G. lacobucci group activities - 2018

• ATLAS

- Data Analysis: boosted di-boson + boosted Higgs→bb
- HL-Luminosity upgrade:
 - Outer Barrel Pixel Mechanics
 - Outer Barrel Patch-Panel 0 (PP0)
 - R&D on Monolithic pixels
- TT-PET project
 - Development of timing monolithic SiGe sensors

Searching for New Physics

Run: 299584 Event: 563621388 2016-05-20 08:26:49 CEST 4(JJ)=2.40 TeV

Searching for New Physics: Dibosons Small-radius jets ¦ Large-radius jet W/Z Q Boosted jets: Increasing transverse momentum, p_T proton proton

Searching for New Physics: the TCC

Fully utilizing the detector: Track-CaloClusters

- Excellent energy resolution
- Measures charged+neutral

Use calorimeter for energy measurement (p_T,m)

Track-CaloClusters

(TCCs)

Requires expertise: We are the leading experts in this area

Match tracks to calorimeter cluster(s)

Use tracker for spatial coordinates (η,Φ)

Tracking detector

At high p_T:

- Excellent spatial resolution
- Poor jet energy resolution
- Only charged particles

UNIVERSITÉ

DE GENÈVE

Event Reconstruction Improvements with TCC

- Publication integrates significant improvement on event reconstruction:
 - Use of TrackCalo-Cluster jets help for advanced high- p_T W/Z identification which was developed by our group.

Look also for:

at very high p_T

Searching for New Physics with the TCC

- Two large-R jets, leading > 480 GeV, sub >250 GeV
- Trigger based on Large-R jet, other jet also large-R jet asked CDS, simplifies analysis
- largeR jet with two b-tagged VR track jets
- Search for resonance over QCD BKG (ttbar yield from (

Presentation of the results:

- Z' Limits
- Signal strength measurement of V+jets
- SM H search

Probing Higgs at Highest Energies

- First time probe Higgs boson in direct ("gluon-fusion") production.
- Opens door to important physics program:
 - High momentum transfer very sensitive to <u>new physics</u> effects.
 - Only channel to directly probe top and b-quark Yukawa coupling.

Analysis Team and Publications

People:

- Roland Jansky, Steven Schrammy
- Sofia Adorni, Francesco di Bello, Herjuno Nindhito
- Charlotte Waltregny (MSc, finished June 2018)
- Noemi Calace (PhD, finished June 2018)

Publications in 2018

- 1. <u>Search for low-mass dijet resonances using trigger-level jets with the</u> <u>ATLAS detector in pp collisions at \sqrt{s} =13 TeV</u>
- 2. Search for resonances in the mass distribution of jet pairs with one or two jets identified as b-jets in proton-proton collisions at \sqrt{s} =13 TeV with the ATLAS detector.
- 3. In situ calibration of large-R jet energy and mass in 13 TeV protonproton collisions with the ATLAS detector
- 4. <u>Performance of top-quark and W-boson tagging with ATLAS in Run 2 of the LHC</u>
- 5. <u>Measurements of b-jet tagging efficiency with the ATLAS detector using</u> tt events at $\sqrt{s} = 13$ TeV

Yannick Favre, Stéphane Debieux, Daniel Lamarra, Gabi Pelleriti, Xavier Mesa

ATLAS ITk Outer Barrel Pixel – "Longeron"

ATLAS ITk Outer Barrel Pixel – "Longeron"

ATLAS ITk Outer Barrel Pixel – Patch Panel 0

- On-detector Patch-Panel-0 (PP0) serving as interface between the Type-0 stave-flexes and the off-detector services
- Very challenging: very tight radial envelope (10 mm to fit PP0, cooling-pipes, cables, etc.), radiation hardness
- Baseline of having lpGBT + VTRx electro-optical converter inside the detector volume

ATLAS ITk Outer Barrel Pixel – "Inclined" section

ATLAS ITk Outer Barrel Pixel – **Mechanics**

- Outer Barrel Engineering
 - 1. Local support design and assembly tool
 - 2. Services design and integration
- →ITK Pixel Local Support **Preliminary Design Review** successfully passed

ATLAS Pixel Outer Barrel

ATLAS CMOS Activities

- We completed the study of the **H35DEMO CCPD** in ams h35 350nm HV-CMOS technology
 - First large surface (2x2 cm²) HV-CMOS CCPD sensor assembly and test beam characterization
 - First complete study of depletion versus irradiation (proton and neutron) on substrate with typical resistivities (20-1k Ω cm)
- Leading to **3 Publications** :
 - 1. <u>TCT Measurement before and after irradiation for protons</u> <u>and neutrons, for different substrate resisitivity</u>
 - 2. Test beam measurement of capacitively coupled sensors
 - 3. <u>Test beam measurement of monolithic sensors</u>
- The **ATLASPix1 Monolithic** Pixel sensor in ams h18 180 nm technology was delivered in 2018
 - 180nm HV-CMOS Engineering run on 20-200 Ω cm substrate
 - 130x40 μm² pixels, 25x400 pixels, Full-length column sensor (1.9cm)
 - Thinned down to **60 µm**
 - Threshold down to 600e, 120e dispersion
 - 6 bit TOT and 10 bit TOA (up to 16 ns), Trigger-less readout
 - Serializer, PLL, High-Speed data transmission (1.25Gbps)
 - Radiation hardness up to $>1 \times 10^{15} n_{eq}/cm^2$, 100MRad

ATLAS CMOS Activities

- ATLASPix1 Test beam campaign in Fermilab and CERNto evaluate performance
 - Efficiency > 98% after irradiation to ITk out layer fluence $(1 \times 10^{15} n_{eq}/cm^{2}, 100MRad)$ 7 ns timing resolution after timewalk and row delay correction
- ATLASPix2 has been produced in ams and TSI technology and delivered this autumn
 - New design for trigger memory
 - Memory test structure for SEU test design by DPNC
- ATLASpix3 design ongoing
 - Full matrix targeting ATLAS ITk requirements
 - Submission in February 2019

2 PhD thesis : Branislav Ristic and Mateus Vicente1 Master thesis : Le Li

ATLASPix1 neutron irradiated

Neutron Irradiated 80 Ωcm Sensors @ 60V

efficiency (charge collection) does not depend on fluence!

Question: Will ATLAS decide in favour of this new technology ?

... to be answered in 2019

Monolithic Timing Silicon Detectors TT-PET project

Didier Ferrére, Lorenzo Paolozzi, Emanuele Ripiccini, Pierpaolo Valerio, Daiki Hayakawa, Fulvio Martinelli, Daniele Vitturini

Franck Cadoux, Coralie Husi, Yannick Favre, Stéphane Debieux, Gabi Pelleriti, Xavier Mesa ²³

The TT-PET Project

a 30 ps Time-of-Flight PET scanner with silicon pixels

In collaboration with:

- Roberto Cardarelli INFN Roma Tor Vergata
- Marzio Nessi CERN IdeaSquare
- IHP microelectronics
- Edoardo Charbon EPFL

The TT-PET small-animal scanner

Fully engineered at the DPNC:

The TT-PET small-animal scanner

- □ The scanner will be made by **16 towers**
- **1920 chips**; size: 25mm long, 7,9,11mm wide
- **1.6 M channels** synchronized at 10ps.
- □ High density of silicon pixel sensors: sensor power budget < 80 mW/cm²
- □ Finite-Element Analysis performed: active cooling: $\Delta T < 1^{\circ}$ C
- □ Prototype cooling Block produced
- □ Thermomechanical tower prototype constructed: results within power budget

The TT-PET small-animal scanner

- A scanner tower is a stack of **60 sensors**, tightly coupled.
- Wedge-shaped units: three sensor widths
- Total tower thickness will be **1.5 cm**.
- Two sensors per layer: length = **4.8 cm**

FLUKA and Geant4 simulations performed to predict the scanner efficiency to 511 *keV* photons, the expected detection rate per chip and the scanner space resolution.

Results of GEANT and FLUKA simulations: Tower efficiency for 511 keV photons: 27%

Scanner sensitivity: 4.1%

Layout of the TT-PET demonstrator

- 3 × 10 matrix, 500 × 500 μm^2 pixels.
- Preamplifier, discriminator, 50 *ps* binning TDC, logic, serializer integrated in chip.
- Thinned to $100 \ \mu m$ and backside metallized

Three chips tested in the DPNC cleanrooms and at CERN testbeam.

Results \rightarrow

CERN testbeam: Efficiency

CERN testbeam: Time resolution

Particle hit time difference chip 1 vs chip 0

CERN testbeam: Time resolution

TT-PET Research Output 2018

• 4 articles:

- Demonstrator chip design:
- Demonstrator chip testbeam:
- TT-PET engineering:
- TT-PET simulation & performance: a

arxiv:1811.10246 arxiv:1811.11114 arxiv:1812.00788 arxiv:1811.12381

- 2 patent submissions:
 - PLL-less TDC & synchr. System:
 - Multi-Junction PicoAD: EP18207008.6

EU Patent Application EP18181123.3 EU Patent Application

In summary:

- Lot of excellent research, including:
 - 14 Articles
 - 2 patents
 - 2PhD + 2 Master theses

Sergio Gonzalez-Sevilla, Mathieu Benoit, D.M.S. Sultan, Winnie Wong, Steven Schramm, Roland Jansky, Lorenzo Paolozzi, Emanuele Ripiccini, Pierpaolo Valerio, Ettore Zaffaroni, Mateus Vicente-Barreto-Pinto, Sofia Adorni, Francesco di Bello, Nerjuno Nindhito, Le Li, Daniele Vitturini

Try to repeat it in 2019 !!