 4.5.

The last phantom that we studied was a spherical source with a radius

of 0.3 mm at the center of an acrylic cube with a side of 1 cm. This phan-

tom simulates the case in which only a small part of the animal needs to be

scanned, and was used also to study the expected sensitivity as a function of

the position along the axial FOV [8].
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FIGURE 4.5: Coincidence rate as a function of the activity for a
point like source in the center of the field of view, surrounded

by a cylinder of water with a diameter of 3,6 cm
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FIGURE 4.6: Coincidence rate as a function of the activity for a
small sphere at the center of the field of view.

The results are shown in Figure 4.6. We see that the amount or Ran-

dom and Compton scattered coincidences is very low and the scanner de-

tects mostly True coincidences. The saturation starts around 200 MBq, well
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above the other cases.

4.4.1 Read-out system effect on data rate

We have seen previously in this chapter how a small or big value of the coin-

cidence time window is related to a lower or higher lost coincidence events

rate. To complete the study on the lost coincidence rate we also had to con-

sider the effects of the system dead-time. To do so we have have compared

the results obtained with the cylindrical phantom using different dead times

for the data transfer from the chip to the tower and the one from the tower

control to the board. In Figure 4.7 are shown the results obtained for a dead

time from the tower control to the board of 300 ns, instead of the 40 ns dead

time of Figure 4.4. As expected the number of lost coincidence events in-

creases with the increase of the dead time of the read-out system. We see

that with this configuration the scanner starts saturating around 75 MBq in-

stead of 100 MBq of the previous configuration, and the NECR has a peak

at around 150 MBq while previously the peak was not visible neither at 300

MBq, the maximum simulated intensity.

4.5 Scanner Sensitivity

The scanner expected sensitivity was studied with the same spherical phan-

tom used for the last study of the previous paragraph. However for this

particular study we have used a 1MBq source and we placed it in 49 position

along the z-axis with steps of 1 mm. Figure 4.8 shows the expected sensitiv-

ity as a function of the source position for the entire axial FOV. The scanner

sensitivity presents a maximum value at 4% for a source at its centre, with a

medium sensitivity around 2%.
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FIGURE 4.7: Coincidence rate as a function of the activity for a
cylindric phantom with a dead time to transfer data from the
tower control to the board of 300 ns. The scanner is still per-
forming well at operational values of the intensity but it satu-

rates earlier.

FIGURE 4.8: Expected sensitivity as a function of the position
along the axial FOV.

4.6 Expected spatial resolution

The spatial resolution of a system represents its ability to distinguish between

two points after image reconstruction. To study the spatial resolution of the
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TT-PET scanner we have used as phantom the spherical source with 0,3 mm

radius described in the previous paragraph. The radionuclide used for this

measurement was 22Na. As requested in NEMA the activity has to be less

than that at which either the percent dead-time losses exceed 5% or the ran-

dom coincidence rate exceeds 5% of the total event rate. Following the pro-

cedure we have studied the resolution placing the phantom in 8 different

positions. A set of position were at z = 0 in the axial field of view, and 0, 5,

10, 15 mm in the radial coordinate. The second set had the same radial posi-

tions but was placed at z = 12, 5 mm that is the position that corresponds to

a quarter of the axial field of view.

The goal of this measurement is to characterize the widths of the recon-

structed image point spread functions (PSF), that describe the response of an

imaging system to a point source. For each position the point spread func-

tion, was reconstructed using the Customizable and Advanced Software for

Tomographic Reconstruction (CASToR) framework [15]. The width of the

PSF was extimated measuring the full width at half maximum, FWHM, of the

point spread function and also the full width at tenth maximum, FWTM, as

a quality measure of the sharpness of a peak. A result compatible with two-

dimensional filtered back projection was found already at two iterations.The

results of the study are shown in Table 4.1.

z position [mm] 0 12.5
x position [mm] 0 5 10 15 0 5 10 15
FWHM radial [mm] 0.59 0.57 0.56 0.52 0.65 0.61 0.60 0.56
FWHM tangential [mm] 0.60 0.60 0.67 0.71 0.64 0.65 0.65 0.70
FWHM axial [mm] 0.50 0.49 0.50 0.51 0.45 0.45 0.45 0.45
FWTM radial [mm] 1.8 1.6 1.5 1.4 2.0 1.8 1.7 1.6
FWTM tangential [mm] 1.8 1.7 1.9 2.0 2.0 1.9 1.9 2.0
FWTM axial [mm] 1.2 1.1 1.1 1.1 0.9 1.0 1.0 1.0

TABLE 4.1: Spatial resolution in the transverse FOV calculated
for four radial positions: 0, 5, 10, 15 mm from the center of the
scanner. The resolution were calculated at the center and at one

quarter of the axial FOV.
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The values of the FWHM in the different positions within the FOV are be-

low 0.75 mm. The variations in the radial, tangential and axial components

are small. As expected, when we move the source in one particular direction

we improve the spatial resolution for that component, while slightly decreas-

ing it for the others, this is evident if we compare the radial and tangential

values.

The simulation highlights the absence of the typical degradation of the

spatial resolution at large values along the radial direction, which is shown

in Figure 4.9. This is one of the upsides of the particular structure of the TT-

PET scanner, precisely the high granularity due to the 60 detection layers. In

fact, while for events close to the center of the axial FOV the sensitivity of

a scanner with low granularity is comparable to the sensitivity of a scanner

with high granularity, such as our scanner, when we move to the borders of

the region of interest the TT-PET scanner, having a better measurement of

the depth of interaction (DOI) shows only a small sensitivity degradation.

This is a result of the fact that having many layers allow us to have a smaller

uncertainty in the reconstruction of the LOR for sources that are not in the

center of the operative region.

FIGURE 4.9: Schematic representation of the uncertainty in the
LOR of sources at the center and at the periphery of a PET scan-
ner. The high DOI granularity of the scanner on the left side of
the figure produces batter results for sources at the periphery

of the scanner.
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Image Reconstruction

In the medical imaging field, the interpretation of the underlying biological

or pathological processes depends on the precision and the accuracy of the

reconstructed images. For this reason tomographic image reconstruction is

an essential step for the production of high quality images. In this chapter we

will look at how we performed the image reconstruction of a sample Derenzo

phantom and we will see the results of adding time of flight information to

reconstruct the image, which is one of the main features of the TT-PET scan-

ner. The complete description of all the steps required to go from the events

data to the reconstructed image was examined in Chapter 2 and much de-

tails on image reconstruction techniques are available in Appendix A. The

sum of the all counts recorded along a line of response measures the associ-

ated activity, this quantity is called line integral. When we combine a full set

of line integrals we create a projection profile. The full set of projection data

can be displayed in a matrix whose representation is called sinogram. From

the sinogram, or the projection profiles, we can reconstruct the image using

different techniques like filtered back projection or iterative reconstruction

algorithms. Simple back projection is the simplest way to reconstruct an im-

age, some filters are necessary to avoid image blurring, the downside is that

the image reconstructed in this way often contain some artifacts. Iterative

reconstruction algorithms are computationally more intensive than FBP but

allow to include pre- and post-processing data manipulation directly in the
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algorithm resulting in a net improvement in the quality of the final recon-

structed image.

5.1 Derenzo phantom image reconstruction

The Derenzo phantom is one of the most common quality control phan-

toms for nuclear medicine imaging [16]. The phantom consists of a series

of positron emitting rods separated by twice their diameter in a triangular

close-packed configuration. Several different rod diameters are typically em-

ployed, in this way it is easier to distinguish the diameter at which resolution

breakdown occurs.

Since the TT-PET scanner can acquire projection data at oblique angles

in the axial direction we can use this information to perform the 3D recon-

struction of the image using the single slice re-binning method shown in Ap-

pendix A.

5.1.1 Reconstruction with filtered back projection

The Derenzo phantom used in our study consists of 40 mm long rods of dif-

ferent diameters: 0.5, 0.7, 1.0, 1.2, 1.5 and 2.0 mm. The rods with the same

diameter were disposed in a triangular configuration, the total intensity of

the simulated phantom was 50 MBq. The image was reconstructed using a

custom software based on the filtered back projection algorithm, the z axis

was re-binned in 20 slices of 2 mm according to the single slice re-binning

method shown in the Appendix A.

To highlight the importance of adding the information about the time

of flight for the image reconstruction process we have compared the recon-

structed image obtained using the filtered back projection technique alone

to an image obtained adding the time of flight information. In Figure 5.1 is

shown the result of the simple image reconstruction. As expected, the high
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FIGURE 5.1: Image for the Derenzo phantom obtained without
TOF information. The rods simulated had diameters of 0.5, 0.7,

1.0, 1.2, 1.5 and 2.0 mm.

FIGURE 5.2: Image for the Derenzo phantom obtained with
TOF information. The rods simulated had diameters of 0.5, 0.7,
1.0, 1.2, 1.5 and 2.0 mm. This reconstructed image is better than
the one obtained without TOF and even the 0.5 mm rods can be

distinguished.
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granularity of the TT-PET scanner allows to resolve the 0.7 mm rods, while

the excellent DOI strongly reduces the image degradation of sources at the

periphery of the scanner. However this simple reconstruction method gen-

erates an artifact at the centre of the scanner, which is expected to disappear

when iterative methods will be used. The advantage in using the scanners

like the TT-PET scanner for image reconstruction is clear when we look at

Figure 5.2. The image represents the same phantom reconstructed adding

the TOF information. We can use the very precise measurement of TOF in

the back-projection operation, and distribute the count with a normal distri-

bution around the reconstructed annihilation point, we can locate this point

using the time difference between the signals. The result is that the signal-to-

noise ratio is found to improve significantly and even the 0.5 mm rods can

be resolved, although the artifact at the center of the scanner remains in the

image.

An alternative reconstruction method to FBP are iterative reconstruction

techniques. The advantage with respect to FBP is that it is possible to in-

clude the pre- and post-processing data manipulation directly in the algo-

rithm. On the other hand these extra features make these methods computa-

tionally more intensive than FBP. The upside in using iterative reconstruction

algorithms instead of FBP is the net improvement in the quality of the final

reconstructed image.

The iterative reconstruction method is shown in detail in Appendix B.

5.1.2 Image Reconstruction with Penalized ML-EM Algorithm

To show power of iterative methods we have reconstructed a Derenzo phan-

tom whose rods had the same diameters of the one used for FBP reconstruc-

tion: 2.0 mm, 1.5 mm, 1.2 mm, 1.0 mm, 0.7 mm and 0.5 mm. The method

chosen is slightly different [17] from the typical ML-EM algorithm presented
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in Appendix B. The new algorithm is build on the EM approach to maximum

likelihood reconstruction but it introduces a penalization factor so that un-

likely isotope distributions, such as those that are too rough, are disfavoured.

We introduce this alternative approach because we have noticed that using

the the normal ML-EM algorithm we produce images that have not uniform

structures where we expect the phantom distribution to be uniform. Figure

5.3 shows the reconstructed image obtained using the normal ML-EM algo-

rithm without penalization. In the image it is visible how the reconstructed

structures are not uniform, especially for larger diameters. These spikes are

a characteristic of the ML-EM algorithm that can be fixed with the new algo-

rithm.

FIGURE 5.3: Image for the Derenzo phantom obtained with
100 iterations of the EM-ML iterative reconstruction algorithm
without penalization. The rods simulated had diametres of 0.5,

0.7, 1.0, 1.2, 1.5 and 2.0 mm.

The ML-EM algorithm equation B.2 is then modified, to take into account

the new penalization factor, as follows:
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xk+1
i =

xk
i

Ci − β
∂V(x)

∂xi

×∑
j

Mi,j
pj

∑l Ml,jxk
l

(5.1)

Where the factor Ci represents the sensitivity map and corresponds to the

factor ∑j Mi,j of equation B.2. The extra factor β
∂V(x)

∂xi
is the penalization of

the algorithm. Beta is an arbitrary parameter that represents the strength of

the regularization factor and V is a potential function that can be expressed

as:

V(xi) = ∑
i,j

wijφ(xi − xj) (5.2)

Where wij is a factor that represents the neighbourliness between the pixel

that we are evaluating, i, and the adjacent j. wij value is 1 for adjacent orthog-

onal pixels and
√

1/2 diagonal pixels. In our study we have only taken into

account adjacent orthogonal pixels, so we have wij = 1. φ is a function that

has to be non-negative, symmetric around 0, and monotonically increasing

for positive values of its argument. For our study we have chosen φ = r2.

It is important to point-out that when calculating the next iteration xk+1
i the

partial derivative of the potential V is evaluated at the old value xk
i .

For the image reconstruction we have chosen to simulate a 30 minutes

exposition of the TT-PET scanner to a 50 MBq source.

Selecting the correct value of beta in equation 5.1 is crucial since a small

value would still lead to spikes in the reconstructed image, while larger val-

ues will produce an image too uniform making harder to distinguish the

structures. After the evaluation of the results for different beta values be-

tween 0 and 1000 we have found to have better results with a β values be-

tween 50 and 70. Image 5.4 is the result of the reconstruction done using the

penalized EM-ML method with β = 65.

When we compare image 5.3 to image 5.4 we see that in the last one the

structure of the rods appears to be more uniform and they are much more

visible compared to the background. If we look in particular at the 2.0 mm



5.1. Derenzo phantom image reconstruction 43

FIGURE 5.4: Image for the Derenzo phantom obtained with 100
iterations of the penalized EM-ML algorithm and β = 65. The
rods simulated had diametres of 0.5, 0.7, 1.0, 1.2, 1.5 and 2.0

mm.

rod we can see that the peak (in red) is clearly identified in the middle of

the distribution. As for what concerns the final sensitivity we can clearly

distinguish the 0.7 mm rods, while the 0.5 mm rods appear slightly blurrier,

but are still distinguishable.

The main feature of the TT-PET scanner is ability to get a very precise TOF

information therefore is essential to understand which are the advantages of

having the possibility to add this information to the reconstruction process.

To show these feature we produced an image with the same method and con-

ditions used for image 5.4 but without TOF information, Figure 5.5. While

we can obtain the same result with and without the precise TOF information

the main difference is that we would need a larger number of iterations, thus

a larger computational time, to get to the same quality without TOF. We ob-

serve that the reconstruction without TOF generates a poor quality image,
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FIGURE 5.5: Image for the Derenzo phantom obtained with 100
iterations of the penalized EM-ML algorithm β = 65 but with-
out TOF information. The rods simulated had diametres of 0.5,

0.7, 1.0, 1.2, 1.5 and 2.0 mm.

compared to the one produced with TOF, with evident artifacts in it. This

however it is an effect of the normalization map that we have used to pro-

duce the images.
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Chapter 6

Conclusions

The work presented in this thesis is focused on the analysis of the perfor-

mance of the TT-PET scanner and on the image reconstruction of a sample

radioactive source using the very precise time of flight information. The

Thin Time-of-Flight PET scanner is a novel compact scanner for small an-

imals developed by the TT-PET group of the University of Geneva and in

collaboration with CERN, based on fast silicon detector and aims to a 30 ps

time resolution. The final purpose is to use this very precise time information

to better reconstruct the position of the source.

Scanner simulation

In order to achieve the best result it is essential to minimize the count losses

and to maximize the ability of the scanner of distinguish the real events from

the noise.

Studying the expected count losses for the TT- PET detector at different

intensities, we have observed that we are able to keep the expected lost coin-

cidences at less than 0.1% for incoming intensity up to 75 MBq. This is a very

good achievement because this level of intensity is much higher than the one

at which the TT- PET scanner should operate. To achieve this result we have

taken into account the effects of the read-out system dead-time. From our

simulation we obtained important feedbacks about the optimal number of

buffer states for the chip and the tower control. For a dead time to transfer
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data from the chip to the tower of 2 µs, and a the dead time to transfer data

from the tower control to the board of 40 ns we have simulated that a 8-state

buffer for the chip and 128-state buffer for the tower control were needed.

As a preliminary step to the study of the data rates we have simulated the

effects of the time window on the number of count losses and true events.

We found out that for values of the time window above 200 ps the loss of

true event is negligible

Looking at the data rates we expect the TT-PET scanner to saturate around

100 MBq, this proves that our configuration is very resilient to count losses

even at higher activity levels then those needed. Regarding the Random

events rate we have shown that thanks to the high time resolution we are able

to keep the time window very small and consequently to reduce the number

of these coincidence events. We have also shown that, for a small scanner

radius, the incidence of the Compton coincidence events on the quality of

the image is negligible. This is particularly important because the structure

of the TT-PET scanner, with thin silicon detection layer, even if it is excellent

to measure the depth of interaction, does not provide a measurement of the

energy loss by the photon and consequently we can not filter out the Comp-

ton events. We performed this type of study with three different phantoms:

cylindric source, a pointlike source and spheric source.

The expected sensitivity along the axial FOV was also simulated finding

a peak value of 4%.

To conclude the study about the expected performance of the TT-PET

scanner we extimated the expected spatial resolution for different positions

inside the scanner field of view. The FWHM were always below 0.75 mm

with small variations in the radial, tangential and axial directions. We also

found the absence of the typical degradation of the spatial resolution for

source far from the center of the FOV in the radial direction. This is an upside

of the particular many think layers structure of the TT-PET scanner.
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Image Reconstruction

The final subject of this thesis has been image reconstruction. We have re-

constructed a Derenzo phantom both with filtered back-projection (FBP) and

a penalized maximum likelihood expectation maximization algorithm. The

Derenzo phantom that we have studied consists of 40 mm long rods of dif-

ferent diameters: 0.5, 0.7, 1.0, 1.2, 1.5 and 2.0 mm.

With both techniques we are able to clearly distinguish all the rods up

to the smallest ones. The image obtained with the iterative algorithm are,

however, much smoother than those obtained with FBP.

Regarding the iterative reconstruction results it must be point out that

we are able to produce a better reconstructed image if we introduce a penal-

ization to the ML-EM algorithm such that unlikely isotope distributions are

disfavoured.

To sum up, while potentially one could reach the same results with or

without TOF information we have seen that the addition of TOF information

to the reconstruction allow us to reduce the computational time needed to

produce the image.
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Appendix A

Image Reconstruction Techniques

The simplest way to reconstruct an image from the acquired profiles is by

simple backprojection. We consider the case in which we have collected a se-

ries of projection profiles from different angles around the source, as shown

in Figure A.1. The first step of this technique is to distribute the data from

each element in a profile back across the entire image grid. In practice this

is done by dividing the counts recorded in a projection profile element uni-

formly amongst the pixels that fall within its project path. This operation is

called backprojection. Finally, the backprojections for all profiles are added

together and we get an approximation of the distribution of radioactivity of

the scanned object.

Mathematically, we can express the backprojection of N profiles using the

following formula:

f ′(x, y) =
1
N

N

∑
i=1

p(x cos φi + y sin φi, φi) (A.1)

where φi denotes the ith projection angle and f ′(x, y) is an approximation

of the true radioactivity distribution f (x, y). A disadvantage of this proce-

dure is that there are some counts that are projected outside the true location

of the source, image B of Figure A.1, as a result the image appears blurred.

By increasing the number of projection angles this effect is reduced and the

quality of the image improves. We can express the relationship between the
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FIGURE A.1: Steps for simple backprojection. A, projection pro-
files for a point source of radioactivity for different projection
angles are acquired. B, backprojection of one intensity profile
across the image at the angle corresponding to the profile. This
process is repeated for all projection profiles to build up the

backprojected image. Image taken from [4].

true image and the reconstructed one using the convolution, indicated by the

symbol ∗, as:

f ′(x, y) = f (x, y) ∗
(

1
r

)
(A.2)

For this reason this effect is also known as the 1/r blurring. One approach

to avoid the blurring effect is the Fourier transform (FT) reconstruction, also

called direct Fourier transform reconstrucion or direct FT. In nuclear medicine

imaging, the FT is an alternative method for representing spatially varying

data. Instead of representing a 1-D image profile as a spatially varying func-

tion, f (x), the profile is represented as a summation of sine and cosine func-

tions of different spatial frequencies, k.

F(k) = F [ f (x, y)]
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the function f (x) is a representation of the image profile in image space, or

object space, while F(k) represents the profile in spatial frequencies space, also

called k-space.

Nuclear medicine CT relies on the projection slice theorem, or Fourier slice

theorem. The above mentioned theorem states that the FT of the projection

of a 2-D object along a projection angle φ, that can be referred as the FT of a

profile p(r, φ), is equal to the value of the FT of the object measured through

the origin and along the same angle, φ, in k-space:

F [p(r, φ)] = F(kr, φ) (A.3)

where F(kr, φ) denotes the value of FT measured at a radial distance kr

along a line at angle φ in k-space.

FIGURE A.2: The projection slice theorem. Starting from left we
see that p(r, φ) is a 1-D profile of the 2-D object f (x, y) at projec-
tion angle φ. The theorem states that the 1-D Fourier transform
of this projection profile is equal to the values of the 2-D Fpurier
transform of the object, F(kx, ky), along a line through the origin

of k-space at the same angle φ. image taken from [4].
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A.1 Filtered Backprojection

Another way to eliminate the 1/r blurring is the filtered backprojection (FBP).

FBP uses the projection slice theorem in combination with backprojection.

we can divide this procedure in different steps as follows:

1. Acquire projection profiles in object space at n projection angles, φi,

i = 1, 2, ..., N.

2. Compute the 1-D FT of each profile.

3. Apply a “ramp filter” to each k-space profile, that means multiplying

each projection FT by |kr|, the absolute value of the radial k-space coor-

dinate at each point in the FT. In this way we get a modified FT for each

projection:

P′(kr, φ) = |kr| P(kr, φ) (A.4)

where P(kr, φ) is the unfiltered FT.

4. Compute the inverse FT of each filtered FT profile to obtain a modified

projection profile.

p′(kr, φ) = F
[
P′(kr, φ)

]
= F [|kr| P(kr, φ)] (A.5)

5. Do the backprojection using the filtered profiles:

f (x, y) =
1
N

N

∑
i=1

p′(x cos φi + y sin φi, φi) (A.6)

Step 5 is the same as in simple backprojection, but with filtered profiles.

However, unlike equation A.1, in which f ′(x, y) is just an approximation of

the true distribution of radioactivity, with FBP, when using noise-free data,

we get the exact value of the true distribution f (x, y). The effect of the ramp

filter is to enhance high spatial frequencies and to suppress low ones; the
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FIGURE A.3: Different steps of filtered backprojection. Image
taken from [4].

result of this technique is to eliminate the blurring effect. As a counter ef-

fect amplification of high spatial frequencies leads to amplification of high-

frequencies noise and so to a worst signal-to-noise ratio. It is, however, pos-

sible to minimize this effect choosing appropriate ramp filters.

Using FBP has also some drawbacks. Indeed, this technique is susceptible

to major artifacts if data are measured incompletely or datasets have poor

statistics or random noise spikes. Moreover this type of algorithm doesn’t

take into account several physical aspects of the imaging system, this require

additional pre or post-processing.
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A.2 3D Reconstruction

To perform the 3D reconstruction we have to take into account the projection

data at oblique angles in the axial direction. To incorporate these additional

projection angles it is a common approach in image reconstruction to “re-

bin”, such that each oblique projection ray is placed within the projection

data for a particular non-oblique slice. The most simple method to accom-

plish this is to assign each ray to its average position along the axial direction.

Thus an oblique projection-ray between a detector at location a and a detec-

tor at location b would be positioned as if it were a projection from a directly

opposed pair located halfway between them, i.e., at location (a + b)/2, Figure

A.4 . Processing of all the projection rays in this manner results in a series of

sinograms of parallel-ray projections, each corresponding to different axial

locations through the object. Each sinogram can then be reconstructed using

FBP or iterative algorithms. This method is known as single slice re-binning.

FIGURE A.4: Example of single-slice re-binning in which an
oblique projection-ray between the detector pair a and b is “re-
assigned” to the projection data for the non-oblique slice corre-
sponding to a transverse detector pair at axial location (a+b)/2.

Image taken from [4].
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Iterative Reconstruction

Algorithms

An alternative reconstruction method to FBP are iterative reconstruction tech-

niques. The advantage in respect to FBP is that it is possible to include the

pre- and post-processing data manipulation directly in the algorithm. On the

other hand these extra features make these methods computationally more

intensive than FBP. Figure B shows the basic steps needed by iterative re-

construction algorithms to reconstruct the true image f (x, y). It starts with

an initial and very simple image, then the projections that would have been

measured for that specific image are computed using forward projection. This

process consists in summing up the intensities along the potential ray paths

for all projections through estimated image. The sinogram generated from

estimated image then is compared with the actually recorded sinogram. The

difference between the estimated and actual sinogram is used to modify the

estimated image to have better agreement. This process is repeated until the

difference between the forward-projected sinograms for the estimated image

and the actually recorded sinogram falls below some specific level.

Iterative reconstruction algorithms can be divided in two basic compo-

nents:

1. The method for comparing the estimated and actual profiles. This is
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FIGURE B.1: Iterative reconstruction main steps. Image taken
from [4].

performed by the cost function, which measures the difference between

the profiles generated by forward projections through the estimated im-

age and the profiles recorded from the scanned object.

2. The method by which the image is updated based on comparison. This

is performed by the search or update function, which uses the output of

the cost function to update the estimated image.

We have seen that iterative algorithms require several iterations to converge

to an acceptable image, since each iteration is equivalent to a backprojection

procedure it is clear why these type of reconstruction methods are computa-

tionally much more demanding than FBP. Moreover iterative algorithms can

incorporate factors regarding the specific characteristics of the detector sys-

tem, this requires further computational power for it to work. Considered the

more intensive computational requirements the gain in using iterative recon-

struction algorithms instead of FBP is the net improvement in the quality of



Appendix B. Iterative Reconstruction Algorithms 57

the final reconstructed image.

B.0.1 Expectation-Maximization Algorithm

An example of an iterative reconstruction algorithm is the expectation max-

imization (EM) algorithm. This technique incorporates statistical considera-

tions to compute the “most likely”, or maximum likelihood (ML), source dis-

tribution that would have created the observed projection data. For these

reasons this algorithm is also called the ML-EM method. In practice, the al-

gorithm assigns greater weight to high-count elements of a profile and less

weight to low-count regions, while backprojection algorithms assign an uni-

form statistical weighting to all element of a profile.

The reconstruction process goes as follows. First it is calculated the mea-

sured activity in the jth projection element, pj, as;

pj = ∑
i

Mi,jxi (B.1)

where xi is the activity in the ithpixel in the image and Mi,j is the probabil-

ity that radiation emitted from ith pixel will be detected in the jth projection

element. Since the i and j indices each apply to the full set of the subscripted

quantities the matrix M turns to be very large even in simple cases. This

approach provides a potentially more accurate model for relating projection

profiles to the underlying source distribution than simple forward projection.

The probability matrix M can be determined by calculations, simulations, or

a combination of both.

The equation for computing the estimated activity value x of pixel i in the

(k + 1)th iteration of the EM algorithm is:

xk+1
i =

xk
i

∑j Mi,j
×∑

j
Mi,j

pj

∑l Ml,jxk
l

(B.2)
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Where k refers to the immediately preceding kth iteration. The term at the

denominator on the right hand side of equation B.2 represents a summation

over all image pixels. This term must be evaluated before the summation

over the j projection elements can be computed.

Considering the fact that equation B.2 represents only a single-slice ver-

sion of the algorithm it is easy to comprehend that one could need a quite

high computational power to use this technique. Nevertheless the ML-EM

algorithm can produce high-quality images with good quantitative accuracy.
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