

Thesis

Reference

Machine Learning Techniques for Charged Particle Tracking at the

ATLAS Experiment

AMROUCHE, Cherifa Sabrina

Abstract

The Large Hadron Collider (LHC) uses proton-proton collisions to probe the fundamental

building blocks of matter. Each collision produces thousands of particles scattering away from

the detector center at nearly the speed of light. Reconstructing the trajectories of particles is a

crucial task in most physics analysis. However, due to the rise in the number of simultaneous

proton-proton interactions at the High Luminosity LHC (HL-LHC), the current tracking

techniques will be the dominant component in CPU requirements. This thesis proposes the

extension of existing as well as the design of novel Machine Learning (ML) approaches for the

tracking of particles in the ATLAS experiment. We propose to describe and extend the

similarity search problem in particle tracking through Approximate Nearest Neighbors (ANNs).

In this context, the distance between data points is redefined with a tracking aware metric

learning model termed TrackNet. Additionally, ANNs and metric learning models are

evaluated on the TrackML dataset and on the ATLAS Inner Tracker Phase II dataset. We

propose the Dynamic Tracking Linkage (DTL) clustering [...]

AMROUCHE, Cherifa Sabrina. Machine Learning Techniques for Charged Particle

Tracking at the ATLAS Experiment. Thèse de doctorat : Univ. Genève, 2021, no. Sc. 5553

DOI : 10.13097/archive-ouverte/unige:152041

URN : urn:nbn:ch:unige-1520412

Available at:

http://archive-ouverte.unige.ch/unige:152041

Disclaimer: layout of this document may differ from the published version.

 1 / 1

http://archive-ouverte.unige.ch/unige:152041

UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES

Département de physique nucléaire et corpusculaire Professeur Tobias Golling

Machine Learning Techniques for Charged Particle
Tracking at the ATLAS Experiment

THÈSE

présentée à la Faculté des sciences de l’Université de Genève pour obtenir le grade
de Docteur ès sciences, mention interdisciplinaire

par

Sabrina Amrouche

d’Algérie

Thèse n° 5553

GENÈVE

Atelier d’impression ReproMail

2021

À ma mère, à mon père

Abstract

The Large Hadron Collider (LHC) uses proton-proton collisions to probe the
fundamental building blocks of matter. Each collision produces thousands of
particles scattering away from the detector center at nearly the speed of light.
Reconstructing the trajectories of particles is a crucial task in most physics
analysis. However, due to the rise in the number of simultaneous proton-proton
interactions at the High Luminosity LHC (HL-LHC), the current tracking
techniques will be the dominant component in CPU requirements.

This thesis proposes the extension of existing as well as the design of
novel Machine Learning (ML) approaches for the tracking of particles in the
ATLAS experiment. We propose to describe and extend the similarity search
problem in particle tracking through Approximate Nearest Neighbors (ANNs).
In this context, the distance between data points is redefined with a tracking
aware metric learning model termed TrackNet. Additionally, ANNs and metric
learning models are evaluated on the TrackML dataset and on the ATLAS
Inner Tracker Phase II dataset. We propose the Dynamic Tracking Linkage
(DTL) clustering algorithm to process the output of the TrackNet model and
to retrieve the final particle trajectories. This tracking inspired algorithm
encapsulates physics constraints in its pairwise distance as well as a trained
classifier that acts as an automatic stopping criteria.

Restricting the standard ATLAS seeding to ANNs buckets allows to reach
the peak performance of 88% with a CPU time of 5ms per bucket. Moreover,
the similarity search tracking environment enables the finding of additional
tracks as compared to the standard ATLAS tracking specifically in low PT
regions. The tracking time per bucket is further reduced when replacing com-
binatorial tracking by the TrackNet+DTL chain. Finally, a voting cluster
shape convolutional (VCS-Conv) model is proposed as the first attempt to
include raw images of activated pixels in an ML based tracking model. This
heterogeneous approach (raw images and data points) is shown to outperform
classical models based on raw information only.

v

Résumé

Au grand collisionneur de hadrons (LHC), l’exploration des constituants fon-
damentaux de la matière se fait au moyen de collisions de proton-proton. Des
milliers de particules émanent de chaque collision et se propagent dans le dé-
tecteur à presque la vitesse de la lumière. La reconstruction de la trajectoire de
ces particules est une des tâches les plus importantes dans l’analyse physique.
Cette tâche se voit cependant se compliquer et dominer les besoins en CPU
dans le cas du nouveau High-luminosity LHC où le nombre de collisions simul-
tanées est nettement augmenté.

Cette thèse propose de nouvelles techniques ainsi que l’extension d’algorith-
mes existant de reconstruction des trajectoires sur la base de l’apprentissage
automatique (ML). La recherche des similarités dans de grandes bases de don-
nées est étendue à la problématique de la reconstruction des trajectoires de
particules à travers les techniques de recherche approximatives du plus proche
voisin. Pour cela, la similarité entre voisins est redéfinie selon des contraintes
physiques par un modèle d’apprentissage de métrique qu’on appellera Track-
Net. La combinaison des deux approches est évaluée sur deux ensembles de
données : TrackML et l’ATLAS Inner Tracker Phase II. Pour le regroupe-
ment final des trajectoires, nous proposons un nouvel algorithme de clustering
appelé Dynamic Tracking Linkage (DTL). Cet algorithme comprend des con-
traintes physiques dans la distance qu’il utilise ainsi qu’un classifieur pour
l’arrêt automatique de l’algorithme.

Par ailleurs, la formation des premières pistes (seed) de particule dans
des groupes approximatifs de plus proche voisin permet d’atteindre une per-
formance de 88% avec un temps CPU de 5ms par groupe de point avec no-
tamment la reconstruction de trajectoires supplémentaires dans les régions de
faible PT . De plus, nous proposons un modèle de convolutions (VCS-Conv)
en mesure de traiter les images des pixels activés lors du passage des partic-
ules. La combinaison de données numériques et d’images permet de dépasser
les performances de modèles basés seulement sur l’une d’entre elles.

vii

Contents

Introduction 1

1 Experimental Particle Physics 3
1.1 The Standard Model of particle physics 3
1.2 Colliding Particles . 5
1.3 Particle detection . 6

2 The ATLAS experiment at the Large Hadron Collider 11
2.1 The Large Hadron Collider . 11
2.2 The ATLAS Detector . 13

2.2.1 Detector Coordinate System 13
2.2.2 The Inner Detector . 15
2.2.3 Detector Upgrades . 17
2.2.4 Electromagnetic and Hadronic Calorimeters 18
2.2.5 The Muon Spectrometer 19
2.2.6 The Trigger . 19

2.3 Monte Carlo Simulation . 20

3 Track Reconstruction 25
3.1 Tracking Notions . 25
3.2 From Detector to Space Points 27
3.3 Building Seeds . 28
3.4 Combinatorial Track Finding 29
3.5 Ambiguity Solving . 31
3.6 Faster Tracking . 31

4 Machine Learning 35
4.1 Key Concepts and Definitions 35

4.1.1 The Learning Task . 35
4.1.2 The Performance Measure 37
4.1.3 The Experience . 37

4.2 Clustering . 38
4.2.1 Distance and Similarity Measures 38
4.2.2 Hierarchical Clustering 39
4.2.3 Graph Theory Based Clustering 39

4.3 Deep Learning . 40
4.3.1 Convolutional Neural Networks 41
4.3.2 Long Short Term Memory Neural Networks 43

4.4 Metric Learning . 44
4.4.1 Deep Learning Based Techniques 45
4.4.2 Uniform Manifold Approximation and Projection for Di-

mension Reduction . 46

ix

5 Approximate Nearest Neighbors 51
5.1 Problem Definition . 52
5.2 Similarity Search Models . 52

5.2.1 Tree Based Techniques 53
5.3 Graph Based Techniques . 54
5.4 Facebook AI Similarity Search 56
5.5 Relevance to Charged Particle Tracking 56

6 The Tracking Machine Learning Challenge 61
6.1 Introduction . 61
6.2 Machine learning for High Energy Physics 61
6.3 The TrackML Challenge . 63

6.3.1 TrackML Detector Layout 64
6.3.2 Data Files and Setup . 65
6.3.3 Scoring Solutions . 66
6.3.4 Competition Results . 67

7 Similarity search for charged particle tracking 71
7.1 Definitions and Notations . 71
7.2 Proposed Approach . 72

7.2.1 Indexing Charged Particle Hits 74
7.2.2 ANN Techniques Evaluation 75
7.2.3 ANNs Performances on CPUs and GPUs 76
7.2.4 Learning a Tracking Representation 76

7.3 Summary and Conclusions . 81

8 Similarity search with ATLAS Phase-II Inner Tracker 85
8.1 Introduction . 85
8.2 The ITk simulation dataset . 85
8.3 ANN buckets on the ITk dataset 87
8.4 Standard ATLAS tracking in buckets 89
8.5 Standard ATLAS seeding in buckets 91

8.5.1 Bucket sampling strategy 92
8.6 Reconstruction result analysis 93
8.7 Bucket overlap analysis . 101
8.8 Bucket filter . 105
8.9 Summary and conclusions . 107

9 TrackNet : Tracking aware embeddings 111
9.1 Motivation . 111
9.2 The TrackNet loss function . 111
9.3 Model Fine Tuning . 115

9.3.1 The model input . 116
9.3.2 TrackNet and Pseudorapidity 118
9.3.3 Output Dimensions . 121

9.4 Dynamic Tracking Linkage : A new clustering approach 122
9.4.1 Pairwise tracking penalty 123
9.4.2 Cluster Consistency . 125

9.5 Particle finding with TrackNet and DTL 126
9.6 Summary and future directions 129

10 CS-Conv: Convolutions on the Cluster Shape 131
10.1 Charge clusters to images . 133
10.2 Dataset balance . 134
10.3 CS-Conv model . 134
10.4 Upgraded CS-Conv . 136

Conclusion 145

Introduction

Can machine learning help in finding the trajectories of charged particles pro-
duced in high energy experiments? This question is at the origin of the research
presented in this document. Today, based on this research and many more
studies, we know that indeed, machine learning can help in reconstructing
charged particle tracks. Helping in the context of the present research refers
to improving the time spent in finding the tracks. Unquestionably, the cur-
rent tracking techniques reach peak performances on the present data volumes.
However, the combinatorial approach relied upon becomes unusable with the
future increase of the data intake. In turn, the data volumes are produced by
increasing the probability of particles colliding in the LHC. This increase has
then a significant impact on our discovery potential, i.e. our understanding of
the universe. This abstract chain is illustrated in Figure 1.

Fast Particle
 Tracking
Techniques

Larger Data
Volumes
 Handling

Higher
Discovery
ProbabilityThis thesis

ML based

Optimization based

Hardware based

Firefox blob:https://vectr.com/0f6f408f-e671-4ed6-af27-e537b...

1 of 1 12/15/20, 10:31 AM

Figure 1: Illustration of the big picture on particle tracking and this work.
Dark arrows represent additional techniques not falling in any of the mentioned
categories.

Fast tracking techniques are needed in order to process the large data vol-
umes. Optimization techniques rely on using fixed or dynamic thresholds to
reduce the search space. These thresholds are generally found through the
manual evaluation of many thousands of parameters. The current tracking
techniques rely in large proportions on optimization. Machine learning based
techniques rely on the implicit patterns found by mining large datasets. The
resulting models produce automatic decisions with very little manual optimiza-
tion. Hardware based techniques implement tracking algorithms on dedicated
hardware such as GPUs and FPGAs. The algorithms can be machine learn-
ing models or optimization/combinatorial techniques. Additionally, a tracking
technique can combine algorithms from the three different categories. In this
work, we investigate primarily machine learning based techniques with some
extensions towards hardware implementations.

Concepts such as discovery potential, particle collision, tracks are intro-

1

duced in Chapter 1. The experimental apparatus where the previous concepts
take place is detailed in Chapter 2. Relevant definitions as well as standard
algorithms for particle tracking are summarized in Chapter 3. An introduction
to machine learning (ML) and the models used or referred to in this document
is presented in Chapter 4. Fast search techniques lay at the intersection of op-
timization and computational theory and represent an important component
of this work. They are detailed in Chapter 5. The TrackML challenge which
represents the first significant attempt at using machine learning to solve par-
ticle tracking is discussed in Chapter 6. The author contributed to the set up
of the challenge as part of the ATLAS author qualification project.

Finally, the core of this work, i.e. the implementation, test and discus-
sion of various ML concepts on two different particle collision datasets are
demonstrated in Chapters 7, 8, 9 and 10.

1

Experimental Particle Physics

Particle physics is the branch of physics that studies the fundamental con-
stituents of matter and their interactions. A sub-field of particle physics is
referred to as High Energy Physics (HEP) because many of the fundamental
constituents do not exist in nature and high energies are required to produce
them. In fact, particle physics dynamics are governed by quantum mechanics.
And it is quantum mechanics that is responsible for the most accurate physics
theory known as the Standard Model. In this chapter we briefly introduce the
Standard Model and the fundamental notions necessary for the understanding
of this work. A complete account of the standard model can be found in [1][2].

1.1 The Standard Model of particle physics

The framework that describes the elementary laws of nature is known as the
Standard Model (SM). More specifically, it encapsulates theories on the prop-
erties of fundamental particles and their various interactions. Over the last
decades, these theories have been tested and verified through extremely so-
phisticated experiments such as the ATLAS experiment detailed in Chapter 2.
Undeniably the SM does not explain every physical phenomena and still has
limitations such as an explanation for the dark-matter content in the universe
or a quantum theory of gravity. Despite these limitations that constitute the
focus of current research in physics, the SM, with the discovery of the higgs
boson in 2012, is the most successful and robust physical model.

According to the standard model, the universe is a product of particles
and forces. The interplay of these two, creates everything. Figure 1.1 shows
the elementary particles as described by the Standard model. An elementary
particle can be seen as the smallest dot in the universe, i.e. it cannot be
fragmented.

The first classification of particles (also starting from the left in Figure
1.1) is into quarks and leptons. Leptons, such as electrons, are particles that
interact through the electromagnetic and weak forces while quarks interact
through the strong force. There are four fundamental forces :

• The gravitational force. A long-range force, negligible compared to other
forces. It is not described by the Standard Model.

• The electromagnetic force. Also long-range, this force acts on electrically
charged particles.

• The weak force. At the level of subatomic particles, it is for example
responsible for radioactive decay.

3

Figure 1.1: Particles of the Standard Model [3]

• The strong force (as its name suggests, the strongest force) holds the
nucleus together, binding quarks into protons or neutrons. Because of
the strength of this force, quarks cannot exist freely in nature (unlike
leptons) but rather form hadrons1. Quark and gluons are also refered to
as partons.

Three2 of the fundamental forces result from the motion of force carrier
particles called bosons. Each fundamental force has its own force carrier: glu-
ons carry the strong force, photons carry the electromagnetic force and W and
Z bosons carry the weak force. One of the basics of the Standard Model frame-
work is that the elecromagnetic force and the weak force are manifestations
of the same underlying force : the elecroweak force. This unification allowed
to describe all the particles and the force carriers accurately except for their
mass which was not accounted for in the model’s equations. To address this
shortcoming, theorists Brout, Englert and Peter Higgs proposed a mechanism
by which an invisible field gives a mass to particles that interact with it. This
field is now called the Higgs field and the particle associated with it, a Higgs
boson. One of the major goals intended for the Large Hadron Collider (LHC)
was the observation of this particle and therefore, the validation of the Stan-
dard Model as a successful framework. A goal fully achieved when the ATLAS
and CMS experiments jointly announced the observation of the Higgs boson
in 2012.

Colliding particles in a controlled environment is the technique used to
study their fundamental properties. This is how the atom nuclei was first
discovered and a century later, the Higgs boson observed.

1Hadronization is a process where quarks and gluons become hadrons.
2There are theories that propose a graviton force carrier for gravity.

1.2 Colliding Particles

Physicist Charles-Augustin de Coulomb, in 1787 stated that "The magnitude
of the electrostatic force F between two point charges q1 and q2 is directly
proportional to the product of the magnitudes of charges and inversely pro-
portional to the square of the distance between them." This means
that if the distance between two protons is halved, their repulsion force is
quadrupled. When protons are accelerated in the LHC, their beam is con-
stantly focused such that the distance separating protons is at its smallest
when reaching the collision point (approximately 10−5cm). When particles
collide, the repelling force is at its maximum causing particles to scatter away.
Figure 1.2 shows two accelerated particles approaching a collision point.

IP
r1

r2

cross section

Firefox blob:https://vectr.com/31be4f72-a6fd-44ea-a4d6-77e2f...

1 of 1 12/6/20, 1:05 PM

Figure 1.2: Colliding particles : Impact parameter and collision cross section.

The impact parameter (IP) depicted in the figure is the hypothetical clos-
est distance between the two particles centers. The area shown by the red
circle in Figure 1.2 is called collision cross section [4]. If the center of an ap-
proaching particle (in opposite direction) is within this area, then a collision
takes place. Depending on the value of the IP, the trajectory of the parti-
cles after the collision is deflected or scattered due to an energy (momentum)
transfer. Studying this alteration of particles trajectories is a powerful tool
to understand the different forces and structures at play. If the scattering
of the particle is kinematic only (a change in direction only), it is called an
elastic scattering. If, however, the particle emits a new particle3 or absorbs
energy, the scattering is called inelastic. The quark was discovered by means
of deep inelastic scattering (DIS) where the structure of hadrons is probed
using leptons as illustrated in Figure 1.3.

Figure 1.3: Deep Inelastic proton-electron scattering process. An electron
(red arrow) is scattered away from a proton generating boson γ, Z that in
turn interacts with the quark.

During a collision, the interaction producing the largest energy is referred
to as hard-scatter [5]. The hard-scatter occurs when quarks and gluons collide,
transferring an excessive amount of energy and mass. Therefore, the study of
these hard-scatter probes is crucial to the understanding and exploration of the

3The energy is converted into mass via E = mc2

properties of matter (especially that partons cannot be studied directly). The
observables generated from a hard-scatter can be radiation, high transverse4

momentum particles and jets. Often, gluons and quarks create showers of
particles through hadronization and fragmentation. These collimated charged
and neutral particles form a jet as shown in Figure 1.4. The radiation pat-
terns of jets encode the properties of the quarks and gluons that initiated the
hadronization. The study of the content and properties of jets represent an
important focus of high energy physics experiments. A comprehensive intro-
duction on jets can be found in [6][7].

When two bunches of protons are accelerated, the hard-scatter collision
point is referred to as primary vertex. It is the most energetic collision point.
Less energetic (and more common) collision points are referred to as pileup
vertices. When the rate of collisions increase, multiple proton-proton colli-
sions occur simultaneously. In the context of the High Luminosity LHC for
example, the number of these pileup events reaches 200. The pileup collisions,
being less energetic, are less interesting to study. An important complication
however is the contamination of the total energy by these uninteresting colli-
sions. The mitigation of pileup interactions is therefore necessary for a correct
event reconstruction.

pileup vertex

primary vertex

secondary vertex

proton bunch

Firefox blob:https://vectr.com/e16badf6-808d-4ebc-92ba-a18b...

1 of 1 12/7/20, 10:31 PM

Figure 1.4: Collision and vertices. The cone shaped decay is a jet.

Figure 1.4 also shows the decay of particles originating from the primary
vertex into new particles called secondary particles. If the decay takes place at
a relatively important distance from the primary vertex, the originating tracks
are referred to as displaced tracks. Displaced tracks are generally harder to
reconstruct as they are not aligned with the interaction point. Secondary
particles hold important information about the primary particles and their
detection (and reconstruction) is the first technique used to analyze a collision.

1.3 Particle detection

The first detection technique used to explore high energy collisions is a pas-
sive one. The detector layers that are used to measure particles minimally
affect their trajectories through electromagnetic interactions. This tracking
technique is therefore able to detect charged particles only. Multiple detection
layers are placed along the path of the particle. At every layer5, the particle
interacts with the material loosing a small fraction of its energy in the form
of an electrical charge. Using the position of the deposited charge, a tracking
algorithm is able to accurately recover the original track of the particle.

4The momentum component that is transverse to the beam.
5Detection modules can can stop functioning resulting in a missed particle measurement.

Although detection layers are designed to interact as little as possible with
the passing particle, multiple scattering occurs along the trajectory resulting
in a deviation from the ideal path. The energy transfer of this interaction
is negligible due to the small mass of the passing particle but the successive
small angle deviations add a randomness component to the trajectory. This
constitutes an additional challenge to account for in the design of a tracking
algorithm.

Figure 1.5 illustrates the detection mechanism for the reconstruction of
trajectories. Detection layers are placed such that many measurements of the
particle trace are recorded. Associating the different measurements together to
recover a particle trajectory is the first step towards the analyses of a collision.
Multiple scattering effects are added in the first and last detection layers of
Figure 1.5 (b), slightly deviating the measurements from the actual track.

(a) (b) (c)

Firefox blob:https://vectr.com/0b18a34b-dc2b-4c69-92d1-a0d2...

1 of 1 12/7/20, 4:53 PM

Figure 1.5: (a) Particle trajectory. (b) Detector layers for the measurement of
charged particles. Multiple scattering is illustrated on the first and last layers
(green curve). (c) Result of the detection or how the particle is finally seen
through the detector.

The charge deposited by a particle can activate more than one sensor.
Figure 1.6 illustrates a charged particle traversing a layer of sensors and pro-
ducing a charge in 3 of them. The charge cluster that is created has a shape of
(2,2) in the illustrated (u,v) coordinates system. From the shape of the charge
cluster and the detection layer/sensors properties, it is possible to extract
the incidence angle (or inner angles) of the particle along the two illustrated
axis. The incidence angles, depending on the sensor resolution, provide an
additional information for the tracking application.

The particle physics notions introduced in this chapter are independent
from the experiment or detector layout. In the next chapter and throughout
this work, we will specifically focus on the ATLAS detector and the data it
records.

Figure 1.6: Charge deposited by a particle traversing pixel sensors.

Bibliography

[1] Peskin, Michael. An introduction to quantum field theory. CRC press,
2018.

[2] Pais, Abraham. "Inward bound: of matter and forces in the physical
world." (1986).

[3] Andrew Purcell, Go on a particle quest at the first CERN webfest,2012
https://cds.cern.ch/record/1473657.

[4] Scattering Experiments and Classical Theory of Atom–Atom Scat-
tering , in Theory of Molecular Collisions, 2015, pp. 1-18 DOI:
10.1039/9781782620198-00001

[5] Butterworth, Jonathan M., Guenther Dissertori, and Gavin P. Salam.
"Hard Processes in Proton-Proton Collisions at the Large Hadron Col-
lider." Annual Review of Nuclear and Particle Science 62 (2012): 387-405.

[6] KLAUS. RABBERTZ. JET PHYSICS AT THE LHC: The Strong Force
Beyond the Tev Scale. SPRINGER, 2018.

[7] Particle Data Group Collaboration,Review of Particle Physics, Chin.
Phys.C40(2016)100001

9

https://cds.cern.ch/record/1473657

2

The ATLAS experiment at
the Large Hadron Collider

At the entrance of the CERN complex stands an exhibition center that explains
the Large Hadron Collider (LHC) mission to the public. While visitors stand
there, an electronic voice states that the LHC mission is to discover what we,
as humans, are made of and how our universe started to exist. And indeed,
the LHC, with every particle collision is allowing us to reach back in time
to as few as 10−14 seconds after the big bang. This chapter presents details
of the LHC acceleration complex, the particle collisions with their underlying
physics and the different experiments.

2.1 The Large Hadron Collider

The LHC [1] accelerates protons in opposite directions and brings them to
collision in locations known as interaction regions. The protons are grouped
in 2808 bunches of Nc = 1.15 · 1011 proton each. These bunches of protons
are kept on their circular paths with the magnetic field created by approxi-
mately 2000 superconducting dipole magnets. The collision rate at the LHC
is determined by the number of bunches and their proton count. The higher
these two quantities, the more collisions take place. The main limiting factor
of the number of bunches and the number of protons per bunch is the cooling
of the magnets. In order to reach a superconducting state, the magnets are
brought to extremely low temperatures: 1.9 K (-271.3C), colder than the 2.7
K (-270.5C) of outer space). Since accelerating charged particles emits more
power due to synchrotron radiation, the cooling of the magnets (among other
factors) imposes a maximum of Nc = 1011 protons per bunch.
Increasing the rate of collisions is necessary since many interesting physics pro-
cesses have a tiny probability to occur. The order of the cross section σ being
at the picobarn (10−28m2), the LHC has to operate at a high collision rate per
unit of area and time. This quantity is called instantaneous luminosity L :

L = f
Nb n1 n2

A
(2.1)

Nb being the number of bunches per beam, n1 and n2 the number of pro-
tons in the colliding bunches, f the revolution frequency and A the overlapping
area of the bunches. The design instantaneous luminosity of the LHC is equal
to 1034cm−2s−1 [2].

The integrated luminosity,
∫
Ldt is used to quantify the expected number

11

of occurrences N of a physics process after a certain measurement time:

N =
∫
L dt · σ (2.2)

Thus, the increase in luminosity is proportional to the increase of process
occurrences, i.e. number of events which in turn translates to a larger dataset.
The LHC schedule is composed of running periods (Runs) and long shutdowns
(LS) in between to enable its upgrade. Figure 2.1 summarizes the LHC and
the future High Luminosity LHC (HL-LHC) runs. The LS2 is expected to end
in 2021 as Run3 starts.

Figure 2.1: LHC and HL-LHC timeline [3]

The different upgrades primarily target an increase in luminosity as seen
in Figure 2.2(a) which is a key factor for a particle accelerator. The HL-LHC,
expected to start in 2025, will reach a high luminosity by increasing n1 and
n2 and decreasing A in equation 2.1 by squeezing the beams. The higher
the luminosity, the higher the probability of collision of protons pairs from
opposite bunches. The number of simultaneous proton collisions in the same
bunch crossing is referred to as pileup. This distribution is often characterized
by its mean µ. Figure 2.2(b) illustrates the mean number of interactions per
crossing recorded in stable beam collisions of the LHC Run 2.

In the HL-LHC and in the context of this work, the pileup studied has
a mean number of pileup collision of µ = 200. There are two categories
of pileup. The in-time pileup that occurs simultaneously with the physics
process of interest (signal event or hard scatter) and the out-of-time pileup
that represent residual proton collisions from previous events. Both pileup
collisions are regarded as contamination of the signal and have to be mitigated
through the detector tracker.

The proton collisions are recorded and analyzed in four major experiments
along the LHC as illustrated in Figure 2.3.

Each experiment has built a detector targeted at one or multiple physics
aspect. The design of a detector in number or structure of the layers through
which particles are captured is tuned towards a particle type. Different detec-
tor designs yield different precision measurements that in turn affect the final
physics results. The design of a detector although seemingly motivated purely
by its physics reach has multiple constraints some of which are budgetary,
safety related or technology imposed. Both the software used to collect and
analyze data and the hardware are under constant investigation and upgrade.

ATLAS [5] and CMS [6] are the two largest detectors at CERN. In 2012,
the two associated experiments announced jointly the discovery of the Higgs
Boson. Their mission now mainly focuses on probing new physics through the
LHC record luminosity. ALICE [7] covers the studies of quark-gluon plasma
created in heavy ion collisions. LHCb [8] focuses in precision measurements

Month in Year
Jan Apr Jul Oct

]
-1

D
el

iv
er

ed
 L

um
in

os
ity

 [f
b

0

10

20

30

40

50

60

70

80
ATLAS Online Luminosity

 = 7 TeVs2011 pp
 = 8 TeVs2012 pp
 = 13 TeVs2015 pp
 = 13 TeVs2016 pp
 = 13 TeVs2017 pp
 = 13 TeVs2018 pp

2/19 calibration

(a)

0 10 20 30 40 50 60 70 80

Mean Number of Interactions per Crossing

0

100

200

300

400

500

600

/0
.1

]
-1

R
ec

or
de

d
Lu

m
in

os
ity

 [p
b

Online, 13 TeVATLAS -1Ldt=146.9 fb∫
> = 13.4µ2015: <
> = 25.1µ2016: <
> = 37.8µ2017: <
> = 36.1µ2018: <
> = 33.7µTotal: <

2/19 calibration

(b)

Figure 2.2: Evolution of (a)
∫
L dt over the years and (b) of the interaction

per crossing evolution [9]

of CP violation and rare decays of bottom and charm hadrons. To reduce the
impact of cosmic rays on the LHC and its detectors the whole complex has
been installed 100 metes below the Swiss-France frontier.

In this document, we will focus on the ATLAS experiment although the
data analysis principles are detector agnostic.

2.2 The ATLAS Detector

The ATLAS detector [5] measures properties of particles produced in proton-
proton collisions to probe the nature of particle interactions and search for new
phenomena. Figure 2.4 illustrates the layered detector structure. The protons
are brought to collide in the center of the detector. The innermost system
known as inner detector (ID) is used to retrieve charged particle trajectories
with their precise parameters such as momentum and vertex position. The
particles, when leaving the ID will interact with the calorimeter material pro-
ducing showers. These showers are induced to measure the particles energy
through the Electromagnetic or the Hadronic interactions.

Not all particles are detected that way. Some neutral particles such as neu-
trinos will not leave traces in the tracker nor interact with either calorimeters.
Muons for example have a small interaction probability with the calorimeters
and for their detection, ATLAS has a special standalone tracker known as
the Muon Spectrometer (MS). Figure 2.5 illustrates the behavior of different
particle types through the detector component. At the tracker level, it is not
possible to distinguish a muon from a charged pion. The MS easily identifies
muons since they are the only particles to reach it. At the end of the track
reconstruction, both are processed as continuous tracks to the calorimeter.
Inside the tracker and before any reconstruction, the particles are in fact a
collection of points or hits in the detector rather than curves.

Contrary to what might appear, not all particle collisions are registered and
analyzed. The data acquisition is regulated by a strict entry door known as the
trigger. It is an online1 mechanism that selects which collision is recorded and
stored. In the next sections, these different detector systems are explained.

2.2.1 Detector Coordinate System

To describe the many aspects of particles emanating from high energy collision,
a coordinate system definition is required. This system provides a standard

1At the time of the collision or as close to it as physically feasible

Figure 2.3: CERN accelerator complex [4]

across the experiment and enables efficient description of its complex structure.
Some of the quantities defined in this section will be used in different chapters
to reference specific particle behavior.

The origin of the coordinates system is chosen to be the nominal interaction
point. The z axis is chosen to be aligned with the beam axis and the polar
θ angle is defined with respect to it. The positive x axis points to the center
of the LHC ring and the positive y axis points upwards. The xy plane is
transverse to the beam axis. Quantities such as the transverse momentum PT
of a particle are defined with respect to this plane :

PT =
√
p2
x + p2

y = |p| sin θ (2.3)
PT is proportional to the inverse curvature of a particle trajectory in the

xy plane. Low momentum particles curve more in the transverse plane and
are more challenging to find independently of the technique used (standard
tracking or machine learning based).

The second important quantity is the rapidity of a particle y:

y = 1
2 ln

(
E + pz
E − pz

)
(2.4)

where E is the energy of the particle and pz its momentum along the z axis.
When the particles are considered massless (given its momentum), the quan-
tity in Eq. 2.4 is approximated by the geometric quantity pseudo-rapidity:

η = − ln
(

tan θ2

)
(2.5)

The pseudo-rapidity η is commonly used to refer to detector regions. Fi-
nally, the detector is split into Barrel Region (BR) sections, cylinders around
the z axis, and End-cap Regions (ER) sections, wheels perpendicular to the z
axis.

Figure 2.4: ATLAS detector schema [10]

2.2.2 The Inner Detector

The Inner Detector uses three different technologies to provide the first accu-
rate measurements of the particles. Figure 2.6 illustrates the different compo-
nents and their dimensions. The ID is formed by three sub-detectors:

• Pixel Detector, immediately on top of the beam pipe, four pixel layers
(Run 2) provide high precision 3D measurements of the hits.

• Semiconductor Tracker (SCT) surrounding the pixel layers also providing
precise 2D measurements.

• Transition Radiation Tracker (TRT) is the outer most component of the
track and uses straw tubes filled with a gas mixture. It allows the col-
lection of a higher number of measurements, improving the momentum
resolution at the expense of resolution and limited rate capability.

The insertable b-layer (IBL) was added to the Pixel detector for Run 2 and it
is an example of the possible upgrades performed to enhance precision.

Pixel Detector

The pixel detector contains about 2500 modules and 92 million channels. The
IBL is composed of planar and 3D silicon pixel sensor technology and the ear-
lier three layers are made of silicon planar sensors. A traversing charged parti-
cle ionises the material of the pixel module and create pairs of electrons/holes
along the trace. The opposite charges then drift apart under the applied
voltage and can be registered as a hit. This hit position are derived from the
deposited charge. The process of determining the hit positions from the charge
is called clusterisation. Since the timestamp2 cannot resolve particles from one
bunch crossing in time, it is possible that the charge in the modules belong to
more than one particle. This is referred to as hit merging and disentangling
the corresponding clusters (especially in dense environments) is done with a
neural network. With its four layers, the pixel detector provides at least 4
track hits for the reconstruction. These innermost hits dominate the impact
parameter and the vertex resolution.

2An additional time measurement on the activated modules would allow to disentangle
measurements created at different times from different particles.

Figure 2.5: Detection stages of different particles [11]

Semiconductor Tracker

The Semiconductor Tracker (SCT) is composed of four cylindrical layers in
the barrel region and two end-caps each containing nine disk layers. SCT has
a binary readout that limits the spatial resolution along the sensitive direction
to 23 µm. The initial resolution was increased with a sandwich like structure
where each SCT module has two sensors rotated by +/−40mrad with respect
to each other. This double sided structure provides a 1D measurement from
each sensitive plane. They are then combined along the correct direction (of
the plane) to the global coordinate space. SCT comprises 988 modules in each
of the two end-caps and 2112 in the barrel with a total of 6.2 million readout
channels.

Although disappearing in the future upgrade of the detector (discussed in
the next Section), the final (and largest) segment of the current detector is
the Transition Radiation Tracker.

Transition Radiation Tracker

The Transition Radiation Tracker (TRT) are essentially 4mm diameter tubes
filled with gas called drift tubes. When a particle passes through a tube, it
interacts with the gas mixture and an electron shower is created towards the
center of the tube. The shower arrival time distribution is used to estimate the
drift time measurement effectively resulting in a small circle (of drift radius)
which the particle crossed at given location. The exact location retrieval is
performed by track reconstruction.

In the barrel, the straws are 144cm long parallel to the beam axis. In the
end-caps they have a length of 37cm. The TRT contributes to the reconstruc-
tion in two major aspects:

• The stacking of the tubes allows more than 30 hits per track and thus
contributes massively to the resolution of the momentum.

• The space between the drift tubes is filled with a transition radiation
material that emits X-rays when traversed by a particle. Electrons emit
larger amounts of photons compared to other particles and so a collection

Figure 2.6: A schematic view of the ATLAS Inner Detector (ID) [12]

of these X-rays allows a complementary particle type identification to the
calorimeters.

Another example of detector upgrade is the change of gas mixture compo-
sition of the drift tubes during LS1. Ar replaced the more expensive Xe.

Before moving on to the outer most components of the ATLAS detector,
namely the Calorimeters and the Muon Spectrometer, it is important to high-
light the upgrade of the ID for Phase II and HL-LHC.

2.2.3 Detector Upgrades

The Phase-II upgrade is planned to be installed by 2024 (Figure 2.1) and with
it an increase in instantaneous luminosity that the current ID cannot handle.
The different detector and physics aspects that will be affected by this upgrade
are:

• The increase in radiation damages the sensors and causes current leak-
age3 causing the hit efficiency4 to drop,i.e. a sensor is no longer able to
detect the passage of a particle.

• The granularity of the current SCT and TRT sub-detectors cannot cope
with the increase in pileup. A high occupancy can significantly degrade
performance. For example, resolving merging particles will not be feasi-
ble (degraded tracking performances).

Figure 2.7(a) shows the implications of running on higher pileup (intro-
duced in Section 1.2) while keeping the same detector granularity and tracking
performances. The expected pileup for HL-LHC is µ=200. The exponential
scaling of the wall-time5 per event shows the inability of current algorithms

3A leakage current is an unwanted electric current, it increases as a function of the total
radiation dose.

4The detector hit efficiency has to be 100%
5Also known as elapsed real time. It is the actual time that a program takes to run.

to handle the the expected volume of data. In parallel, Figure 2.7(b) shows
various scenarios for future computing models. The blue distributions assume
significant improvement and development work in the simulation software, in
reconstruction and in event generation.

(a) (b)

Figure 2.7: (a) The effect of an increase in the average number of interactions
per bunch crossing (< µ >) on the reconstruction wall time per event. (b)
Estimated CPU resources needed for the years 2020 to 2034 for both data and
simulation processing.

The two plots shown in 2.7 sparked significant R&D to tackle the recon-
struction performances. The reduction of CPU consumption is also the main
focus in this PhD thesis. Yet, even if the reconstruction (and simulation) per-
formances are substantially improved, it is first necessary for the detector to
upgraded in order to cope with the higher luminosity.

ATLAS Phase-II Inner Tracker

The ATLAS Phase II Inner Tracker (ITk) [14] is the replacement of the current
ID. It is optimized to cope with future run conditions, specifically HL-LHC,
without degrading the tracking performances.

The ITk, contrary to the ID, comprises two subsystems: a Strip Detector
and a Pixel Detector (Figure 2.8). The latter extends the coverage to |η| < 4
with its five layers. The close by rings in the pixel detector are positioned to
ensure a larger number of hits per layer thus improving tracking conditions.
Additionally, the layers closest to the interaction point are replaceable as an
anticipation to the extreme radiation environment expected at the HL-LHC.

The work presented throughout this document will solely revolve around
the Inner Detector system where the task is to reconstruct charged particle
tracks. The ITk layout presented in Figure 2.8 is used in Chapter 8 to demon-
strate the proposed approach.

2.2.4 Electromagnetic and Hadronic Calorimeters

The calorimeter task is to measure precisely the energy of the particles and
thus correctly identifying the amount of missing energy which is crucial for
searching for new physics. As shown in Figure 2.5, the Calorimeters are capa-
ble of detecting more particles than the ID (charged and neutral). It does so by
absorbing the energy of particles when interacting with the material through
a showering process. The shower type and interaction holds the signature of
the particle type. The ATLAS calorimeters use sampling technology where
an absorbing layer is followed by an active (measuring) layer and the initial
particle energy is obtained through the sum of all energy deposits.

Figure 2.8: The ITk layout with pixel layers in red and strip layers in blue.

A liquid-argon (LAr) sampling Electromagnetic Calorimeter (ECAL) is
used to measure light electro weak particles such as electrons, positrons and
photons.

The Hadronic Calorimeter (HCAL) uses steel absorbers and scintillator-
tile sampling technology as well as copper/LAr sampling technology to capture
hadronic particles such as protons, neutrons and pions.

2.2.5 The Muon Spectrometer

The Muon Spectrometer (MS) is the last piece of the ATLAS detector and its
role is the reconstruction of muons that barely interact with the Calorimeters
(loosing small fraction of their energy). Fast Muon reconstruction is an im-
portant requirement of triggering (detailed in the next section 2.2.6). For this
purpose, the MS has two subsystems for precision tracking: Monitored Drift
Tubes (MDT) and Cathode Strip Chambers (CSC) and two additional de-
tectors for fast momentum estimation: Resistive Plate Chambers (RPC) and
Thin Cap Chambers (TGC). TGC have a higher granularity for copping with
the higher multiplicity in the forward region. The fast measurement allows
also the distinction between muons from different bunch crossings.

2.2.6 The Trigger

The LHC generates in a single hour the volume of data6 that Facebook ac-
cumulated and stored since its creation. That is, data on billions of user
activities (images and videos included). Contrary to social media, interesting7

hard scatter events constitute only a small fraction of the detector readout.
Concretely, only one bunch crossing in 105 produces a potentially interesting
event. The selection of this interesting event is the job of the trigger sys-
tem. An event must pass a two level decision process to be stored for offline
processing.

• Level-1trigger (L1) [13] a hardware based trigger that reduces the data rate
from 40 MHz to 100 kHz. The decision making occurs within 2.5

The L1 is deployed on custom-built electronics and uses coarse inputs from
the Calorimeters (L1Calo) and the MS (L1Muon) to make approximate esti-

6One petabyte of collision data per second.
7In standard reconstruction, uninteresting events are low PT proton scattering

mations on objects of interest in selected events. The L1 does not make use of
any information from the ID due to the readout time. An example of selection
criteria is the presence of leptons which are rarely present in uninteresting
events. The presence of a lepton is a flag for retaining an event and makes up
20% of the L1 bandwidth. The L1 detects the regions where the interesting
object has been detected known as regions of interest (RoI). Once an event
is accepted, it is passed to the HLT along with the coordinates of the RoI.
The HLT is a 28000 CPU core farm that runs fast software on the L1 RoI to
extract the event physics signature. The algorithms used are similar to the
ones run in offline analysis, only the HLT focuses on the refined RoI of the
L1 which decreases significantly the response time. The output of the HLT is
processed by the Tier-0.

Tiers are levels for computer centers [15]. Tier-0 is the first set of com-
puter clusters that process and store the raw data directly from the LHC. It
is the CERN data center, physically located inside the CERN complex. Next
in the grid hierarchy is the Tier-1 with its 13 computer centers distributed
across three continents. They are responsible for the storage on disk and tape
of the raw and reconstructed LHC data. Tier-2 are 155 universities or scien-
tific institutions providing computing units for analysis as well as performing
simulations. Tier-3 represents the end user level and can be a single laptop
performing data analysis.

2.3 Monte Carlo Simulation

Similarly to a robot being trained in simulations before its first step on Mars,
collisions are modeled in accurate Monte Carlo simulations before the LHC
is turned on. The role of simulations in High Energy Physics experiments is
to predict the physics produced during a collision. This prediction is based
on theories of the established Standard Model of particles (see Chapter 1).
Discrepancies between these theories and what is collected from a real collision
are indicators of an unexpected phenomena : new physics. In fact, despite
the complexity and sophistication of the LHC, the data that it produces is
non interpretable without confronting it to simulation. Furthermore, a new
particle or physics phenomena could be hidden in the data today but unless
it is aligned with the corresponding simulation (thus theory), it cannot be
discovered.

Monte Carlo methods repeatedly sample from the underlying probability
distribution to approximate an expected value. These techniques are well
suited to simulate high energy physics, inherently stochastic, interactions.

The simulation of the collision and the particles created from it (their type,
energy and so on) is carried in generators. They are the translation of theory
equations and models into high energy physics events. The most popular
generators are PYTHIA [15], HERWIG [17] and SHERPA [18]. In order to
model a detector response to these generated events, an additional software is
required. This software propagates the collision in a specific detector geometry
(ATLAS for example) and models the passage of every particle through the
detector layers. Simulations in ATLAS [20] use the Geant4 [19] software for
exactly this purpose. An essential input to Geant4 is the detector description
file that contains a detailed representation of the physical detector (even pipes
and wires). The more details are put into the detector description, the more
accurate and slow the simulation becomes. Simulations using Geant4 with a
detailed physics description and the complex physics geometry, referred to as
full simulation, have such an important run-time that they cannot be used in

many physics studies that require high statistics. Over the years, many fast
simulation variants have been developed to accelerate the slowest components
in the full simulation. For example, the slowest part in the full simulation
(75%) is due to the simulation of electromagnetic particles [20]. The fast G4
simulation software accelerates this process by a factor of three when replacing
the simulation of these particles showers with pre-simulated ones. The first
application of machine learning techniques for showers simulation [21] have
proposed the use of generative models as a faster alternative to parameterized
simulations.

ATLFAST-II was developed in order to speed-up the full simulation pro-
cess even more (factor 100). It comprises the fast ATLAS Tracking Simulation
(Fatras) for the simulation of the inner detector and muon system and the Fast
calorimeter Simulation (FastCaloSim) for the calorimeter. Fatras keeps an ac-
curate description for sensitive detector parts only and simplifies the rest of the
detector. The extrapolation engine [22] used in the offline track reconstruction
algorithm performs the propagation of the particles in this simplified geome-
try. Fatras provides the collection of simulated particles to the FastCaloSim
package. FastCaloSim in turn, speeds up the simulation of particle showers
in the calorimeter through parametrizations (histograms) of the longitudinal
and lateral energy profiles estimated from 30 millions full simulation events
[20].

As mentioned earlier, Fatras and FastCaloSim are designed and optimized
for the ATLAS detector geometry. An interesting research direction is the
experiment-independent fast simulation offered by ACTS (A Common Track-
ing Software) [16]. ACTS is a toolkit that performs track reconstruction using
modern software paradigms while inherently enabling parallel architectures
executions. It can be seen as a research and development platform for parti-
cle tracking. ACTS was used as the fast simulation engine for the TrackML
Challenge (Chapter 6) and therefore the first dataset used in this work.

Figure 2.9: Distribution of the invariant mass of the four leptons selected using
the full ATLAS Run-II dataset. The Higgs boson corresponds to the excess of
events in blue.

The last piece of the simulation pipeline is called digitization. Once the
particle interactions are modelled, the information on the energy deposits with
the corresponding detector coordinates becomes available. Digitization con-
verts this information into a format similar to the detector readout. Not only
the charge measurements and coordinates are converted into voltages and cur-
rents (the actual detector output) but also low energetic physics is overlayed
such as pileup (also pre-simulated for speed). After this last step and approx-
imately 2 million lines of code, the output of the simulation reassembles in
every aspect the data collected from the LHC and additionally contains all
the information on the simulated physics. Figure 2.9 shows the agreement
between collected data (black dots) and simulation where all the decays are
labelled.

Bibliography

•[1] L. Evans and P. Bryant,LHC Machine, JINST3(2008) S08001.

[2] LHC Design Report, Report number: CERN-2004-003-V-1, DOI:
10.5170/CERN-2004-003-V-1

[3] The LHC and HL-LHC timeline https://cds.cern.ch/record/
1975962/

[4] E. Mobs. The CERN accelerator complex. Complexe des accélérateurs du
CERN. https://cds.cern.ch/record/2684277

[5] ATLAS Collaboration,The ATLAS Experiment at the CERN Large
Hadron Collider, JINST3(2008) S08003.

[6] CMS Collaboration,The CMS Experiment at the CERN LHC,
JINST3(2008) S08004.

[7] ALICE Collaboration,The ALICE experiment at the CERN LHC,
JINST3(2008) S08002.

[8] LHCb Collaboration,The LHCb Detector at the LHC, JINST3(2008)
S08005.

[9] ATLAS Collaboration,Luminosity Results for Run2
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/
LuminosityPublicResultsRun2

[10] Joao Pequenao, Computer generated image of the whole ATLAS detector,
https://cds.cern.ch/record/1095924

[11] Joao Pequenao and Paul Schaffner, How ATLAS detects particles: dia-
gram of particle paths in the detector. https://cds.cern.ch/record/
1505342

[12] The ATLAS inner detector https://cds.cern.ch/record/2209070/
plots

[13] The ATLAS Collaboration. Performance of the ATLAS Trigger System
in2015. European Physical Journal C,77,2017

[14] The ATLAS Collaboration Collaboration„Technical Design Report for the
ATLAS ITk Pixel Detector,Tech. Rep. ATL-COM-ITK-2018-019, CERN,
Geneva, 2018.https://cds.cern.ch/record/2310230

[15] The Grid: A system of tiers https://home.cern/science/computing/
grid-system-tiers

[16] Sjöstrand, Torbjörn, et al. "An introduction to PYTHIA 8.2." Computer
physics communications 191 (2015): 159-177.

23

https://cds.cern.ch/record/1975962/
https://cds.cern.ch/record/1975962/
https://cds.cern.ch/record/2684277
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2
https://cds.cern.ch/record/1095924
https://cds.cern.ch/record/1505342
https://cds.cern.ch/record/1505342
https://cds.cern.ch/record/2209070/plots
https://cds.cern.ch/record/2209070/plots
https://cds.cern.ch/record/2310230
https://home.cern/science/computing/grid-system-tiers
https://home.cern/science/computing/grid-system-tiers

[17] G. Marchesini, B.R. Webber, G. Abbiendi, I.G. Knowles,M.H. Seymour
and L. Stanco, HERWIG: A Monte Carloevent generator for simulating
hadron emission reactionswith interfering gluons. Version 5.1 - April 1991,
Comput.Phys. Commun.67(1992) 465

[18] T. Gleisberg et al., SHERPA 1.alpha, a proof-of-conceptversion,
JHEP02(2004) 056, [hep-ph/0311263]

[19] S. Agostinelli et al., Geant4 - a simulation toolkit, Nucl.Instr. Methods
Phys. Res.A 506(2003) 250–303

[20] Aad, Georges, et al. "The ATLAS simulation infrastructure." The Euro-
pean Physical Journal C 70.3 (2010): 823-874.

[21] ATLAS collaboration. (2018). Deep generative models for fast shower
simulation in ATLAS (No. ATL-SOFT-SLIDE-2018-1028). ATL-COM-
SOFT-2018-182.

[22] A. Salzburger, The ATLAS Track Extrapolation Package,ATL-SOFT-
PUB-2007-05 (2007)

[23] A Common Tracking Software https://acts.readthedocs.io/en/latest/

3

Track Reconstruction

Particle tracking is solving a puzzle. The challenge is recognizing which foot-
prints are left by which object. Once all the pieces are associated with their
doers, the map is complete and one can uncover all the paths and interactions.

In charged particle tracking, particles create a puzzle of traces (footprints).
Due to technology constraints the traces left in the detector are atemporal.
Particles passed through different locations at different moments in time but
the output of an event has all the information of their passage at once mak-
ing the traces ambiguous and highly dense1. Another challenge is the high
luminosity environment which opens new physics horizons by increasing the
rate of collisions and thus the number of traces. This chapter discusses the
reconstruction of charged particle trajectories from the creation of traces in
the detector to the final information extracted from each retrieved particle.

3.1 Tracking Notions

Before diving in into tracking algorithms some definitions are necessary:

Tracking efficiency

Along with the fake rate, the tracking efficiency or only "efficiency" is
considered as the most important quantity. This is, because the understanding
of the physics process requires to have an as complete-as-possible picture.
The efficiency is the ratio between reconstructed tracks and actual tracks that
pass predefined criteria. If a collision creates M particles and out of these
N particles pass criteria such as having high enough momentum, then the
efficiency is the fraction of N particles that are found by the algorithm.

Efficiency = Nreco ∩N
N

(3.1)

With Nreco the number of tracks found by the tracking algorithm. An
ideal tracking algorithm would achieve perfect efficiency, i.e. reconstruct all
particles in the sample N . A particle is considered found if the collection of
its hits is good enough to estimate the track parameters.

A particle trajectory is defined with five parameters shown in figure 3.1.
The ultimate goal of track reconstruction is to find the parameters that de-
scribe the particle closest to its origin with the smallest error. This is then
further used to interpret the particle within the context of the physics event
(vertex, particle type, etc). Particle parameters are :

1Detectors that allow for sufficient time resolution as well are only in development

25

• The transverse impact parameter d0 is the distance of the point in the
track closest to the interaction point (IP) in the x-y plane.

• The longitudinal impact parameter z0 is the z coordinate of the point in
the track closest to the IP.

• The polar and azimutal angles θ and φ, respectively.

• The ratio q/p of the reconstructed track charge q and momentum p.

Figure 3.1: Visual insight into track parameters. IP represents the interaction
point. The impact parameter representation is chosen assuming to be close to
the vertex position, i.e. the actual origin of the particle.

The found tracks might not be the exact subset of real particles but close
enough to retrieve similar properties. A matching criteria is introduced to
define the minimum hit subset to consider a particle as found. In simulation
data, the matching is performed either by looking at the truth content of the
hits or by approximately estimating the truth physics parameters. It is worth
noting that this is only possible in simulation where the truth information is
available. There exist, indeed techniques to match tracks to found particles
also in data taken in an experiment, where no truth information is available.
These consist for example of tag probe methods, but are beyond the score of
this work.

Fake rate

Because the efficiency is so important, a tracking algorithm might find more
particles than actually exist only to minimise the probability of missing some,
i.e. |Nreco| ≥ |N |. A collection of hits that is not produced by a single particle
but returned by the tracking algorithm is referred to as fake. Usually, if a
track contains 50% and more of hits from different sources, then it is labelled
as fake. The fake rate is therefore the fraction of fake hits combinations over
the total reconstructed tracks.

Fake rate = Nreco − (Nreco ∩N)
Nreco

(3.2)

Fakes can be produced at different stages of the tracking algorithm but it is
crucial that they are reduced before the final results. Fake tracks can cause an
imbalance in the momentum/energy conservation hypothesis or point to wrong

vertices. Various procedures aim at identifying and removing fake tracks.

Holes

In tracking procedures, different track hypothesis are built and followed.
When a measurement is expected by the algorithm to be on a certain sensor
but there is none present, the measurement or rather its absence is referred
to as hole. Possible causes for holes are inactive (faulty) sensors or intrinsic
inefficiency although the detector condition information is integrated to avoid
false hole flagging. Generally a good track should contain at most one hole.

Hit merging

In dense environment such as jets, the distance between particles is so
small that the readout channels cannot distinguish between their hits. Parti-
cles share measurements or their hits get merged. This is different from the
splitting of merged clusters as the distance between particles is much smaller
in the case of hit merging. A hit can therefore be part of more than one track
hypothesis (candidate).

3.2 From Detector to Space Points
Tracking charged particles in the inner detector is a fundamental task in a
HEP experiment. The detectors are usually constructed such that, when a
particle is created, it leaves traces on the modules of the detector and it is only
through this traces, assembled together, that we can find back or reconstruct
its full trajectory. A trace is the localisation of the particle in the detector.
It is signaled by the readout channels that are activated by the passage of
a charged particle (the particle deposits a charge2). A particle can activate
multiple readouts that are grouped together into clusters with a connected
component analysis. Those so called clusters are then used to build space
points (hits) that represent the single location through which the particle is
assumed to have traversed the detector layer. Figure 3.2 depicts the clusters
produced by the passage of a particle through multiple layers. The procedure
of deriving a single location to represent a cluster is called clusterisation.
Depending on the detector characteristics, different clustering techniques can
be deployed:

• Clustering using only digital readout: Pixels/Channels that are above
a certain readout threshold are activated, but no further distinction be-
tween individual channels contributing to one cluster can be done. This
is equivalent to a center of gravity algorithm in which the hit position
is taken as the average of all pixels. If a large number of pixels are acti-
vated (long clusters), the algorithm crops those to retain only the main
pixels.

• Clustering using analog information: if the detector is capable of deter-
mining (at least approximately) the amount of charge induced in a single
readout channel, e.g. through time over threshold (ToT3) readout infor-

2The passing particle ionises the detector material and the charge is subsequently read
out.

3The time the signal remains above a certain threshold, which is correlated with the
amount of charge deposited.

Figure 3.2: Schematic view of multiple readout channels activated by a single
particle passing through three pixel layers. Colors correspond to the amount of
charge deposited in each pixel (yellow is highest). On the right, the output of
the clusterisation is shown. From each cluster a single localisation is derived,
indicated by the black cross. Each cross is called a hit or space point.

mation, this can be used to further refine the cluster position evaluation.
In general, the charge (or ToT) is proportional to the path length of the
particle within the readout cell, hence it can be used to interpolate the
hit position.

A neural network to split merged clusters

To date, the only machine learning based algorithm in use in the ATLAS offline
track reconstruction, is the identification of merged clusters. In dense envi-
ronment, multiple particles can activate the same pixels. Figure 3.3 presents
a drawing of such (frequent) scenarios. The highlighted pixels in the figure
could be caused by one, two or more particles. The task of the neural network
(NN) [1] is to split such clusters and assign each subgroup to the particle that
created it. In practice, a set of ten neural networks are used. Each has a
two hidden layer architecture and while the first model predicts the number
of particles that caused the clusters, the remaining nine estimate the particles
positions with errors. Prior to the use of an NN, the splitting of clusters could
only be resolved iteratively at a later stage.

Once the clusters are split and space points formed, the next step is the
building of seeds.

3.3 Building Seeds

This step reconstructs the first segment of a track, its seed. Any three points
(triplets) that are aligned with a helix model can be investigated, becoming a
seed. Concretely, if this triplet passes certain cuts, e.g. maximal transverse or
longitudinal impact parameters or other simple geometrical requirements such
as a minimum distance between hits, it is retained for the next stage. A seed is
not necessarily built from the inner most hits. Seeds formed by strips hits are
formed as well. Because the efficiency is such a prime concern, multiple seeds
can be constructed for the same particle and therefore the same track road
is followed multiple times. The optimal seeding algorithm, however, would

Figure 3.3: Illustration of multiple particles depositing charges in pixels. Par-
ticles are indicated by the arrows and the pixels activated by each arrow is
shaded with its associated color [1].

produce exactly one significantly good seed per particle to be reconstructed.
If a seed is not produced for a certain particle, it will not be retrieved in later
stages (no back propagated information).

The choice of having triplets as starting points comes from the fact that
three points are the minimal requirement to draw a helix (circle in xy and a
line in z). Choosing a larger seed size could reduce the combinatorics needed.
Chapter 9 presents a machine learning based alternative to building and fil-
tering seeds early on.

Figure 3.4 shows the total number of seeds formed per bins in η and per
event. As illustrated by the Figure, only a small fraction are used for the final
tracks especially that a µ = 200 event produces on average 4000 particles of
interest.

Following the geometry of the detector (the number of hits produced), the
seed multiplicity can be extremely high. Moreover, for every accepted seed an
additional computational cost is added whether it is transformed into a track
candidate (highest computational cost) or by checking against previous seeds.

After a triplet passed the first set of predefined cuts in the seeding, a
fourth point is required4 to confirm a seed quality before proceeding to the
combinatorial filtering.

3.4 Combinatorial Track Finding

After a seed is formed and it has passed the seeding cuts, the Combinatorial
Kalman Filter (CKF) will build a route starting from the seed and pointing to
the next layers [3]. Hits compatible with this route are tested with the track
hypothesis. The evaluation of the particle trajectory through the detector and
magnetic field is a highly CPU intensive operation, hence it should ideally only
be done for track candidates that are likely to describe trajectories for particles
to be found.

A number of cuts are imposed on the seeds (routes) to maximise their
purity such as a minimum momentum and a maximum displacement from the
impact parameters. The cuts used in standard tracking are summarized in
Table 3.1.

4This is specific to the ITk seeding strategy

Figure 3.4: Overview of seeds distribution along the pseudo-rapidity η for the
ITk layout (four points required to form a seed). Out of the total amount
of seeds formed, the subset that passes basic criteria (d0 or presence of holes
for example) is accepted and within it, a much smaller fraction is used to
form track candidates. Later, only few survive to make up the final track
output. The surface between the magenta line and the blue one is spent in
combinatorics not giving any particle.

This process is repeated with all hits found along the seed route, from layer
to the next. Because of this combinatorial approach, a seed can give multiple
routes and in the absence of an early filtering mechanism, the combinatorics
(route possibilities) explode in an exponential way. Cuts are applied to discard
tracks with not enough hits or too many holes. Similarly to the seeding, if no
track candidate is built for a particle, it cannot be retrieved at a later stage.

The output is known as track candidates and as shown in Figure 3.4, they
are close to the final output along most of the pseudorapidity range. As many
combinations have been made, incorrect hit-track candidate assignments have
been made. The ambiguity solving module addresses these cases.

Requirements Pseudorapidity interval
η < 2 2 < η < 2.6 2.6 < η < 4

Pixel hits ≥ 1 ≥ 1 ≥ 1
Pixel+Strip hits ≥ 9 ≥ 8 ≥ 7
Holes ≤ 2 ≤ 2 ≤ 2
pT [MeV] > 900 > 400 > 400
|d0| [mm] ≤ 2 ≤ 2 ≤ 10
|z0| [cm] ≤ 20 ≤ 20 ≤ 20

Table 3.1: Minimal requirements for the default tracking depending on the
pseudorapidity region for the planned ATLAS ITk detector [2]

3.5 Ambiguity Solving
In the ATLAS track reconstruction, an ambiguity solving routine runs over all
track candidates that are sorted according to a quality score. The score derives
from quantities such as the one presented in Table 3.1 where a track having a
hole is more penalized than a complete track. A track fit, based on minimum
least square estimation is run and measurements contributing disproportion-
ately to the fit can be dropped from a track candidate or a poorly fitting track
can be removed completely. Additionally, merging clusters are split with a
neural network algorithm described in section 3.2. A final reconstruction fit is
run using a very detailed detector material description to estimate the precise
track parameters. This last step produces all the information needed from
the tracker and is passed to the next sub-detectors. The scoring and cuts
applied prior to this step are implemented to reduce drastically the number of
candidates on which to run the final fit.

3.6 Faster Tracking
Figure 3.5 shows the evolution of the CPU time per event versus the average
pileup. The dotted lines represent the Run-2 tracking with the standard cuts
while the continuous lines represent the ITk layout. The principal differences
naturally are due to the new detector layout that was designed for the increased
pileup. Despite this, the total reconstruction time at < µ >= 200 amounts to
roughly 220 HS06x seconds per event which is at best5 11 seconds per event.

> µ <

0 50 100 150 200

 s
ec

on
ds

 p
er

 E
ve

nt
×

H
S

06

0

50

100

150

200

250

300

350

400

450

Total ID Run-2 Reconstruction
Track Finding (Run-2)
Ambiguity Resolution (Run-2)

Total ITk Reconstruction
Track Finding (ITk)
Ambiguity Resolution (ITk)

ATLAS Simulation Preliminary
 eventstITk Layout, t

Figure 3.5: Evolution of the CPU resources needed for the Track Finding and
Ambiguity Resolution as a function of the pileup. The clear improvement is a
consequence of a design layout optimised for technical performances.

Recently, tighter cuts and requirements have been shown to further speed
up the total reconstruction pipeline [4]. This comes with a tolerable physics
performance compromise, i.e. tighter acceptance cuts mean dropping the less
interesting particles against CPU improvement. This approach brings the total
reconstruction time for ITk to 31.7 HS06X seconds so roughly 1.5 seconds in
the best case (20 HS60 per core). It is important to note that for this number
and by design, the ambiguity solver is not used. Instead, the track parameters
are estimated within the track finder resulting in less precise estimates.

5Considering 20 HS06 per core

Detector <µ> Cluster
Finding

Space
Points

Track
Finding

Ambiguity
Resolution

ITk layout 200 22 6.5 78 97
Run-2 20 1.5 0.7 23 15

Table 3.2: CPU resources needed for the different steps of the tracking pipeline
in ITK and Run2 conditions [4]. Time unit shown is HS06*seconds where
modern CPUs have 15-20 HS06 [5] per core.

Bibliography

[1] ATLAS Collaboration, A neural network clustering algorithm for the AT-
LAS silicon pixel detector, JINST9(2014) P09009, arXiv:1406.7690

[2] ATLAS Collaboration Collaboration Technical Design Report for the AT-
LAS ITk Pixel Detector,Tech. Rep. ATL-COM-ITK-2018-019, CERN,
Geneva, 2018. https://cds.cern.ch/record/2310230.

[3] The ATLAS Collaboration. The Optimization of ATLAS Track Re-
construction in Dense Environments.ATL-PHYS-PUB-2015-006 https:
//cds.cern.ch/record/2002609/files/ATL-PHYS-PUB-2015-006.pdf

[4] ATLAS Collaboration, Fast Track Reconstruction for HL-LHC, ATL-
PHYS-PUB-2019-041

[5] HEPiX - Benchmarking Working Group, lhttp://w3.hepix.org/
benchmarking.html

33

https://cds.cern.ch/record/2310230
https://cds.cern.ch/record/2002609/files/ATL-PHYS-PUB-2015-006.pdf
https://cds.cern.ch/record/2002609/files/ATL-PHYS-PUB-2015-006.pdf
lhttp://w3.hepix.org/benchmarking.html
lhttp://w3.hepix.org/benchmarking.html

4

Machine Learning

Artificial intelligence (AI) is the concept that allows human made (artificial)
entities to act intelligently. The concept definition evolves with our own def-
inition of "intelligence". A sub-field of AI is machine learning (ML) and has
an exact and agreed upon definition as "the science that allows computers
to take decisions without being explicitly programmed". The later is not an
additional challenge set by programmers but rather due to our inability to
solve the challenges tackled by ML. Indeed, ML is used e.g. for self driving
cars or for image satellite detection because despite our advanced knowledge,
such tasks cannot be completely solved by an if-else program. Today, machine
learning appears as a revolutionary concept even more than thirty years ago
when it was first introduced to the community and that is solely due to the
availability of tremendous amounts of data. Machine learning often goes hand
in hand with another concept of Big Data, an even stronger relevance to this
thesis as the LHC can be regarded as one of the biggest data machines in the
world.

This chapter introduces the basic concepts of machine learning with a focus
on topics relevant to tracking. The different ML techniques used at the LHC
for tracking and beyond will be discussed. At the conclusion of the chapter, an
exhaustive table of machine learning techniques suitable for tracking will be
presented along with comments on future technologies and trends that ought
to be followed.

4.1 Key Concepts and Definitions

The most accepted definition of a learning algorithm is the one by Mitchell [1]
"A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E". This definition contains every
key concept used throughout this thesis. In this section, we will define and
give examples on the three concepts E,T and P, generally and in the charged
particle tracking context.

4.1.1 The Learning Task

Consider the cloud points in Figure 4.1. Let us assume that every point in the
figure is a signal emitted by different objects (gas particles, rocks, noise...etc)
and that we are only interested in retracing the passage of an alien object, i.e.
among these points, a set of approximately 10 points (if linked together with
a virtual line) represent the trajectory of an extremely rare and interesting
object. Despite our ability to imagine trajectories we have not seen before,

35

such tasks are too difficult to solve by fixed programs designed by us (human
beings). This is especially true since the program spends the vast majority of
CPU power in finding and testing trajectories that do not exist (candidates
later discarded). Finding the object trajectory is the task and learning the
pattern governing the set of points is the mean to achieve the task. A ma-
chine learning algorithm is tasked with learning to solve rather than solving
this specific example. The learning ability enables the ML to solve even more
complex tasks : larger set of points, less intuitive trajectories, and so on.

Figure 4.1: An example of a learning task. Given a set of signals emitted by
unknown objects can you identify the trajectory of our object of interest?

An ML task is generally defined by the ideal processing of an example,
that is, our available input and desired output. An input is defined as a set
of feature vectors that have been measured. An object x that is measured,
at multiple instances, might have different properties referred to as features
and encoded as dimensions of the object. Thus x ∈ Rd is an object that
has d properties (mass, position , colors...and so on) with n measurements
of its properties x = {xi}i∈[0,n]. In machine learning and subsequently in
this document, we will refer to object properties as features. Features can be
discrete or continuous values, images or any structured data that describes the
object x. In our earlier example, the object x is the emitted signal and the
points represented in the figure are different measurement of the signal xi. The
intuitive features our mind uses in this example are the geometric coordinates
of each dot (x ∈ R2). The collection of all the instance of object x is called a
dataset. Generally all the instances of object x have the same dimensionality
and in this case, the dataset is a matrix of dimensions n×d. When the object
is described by different set of features (images and raw data), the dataset is
referred to as non homogeneous dataset. When not every feature of x can be
measured at all times, the dataset has missing values. This constraint is very
common in machine learning and many solutions are proposed to deal with
missing values.

Commonly, the definition of a task precedes and ideally shapes the building
of a dataset. This is even more relevant with the imminent rise of active data1.
Following the definition of a task, many machine learning domains and appli-
cations arise. When the task is to assign new instances of an object to known

1Agents in Reinforcement Learning that generate/use the data they need to learn from
an environment

categories, we refer to the learning task as classification. When the instances
have to be regrouped under previously unknown categories, the learning task
is clustering. Because charged particle tracking can be regarded as a clus-
tering of hits, the concept is presented in details in section 4.2. Anomaly
detection is the task of spotting unusual instances of x in a usually large col-
lection of examples. Another interesting learning task is density estimation
where the model has to explicitly model the space that examples were drawn
from.

Deep neural networks (DNN) are a machine learning technique that is
widely used in all of the described learning models. At the core of a DNN
structure is representation learning. That is the automatic and often im-
plicit learning of abstract features describing the input object. At first repre-
sentation learning was an inherent property of DNNs but given the profound
implications of learning new features of data, it stood out as a machine learn-
ing field with its own state of the art. Because learning new features from
the data (which often simplifies the input) has desirable properties in charged
particle tracking (where the input is not simple), we will detail the different
techniques of representation learning and metric learning in Section 4.4.

Many more learning tasks exist with their exciting applications. The previ-
ous tasks were selected due to their wide usage in high energy physics. Chapter
6 discusses how these algorithms are used in the field.

4.1.2 The Performance Measure

The performance measure is our indication of how reliable a machine learning
model is. By definition, the performance is measured on instances of the object
that the model has not seen before. This set of instances is called "test set".
The exact measure used to evaluate the model depends on the task and domain
at hand. We might be interested in the proportion of instances the model
predicts correctly, this is referred to as the accuracy. The error rate or loss is
the proportion of wrong predictions. In charged particle tracking for example,
we are mostly interested in the efficiency of the model and its fake rate. The
efficiency is defined as the fraction of correctly retrieved trajectories and the
fake rate is the amount of wrong or fake trajectories returned by the model.
Moreover, charged particle tracking evaluation requires a significant number
of metrics given various physics properties. These metrics are described in
Chapter 3. The authors of the TrackML challenge (Chapter 6) created a new
performance measure that combines different physics metrics in a single score
between 0 and 1. The evaluation of a machine learning model is non trivial as
the model might make a lot of sense given certain metrics but not according
to others.

Throughout this thesis, different evaluation metrics will be presented and
their significance highlighted.

4.1.3 The Experience

The experience is the nature of information that is available to the machine
learning model. If the model is provided with only the object features with
no further guidance on their meaning, the learning is unsupervised. This
also implies that no ground truth is available. If we go back to the trajec-
tory example in Figure 4.1, by definition we do not know the object or its
trace so we will have to define alternative ways of evaluating the trajectories
found by the model. Fields where the problem is grouping data points (ob-
jects) with common behavior extensively use unsupervised learning through

clustering. For example, given a massive dataset on customer interaction with
a recommendation engine, using clustering allows to find groups of customers
with similar interests. Once these groups are defined, it is not feasible to
determine whether a customer actually belongs to its assigned group or not.
This example generalizes to all the fields where it is impractical to annotate
individual objects. In high energy physics, supervised information is produced
from simulation making the learning from labels (supervised) a default.

The third type of learning experience is a continuous interaction between
the model (called agent) and the data source (called environment). The agent
decisions or actions are reinforced (positive/ negative reward) through signals
from the environment.

In the next section of this chapter, we will detail different types of machine
learning relevant to charged particle tracking.

4.2 Clustering

Clustering is the process of creating groups out of unstructured data. Gen-
erally, these groups are new knowledge in the sense that the user has no well
defined expected structure. In other words, clustering is an unsupervised
technique. Therefore, the meaning and usefulness of the found clusters solely
depend on the grouping strategy. Strategies of the clustering algorithm are as
varied as the algorithm themselves. However, every clustering strategy starts
with a similarity or distance definition. Any algorithm has first to determine
the closeness of two points or group of points in order to create larger groups.

As formulated by Backer and Jain [5] “in cluster analysis a group of objects
is split up into a number of more or less homogeneous subgroups on the basis
of an often subjectively chosen measure of similarity (i.e., chosen subjectively
based on its ability to create “interesting” clusters), such that the similarity
between objects within a subgroup is larger than the similarity between objects
belonging to different subgroups”.

4.2.1 Distance and Similarity Measures

A distance is a measure of closeness between two objects. It indicates on some
coordinate space, an amount of units to get from a first object A to the second
B. In this chapter, we are interested in relative distances. That is, the distance
between A and B becomes relevant only at the introduction of a third object
C.

A distance on a data set X = x0...xn is defined to satisfy the following
conditions:

• Symmetry D(xi, xj) = D(xj , xi)

• Positivity D(xi, xj) > 0 for all xi and xj

• Triangle inequality D(xi, xj) < D(xi, xk) + D(xk, xj) for all xi, xj and
xk

• Reflexivity D(xi, xj) = 0 iff xi = xj

When the two last conditions hold, the distance is also called a metric.
The most popular and intuitive distance is the euclidean distance.

deuclidean(A,B) = (A−B)2

The cosine distance measures the cosine of the angle θ between two non
zeros vectors A and B.

dcosine(A,B) = 1− A.B

|A||B|
= |A||B| cos θ

|A||B|
= 1− cos θ

4.2.2 Hierarchical Clustering

In this section, we will discuss in details the major ideas and techniques of
Hierarchical clustering (HC). The specific type of clustering is focused on since
it presents an intuitive way of describing tracking. Merging points until a
clustering criteria is reached vs merging hits until a particle is fully formed.

The following summarizes the steps taken by any agglomerative clustering.

1. Start with singleton clusters. In particle tracking, each hit starts with its
own particle hypothesis. Compute the proximity matrix of the clusters
which contains all the pairwise distances.

2. Search the minimal distance

D(Ci, Cj) = min
1<m,l<N

m 6=l

D(Cm, Cl)

where D(*,*) is the distance function of the proximity matrix. Ci and
Cj are merged to form a new cluster and N is the number of points in
the dataset considered.

3. Update the proximity matrix by computing the distances between the
new cluster.

4. Repeat steps 2) and 3) until there is only one large cluster or a stopping
criteria is reached

The step 2 is straightforward for clusters comprised of a data point each as
a similarity or distance between point is well defined. After the first iteration,
the step 2) becomes a distance between a cluster and a data point or between
two clusters. There are many possibilities for defining a distance between
clusters (also called linkage) and each possibility gives rise to a type of HC.
A recurrence formula, proposed by Lance and Williams [2] generalizes the
various possible linkage scenarios.

D(Cl, (Ci, Cj)) = αiD(Cl, Ci)+αjD(Cl, Cj)+βD(Ci, Cj)+γ|D(Cl, Ci)−D(Cl, Cj)|

Where D(*,*) is the distance function and α,β and γ are coefficients that
take different values depending on the clustering type. As an example, single
linkage is a hierarchical clustering that merges clusters choosing the minimal
points in each cluster as representative. From the above formula, this config-
uration takes place at αi = αj = 1/2 , β = 0 and γ = −1/2.

4.2.3 Graph Theory Based Clustering

In this section, we choose to present one clustering algorithm that uses the
following relevant features : relies on a similarity graph, uses dynamic merging
criteria and several points are considered for cluster merging. Some of these
points make Chameleon [3] one of the only clustering algorithms able to find
arbitrary shaped and variably dense clusters.

Chameleon as its name indicates, is a dynamic hierarchical clustering al-
gorithm that uses more than one criterion to merge data points into clusters.

It is based on building a k-nearest-neighbor graph where an edge represents
the similarity between data points (nodes). The graph is then divided into
sub-graphs with only enough nodes to compute the similarity: The edges are
progressively eliminated if both vertices (nodes) are not within the closest
points related to each other. The last step is the merging of the sub-graphs.
This is summarized in Figure 4.2.

Figure 4.2: Chameleon framework. Source: Karypis et al. [3]

The key feature of this algorithm is that it determines the pair of most
similar sub-clusters to merge by taking into account both the inter-connectivity
as well as the closeness of the clusters overcoming the limitations resulting from
using only one of them (most clustering algorithms).

Clusters closeness, of two clusters Ci and Cj is measured by computing the
average similarity between the points in Ci that are connected to points in Cj .
In graph words, that is the average weight of the edges connecting vertices in
Ci to vertices in Cj . This metric choice makes the algorithm more tolerant to
outliers. The second merging criteria is the inter-connectivity. The absolute
inter-connectivity between a pair of clusters Ci and Cj is defined to be the
sum of the weight of the edges that connect vertices in Ci to vertices in Cj .
Both criteria are normalized by their internal closeness and inter-connectivity.

Despite an established clustering efficiency, Chameleon suffers from its
high computational complexity. Several works combined parts of Chameleon
with faster algorithms or parrallelized its stages to take advantage of its high
accuracy without computational cost. Li et al. [4] combined Chameleon with
Clustering Feature Tree2 (CFT) reducing the running time of Chameleon by
a factor of 10. Unfortunately, the performances are still not realistic for our
use case with a run time of 200 seconds for a dataset of 6K points.

Clustering algorithms use the data provided by the user and their results at
best reflect how well the different data dimensions describe the patterns. But
what if the dataset at hand is complex and has hidden properties not directly
available as features? Deep learning is the art of building abstractions from
the data in order to reach a better representation. In the next section, we
describe the different notions central to deep learning with the most relevant
models.

4.3 Deep Learning

At the heart of deep learning lies the concept of neural networks. Neural net-
works are the brain inspiration models that scientists came up with to emulate
intelligence. Despite our limited understanding of the brain and its neurons,
artificial neural networks in their basic imitation of information processing are
at the heart of most if not all major successes of AI. Following our imagina-
tion of the brain, neural networks are layers of small processing units called
neurons, through which a signal is passed and given the contribution of the

2A height-balanced tree data structure with the linear and square sum of data points
representing the clustering features

current neuron (its function), the signal value is updated. At the end of the
process, the output of Artificial Neural Networks (ANNs) are not thoughts
but numerical values. The reason of ANNs success is their ability to learn
non linear mappings. ANNs are often refereed to as universal approximators
because they learn a function f(x) that maps input x to output y by learning a
parameter θ. The prediction of the network is referred to as y′i and is therefore
y′i = f(x) = x.θ with θ known as the weights of the network.
The most common type of ANNs are Feedforward networks in which the
information flows from input to output with no feedback connections. ANNs
with feedback connections are called Recurrent Networks and are widely
used in time sequence modelling.

Figure 4.3 shows the basic principle behind ANNs. An input vector de-
scribing the features (4 dimensional in the example) of the object x is passed
as input. Each feature is connected to the next layer, referred to as hidden
layer as it stands between the input and output. The input vector is mapped
to the latent variables h through the connection weights w. When the layer
nodes are fully connected, i.e. each node is linked to the next one by a weight,
the network is called dense. The function g(x) is defined per layer and is
called the activation function. Common forms of g(x) are:

1. Sigmoid g(x) = 1
1+e−x with values between 0 and 1

2. Relu Rectified linear unit g(x) = max(0, x)

3. Tanh Hyperbolic tangent activation function g(x) = ex−e−x

ex+e−x

In supervised machine learning, the goal of the network is to reduce the
error or loss between the desired output (target) and the predicted output
(prediction). The loss is therefore a form of difference between output and
target. A popular measure of the loss is to use the Mean Square Error (MSE)
when the output and predictions are of continuous form. MSE is the sum of
squared distances between the target and the predicted values :

LossMSE =
∑n
i=1(yi − y′i)2

n

When the task is a binary classification, a common loss formula is the
binary cross entropy

LossBinaryCrossEntropy =
n∑
i=1

yi log y′i + (1− yi)log(1− y′i)

The choice of the activation function, of the number of hidden units and the
number layers, the optimizer, the loss function, the batch size and the learning
rate are the network hyper parameters and their tuning is an essential step in
neural network based machine learning. When the network has more than 2
hidden layers, it is referred to as deep neural network.

In this chapter, we choose to describe in detail the architecture of two
popular Neural Network models due to their increasing popularity in high
energy physics.

4.3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are often presented as the models
through which machine learning sees the world. In seeing, we first refer to
images or image sequences (videos). CNNs take as input images and are able

Figure 4.3: The principal behind neural networks. In the example, x is the
input with its four dimensions (features).

to give weights to each pixel in the each commonly detecting patterns or iden-
tifying objects. A CNN, unlike any other network, extracts features from raw
images. With enough layers of abstraction, the features are mapped to pat-
terns and the patterns to complex objects. Contrary to a dense network that
operates on a value by value basis, a CNN is able to extract complex features
from an image by using filters. These filters allow the network to detect spatial
and temporal dependencies in the images.

Figure 4.4 shows an example of a CNN architecture to identify the hand
written digits images. The input is a 28x28 image that goes through 10 con-
volution layers with a 5x5 kernel. The kernel is a usually smaller matrix that
scans the successive images by convolutions. The different convolution layers
are responsible for extracting the high level features such as the edges, colors
and orientation. Each added layer extracts finer characteristics and this is
why complex images often require many more convolution layers to extract
the relevant patterns.

Pooling layers are then used to primarily reduce the dimensionality of the
image to reduce the computation powered required for processing. Using Max
pooling as shown in the pipeline of Figure 4.4, will return the maximum value
in the kernel. This is useful to suppress the noise present in images. Another
alternative is to use Average pooling which performs the average of the kernel
used to scan the image. The choice of such parameters strongly depends on
the data and problem at hand.

In the example discussed, we can see that after two sets of Convolution
and pooling layers, the processed images are transformed to a 4x4 matrix. The
features extracted by the CNN are therefore present in this last 4x4 image.
To perform classification, dense layers are added. In the example, exactly 2
fully connected layers are used to extract non linearity from the 4x4 image and
convert it into a 10 dimensional probability output vector.i.e. a probability
for each of the ten digits classes.
The network architecture presented so far is large and complex. When running
on a relatively small dataset, it will learn to extract exactly the features seen
at training with no capacity to generalize to further examples. This is referred
to as overfitting. In machine learning, the design of network architecture is

Figure 4.4: Convolutional Neural Network used to classify the MNIST digits
dataset. Image source : Code to Light tutorial

dictated by a need to run on real world problems thus making generalization
to completely unseen images during the training. The dropout concept was
introduced to solve exactly these shortcomings. It implies randomly ignoring
a number of nodes at each iteration. This has the effect of simulating different
architectures every time thus preventing the nodes to overfit when seeing each
time the same examples and adjusting their weights to the correct combina-
tion.

4.3.2 Long Short Term Memory Neural Networks

Recurrent neural networks (RNNs) are designed to recognize patterns in se-
quences of data using a temporal dimension. RNNs in general are particularly
relevant in speech recognition problems where to understand the meaning of a
sentence, the model has to understand its relationship with prior statements.
Long Short Term Memory Neural Networks (LSTM) are a type of RNNs that
improves the basic idea of memory to long term memory or context.

Specifically, LSTMs store past information dynamically. The higher the
weight of the information, the longer it is stored in the node. This is achieved
thanks to the concept of cell state : a flow through the entire network chain
with very few changes to it. Information is let in the nodes using gates in the
form of sigmoid functions [6].

Figure 4.5: LSTMs cell structure. The state is the Ct channel that crosses the
cell. In this example, the ht information is computed and stored (hence the
double appearance).

A special type of LSTM that is relevant to charged particle tracking is

the Sequence to Sequence LSTM. It appeared first for sentence modeling and
translation. An encoder RNN network maps the input sequence (text or im-
ages) to a vector representation that is used as initial state to a decoder RNN.
The latter generates the target sequence. When the sequence is an image,
CNNs are used in the encoding step.

Depending on the size of the input and output, several architectures are
possible:

• One to many. Such as generating caption for an input image

• Many to one. Such as text classification, common to sentiment analysis.

• Many to many. Such as text translation or video labelling.

4.4 Metric Learning
In section 4.2.1 we defined the distance concept with its commonly used exam-
ples. In this section we introduce the notion of metric (distance) learning as
the machine learning field interested in learning from the data domain related
distances. Metric learning is used in conjunction with techniques that reply on
a similarity computation such as clustering algorithms, and nearest neighbors
approaches.

Metric learning supposes the presence of similarities in a given dataset.
More specifically, there exist pairs or groups of objects in the dataset that
have a higher similarity (affinity) among themselves compared to any other
object in the dataset. Formally, let us introduce S as the set of data points
with high similarity between them.

S = {xi...xk} with xi..xk ∈ X and xi...xk share similar properties

Each object in S has non similar properties with all the objects outside S.
This naturally defines the set D as :

D = {xj ...xn} with xj ..xn ∈ X and xj ...xn do not share similar properties

Generally the concept of similarity is defined relatively to a domain. In
face recognition, similar images are defined as different instances of the same
person. In recommendation engines, a major goal is to classify clients in groups
with similar purchase behaviour. In object tracking, traces left by the same
entity are considered similar and specifically in charged particle tracking, our
ensemble S contains points produced by the same particle. A collision event
can be regarded as multiple S ensembles with each one representing properties
from a single particle (hits).

Metric learning aims at learning a metric or distance f() such that:

∀(xi, xk) ∈ S and (xj , xn) ∈ D, f(xi, xk) < f(xj , xn)

This means that the learned metric will produce smaller distance values
for objects with similarities compared to object that do not share properties.
Such metric is often defied for pairs or triplet objects. Figure 4.6 shows an
example mapping of different particle trajectories in the transverse view of the
TrackML detector (detailed in Chapter 6). The learned metric is applied to
the dataset projecting the 2D points in a new space where smaller distances
between similar objects can be observed.

Figure 4.6: Illustration of metric learning applied to a charged particle track-
ing. (a) Tracks are color coded with the hits connected by continuous lines.
(b) Each track is projected into a learned space, color coding is similar to (b).
The tracks are generally shown to cluster in small regions of the new space.

Metric learning is generally applied prior to a clustering algorithm that uses
an euclidean distance on the learned space. As shown in Figure 4.6, a KMeans
can be applied on the learned space to correctly cluster the tracks. Depending
on the metric learning algorithm, the original dataset can be mapped globally
to a new space or rather individual pairs/triplets receive a similarity score.

In the remainder of this section, we present different techniques for met-
ric learning. We choose to describe only non-linear techniques as we believe
charged particle tracking cannot be efficiently solved with linear mappings.

4.4.1 Deep Learning Based Techniques

The work of Bromley et al. [7] pioneered non linear metric learning with the
use of a convolutional neural networks (CNN) to map images into a space
where a semantic distance can be approximated. Specifically, if the map-
ping learned by the CNN is represented by GW (X) with X being the image
in input and W the weights that parameterize the network, then the network
learns the norm ||GW (X)−GW (X ′)|| as smaller for positive image pairs (same
person) than for negative pairs (different person). Figure 4.7 describes the ar-
chitecture of the model famously known as Siamese architecture. A Siamese
architecture was first proposed in 1992 for signature verification and it is com-
posed by two subnetworks sharing the same parameters. The weights W are
shared between the network to extract similar properties and the output EW is
a form of energy between pairs, low for similar ones and high for different ones.

Figure 4.7: The Network architecture used by [7] to learn a similarity metric.

Although the Siamese architecture is considered the first deep learning
based metric learning model, different architectures and model constraints
were proposed to solve specific image related challenges. The authors in [8]

trained a network discriminatively for face verification while Chechik et al. [9]
learned a ranking function using triplet loss. Qian et al. [10] used precom-
puted activation features and proposed the learning of feature embedding via
distance metric for classification.

4.4.2 Uniform Manifold Approximation and Projection for Di-
mension Reduction

Dimensionality reduction is another way of projecting a complex dataset into
a simpler one where the different classes are more visible and often better
separated. Figure 4.8 shows an example of the projection of the hand written
digits dataset (4.8(a)) into a 2D embedding space where the different number
classes are well separated (4.8(c)). An image from this dataset is a 792 di-
mensional vector and each vector is contracted to only to 2 dimensions in this
example.

Techniques used for dimensionality reduction can be grouped into two large
families : Matrix factorization and Neighbor graphs. Principal component
Analysis (PCA) is one of the most popular matrix factorization techniques.
It is widely used in machine learning especially as data processing technique
but fails at finding the local structure of the data and therefore at providing
a well separated output. On the other hand, Neighbor graphs techniques rely
mostly on the building of local relationships within the classes and generally
provide well separated classes in output. Our goal being the efficient clustering
of particle hits, we will focus on neighbor graphs and particularly on Uniform
Manifold Approximation and Projection (UMAP) [11].

(a) Digits dataset images. (b) PCA projection (c) UMAP embedding of the
Digits dataset.

Figure 4.8: Example of the application of dimensionality reduction technique
UMAP on the popular image dataset Digits. Each image in the dataset is
represented as a 2D point in the learned data manifold presented in 4.8(c).
The different number classes cluster nicely in the 2D manifold.

UMAP is the state of the art technique for dimensionality reduction and
manifold approximation. Despite the algorithm being relatively new (2018)
it has had a profound impact in the dimensionality reduction world. The
two main factors for this impact are the scalability of the technique on high
dimensional datasets and the possibility of projecting new samples without
refitting the embedding each time.

UMAP constructs a high dimensional graph representation of the data
then optimizes a low-dimensional graph to be as structurally similar as possi-
ble. Effectively, data points in the graph are connected using a local connection
radius, i.e. points are connected if these radii overlap. This unique property
helps the algorithm in preserving the data structure as demonstrated in Figure

4.8. The number of neighbors for each point is a hyper parameter to optimize
in the algorithm.

Bibliography

[1] Mitchell, Tom. (1997). Machine Learning. McGraw Hill. p. 2. ISBN 0-07-
042807-7

[2] Lance, G.N., Williams, W.T.: A general theory of classificatory sort-
ing strategiesii. clustering systems. The computer journal 10(3), 271–277
(1967)

[3] Karypis, George, Eui-Hong Han, and Vipin Kumar. "Chameleon: Hierar-
chical clustering using dynamic modeling." Computer 32.8 (1999): 68-75.

[4] Li, Jinfeng, KanliangWang, and Lida Xu. "Chameleon based on clustering
feature tree and its application in customer segmentation." Annals of
Operations Research 168.1 (2009): 225-245.

[5] E. Backer and A. Jain,“A clustering performance measure based onfuzzy
set decomposition,”IEEE Trans. Pattern Anal. Mach. Intell., vol.PAMI-3,
no. 1, pp. 66–75, Jan. 1981

[6] Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory."
Neural computation 9.8 (1997): 1735-1780.

[7] J. Bromley, I. Guyon, Y. Lecun, E. SŁckinger, and R. Shah.Signature
verification using a “siamese” time delay neuralnetwork. InNIPS, 1994

[8] Chopra, R. Hadsell, and Y. LeCun. Learning a similaritymetric discrimi-
natively, with application to face verification.InCVPR, June 2005.

[9] Chechik, V. Sharma, U. Shalit, and S. Bengio. Large scaleonline learning
of image similarity through ranking.JMLR,11, 2010

[10] Q. Qian, R. Jin, S. Zhu, and Y. Lin. Fine-grained visual cat-egorization
via multi-stage metric learning. InCVPR, 2015

[11] McInnes, Leland, John Healy, and James Melville. "Umap: Uniform
manifold approximation and projection for dimension reduction." arXiv
preprint arXiv:1802.03426 (2018).

49

5

Approximate Nearest
Neighbors

The notion of similarity was recurrent throughout this document. Firstly in
clustering as the notion around which to group data points and later in metric
learning. If the relationship between objects cannot be described by simple
distances (similarities), it becomes possible to learn one from the data. If we
look into more details at the examples discussed in the metric learning section,
we see that learning similarities between objects is only the first in tasks such
as person identification, object tracking or document analysis. For example,
given an image of a person, its identity is retrieved by finding the most similar
person in the database. Such databases, whether of people, objects, songs
or movies are generally very large (up to a billion stored records) for giant
companies such as Google or Facebook.

The challenge is then formulated as : "Given a similarity measure and
an object Q, how do we efficiently retrieve the most similar objects to this
reference object Q". This is an old and notorious problem in computer science
known as Nearest Neighbor search. If we are willing to trade off some accuracy
for speed and accept an approximate solution, the problem becomes known as
Approximate Nearest Neighbor (ANN) search.

Approximate Nearest Neighbor search applications are diverse and numer-
ous in the age of Big Data and recommendation engines. Famous examples
include music recommendation at Spotify and Facebook AI similarity search
engine (images).

The performance measure of exact nearest neighbor search is straightfor-
ward. The goal is to find the exact elements, the fastest. The evaluation is
therefore one dimensional : speed. In ANNs, the precision notion is used in-
stead of the accuracy. The precision is the fraction of correct elements that are
retrieved by the total retrieved elements. Different techniques are generally
evaluated according to these 2 dimensional metrics.

Figure 5.1 illustrates the state of the art in ANN search as of 2019 with
a comparison of the two fastest techniques : Facebook AI similarity search
(Faiss) and Navigating Spreading-out Graphs (NSG) by the Alibaba group.

The two fastest techniques are compared on a 100 million vector dataset
DEEP1B [2] where each data vector has 96 dimensions1. The best speed
performance is slightly above 10K queries per second. According to the authors
of the study [4], the best performing technique NSG-16core is the random
splitting of the 100 million dataset across 16 cores and the use of simultaneous
queries with a merging of the results. Faiss-16core and Faiss-GPU on the

1Although the dataset size is 1 billion vectors, only a subset of a 100 million was used for
the study due to RAM limitations.

51

Figure 5.1: Latest ANN performance comparison on 100 million vectors
dataset. Source : Fu et al [4]

other hand process the 100 million vectors in parallel without any split. The
remainder of this chapter is structured as follows. In the next section a formal
definition of the ANN problem is presented, followed by a detailed description
of the different ANN existing approaches and their applications. Lastly, we
present the link between ANNs and charged particle tracking.

5.1 Problem Definition

Given a d dimensional dataset X = {x1, x2, ..., xN} where x ∈ Rd and a query
item q ∈ X, the nearest neighbor (NN) of q in X is defined as :

NN(q) = argminx∈XD(q, x)

where D(,) is the chosen distance function. The approximate nearest neighbor
(ANN) of q in X is the item x where:

D(q, x) < (1 + ε)D(q, x∗)

x∗ being the true nearest neighbor of q and ε a very small parameter. Figure
5.2 describes the necessary steps to get from a query point q ∈ X to the set
of k closest neighbors using an ANN index.

5.2 Similarity Search Models

Different real world applications and constraints have called for different ANN
index structures and search algorithms. There are tree-structure based ap-
proaches, hashing-based approaches, quantization-based approaches and graph-
based approaches. It is often accepted that graph based techniques have yield
superior results over the years in term of precision and queries throughput.
Despite this fact, many different aspects are to be considered when choosing
an ANN technique and this explains why major companies with search chal-
lenges are not necessarily using graph based techniques. Such factors include
index memory size, index building time, GPU portability, parallel queries and
storage format.

Figure 5.2: Approximate Nearest Neighbor search. Distance to the query
point q is only computed on a small subset of the dataset. The candidate list
returned ANN(q) are the k sorted nearest neighbors to the query.

In this section, the different ANN techniques will be detailed and discussed
along these technical considerations.

5.2.1 Tree Based Techniques

Most tree based ANN techniques are built around the concept of a K-dimensional
tree (KD-tree). A KD-tree is a balanced binary tree where the dataset is re-
cursively split into two halves until reaching the leaf level where each leaf is
a data point. The split occurs using a hyper-plane orthogonal to a chosen
dimension at a threshold value. When searching for the neighbors of a query
point, the nodes are searched in the order of their distance to the query point.
In approximate nearest neighbors, the search process is terminated after a spe-
cific number of distances computations. Depending on the specific technique
used, more than one tree is built and searched.

Annoy is a popular tree based ANN techniques library [1] that has the par-
ticularity of using static files data structure mapped into memory and shared
among multiple processes. It is used in Spotify for music recommendations
by searching similar users/items in high-dimensional spaces and large datasets
(many millions according to [1]).

Annoy uses random projections to build a tree. Hyperplanes are used to
divide that dataset recursively into two subsets. As opposed to the hyper-
plane choice in KD-tree, Annoy samples randomly two points from the subset
and builds the equidistant hyperplane. Multiple trees are built in parallel to
increase accuracy through a user chosen parameter. The more trees are used,
the slower the queries become.

The authors of Annoy published an ANN benchmark [3]2 that is used and
referred to in the community as the principle source of comparison between
different ANN techniques. The different aspects investigated in the benchmark
are :

1. The recall, i.e. the ratio of true nearest neighbors returned by a query

2. The size of the data structure (index) in Kilobyte (kB)

3. The time it takes to build the index in seconds
2First version appeared in 2018

4. The number of distance computation

5. The time it takes to perform a query or the throughput (number of
queries per second)

Among these measures, we are particularly interested in the index build
time and the throughput. These are determining factors in charged particle
tracking.

The benchmark compares the different performances of tree based ANN
techniques as well as several graph based and random projection based tech-
niques. One of the conclusions of the authors is that generally graph based
ANN techniques are found to perform the best. However, the time to build the
data structure (index) is found to be much larger than tree based or inverted-
file based algorithms. In the two next sections, we will present in details the
concepts behind graph based ANN techniques and Inverted file based tech-
niques and conclude with a technical comparison of these techniques.

5.3 Graph Based Techniques
A graph is a data structure. A set of nodes or vertices connected by edges.
When the nodes represent data points and the edges a form of similarity
between points, we refer to such graph as "Proximity graphs". Proximity
graphs impose constraints on the edges to solve the ANN problem. In the
graphs setting, given a node q, the core idea is to find the shortest path that
traverses the k true neighbors of q. Graph algorithms differ mainly in the
way they traverse such graphs. One of the first proximity graphs is known
as the Delaunay graph where the edge constraint enforced is that from any
node p to any node q, there exists a path. Such constraint guaranties the
finding of the true neighbor (it will be traversed) but can lead to a fully
connected graph in high dimensions making the approach computationally
limited. Another example of edge constraints is to limit the number of edges
per vertex thus shifting the problem to an approximate nearest neighbor one
(the true neighbor is not guarantied to be visited). The K-nearest neighbour
graph imposes such constraints. Fast Approximate Nearest Neighbour Graphs
(FANNG), proposes an efficient data structure to reduce search time. At the
query time, only relevant edges are considered to build a minimal graph. When
a node p1 is connected to a node p2 then all the connections from p1 to any
other node p3 that is closer to p2 than p1 are discarded (irrelevant in the
search).

Other approaches such as the Hierarchical Navigable Small World (Hnsw)
[5] propose a layered data structure where vertices are associated with differ-
ent "levels" of search. Hnsw is to date the fastest ANN graph based approach
with a logarithmic search time3. Hnsw are based on the small world type of
graphs that first appeared in the context of the Milgram experiment. The
experiment principle was that participants had to convey information using
a network of people they did not know. Contrary to common intuition, the
number of hops (intermediary people) was as low as 5 persons, i.e. for the
information message to pass from any two people randomly chosen in the net-
work, it needed only 5 links (and thus was born the expression "small world").
Formally, small worlds graphs are graphs with the constraints that most nodes
are not connected but the neighbors of any given node are likely to be neigh-
bors of each other and that there exists a small number of hops between any

3NGS [4] authors, discussed in this section, claim faster query time but we did not test
their implementation for this study.

two nodes. Few decades later Kleinberg added to the small world graphs the
navigation property enabling efficient search in these structures with polyloga-
rithmic scaling of the greedy algorithm. Hnsw reduced even further the search
complexity to logarithmic by using hierarchies in the navigable small world
graph.

The innovative idea in Hnsw is to spread edges in hierarchies according to
their length scale (a similarity property). This results in a fixed number of
nodes to explore (independently on the dataset size) with the search algorithm
"jumping" from a hierarchy to the other.

Figure 5.3 describes the layered approach of Hnsw. The search starts from
large radius layers (layer 2 in the Figure) until a local minima is met. From
a given point, the algorithm tries to converge as fast as possible toward the
query point (shown in green in Figure 5.3). In the example shown, the search
only takes 3 hops (edges).

Figure 5.3: Illustration of the search in hierarchies of Hnsw. Source :[5]

The data structure is therefore a multi-graph spread across layers. It is
possible to speculate around the meaning of such a structure with respect to
the data being represented. In a sense, the hierarchies represent an interesting
"clustering" of the data according to some radius. An attempt at uncovering
these properties of the structure and its implications in charged particle track-
ing is discussed [6]. A contribution of this work is the structuring of particle
events in such structures and the finding of a new way to perform tracking.
The major (and probably only) drawback in Hnsw is the index building time
which makes it impractical for large scale datasets.

The navigating spreading out graph (NSG) is proposed to address exactly
this issue. The algorithm targets especially large scale datasets with up to a
billion (high dimensional) data points. More specifically, the authors imple-
mented the algorithm to target the Taobao (Alibaba) e-commercial needs in
terms of user commodities recommendation (128 dimensional dataset) with
daily updates. NSG was tested on a 45 million dataset with a distributed
search procedure that split the data into 12 subsets building 12 different NSG
and merging the results. The authors found it impractical to build a single
graph for the billion scale dataset and used a distributed search to reach the
platform requirements (<10ms per query at 98% precision). The authors claim
that NSG presented improvements of 5-10 times over the previously used tech-
nique, a Product Quantization With Inverted File Index (IVFPQ) technique
by Facebook AI Similarity Search (Faiss). ANN techniques proposed by Faiss
are detailed in the next section.

NSG [4] comes with the following four design principles : connectivity

of the graph, lower average out-degree (number of edges of a node), shorter
search paths and especially a reduction of the index size. To achieve this,
the authors propose a new graph structure referred to as Monotonic Relative
Neighborhood Graph (MRNG). Essentially, the authors ensure that the graph
is monotonic but sparse enough to allow an efficient build time. A monotonic
graph means that given any two nodes in it, it is possible to find at least
one monotonic path. That is a path that continuously shortens the distance
between the two nodes. This means that the resulting graph has more connec-
tions (ensuring faster retrieval of neighbors) but also more efficient in building
those additional edges. Technically this is achieved by always starting from a
node that is known to lead to a monotonic path and called Navigating Node.
NSG also applies a cut on the maximum number of outgoing edges from any
node (a fixed number). This results in the loss of hubs structure in the graph
which is not relevant to our use case.

Table 5.1 summarizes the major differences between the two ANN graph
based techniques Hnsw and NSG. AOD refers to the average out degree or
number of links from a node. NN% represents the percentage of the nodes
which are linked to their nearest neighbor. These results were reported by the
authors of NSG [4] on running both techniques on the SIFT1M dataset that
has 1 million data points of 128 dimensions. According to the same source,
NSG is slightly faster than Hnsw for the same precision (3.103 queries per
second).

Build time (s) Index size (MB) AOD NN%
Hnsw 376 451 32.1 66.3
NSG 274 153 25.9 99.3

Table 5.1: Summary of the differences between Hnsw and NSG compared on
a 1 million size dataset with 128 dimensions

5.4 Facebook AI Similarity Search
Faiss is the similarity search library developed by Facebook AI. The novelty
in Faiss is the offloading of computations onto the GPU. As a result, although
Faiss is not faster than Hnsw or Annoy on CPU, it is massively faster on GPU.
Similarity Search with Faiss relies on:

• An Inverted File (IVF) index : A two level tree structure obtained by
running the KMeans algorithm on the dataset. The IVF links every data
point to its representative: the cluster centroid.

• Asymmetric Distance Computation (ADC) : The distance computation
takes place between the query point and an encoding of the original data
point (compressed).

These two concepts allow the parallel processing of ANN queries (batch
mode) as well as the handling of very large datasets (due to the compres-
sion). The important performance gain with Faiss on GPU is demonstrated
in Chapter 7.

5.5 Relevance to Charged Particle Tracking
It is now clear that when searching for similarities in a dataset, ANNs are
the fastest alternative. We propose to use ANNs for particle tracking since

they allow a fast access to data points sharing similar properties. The
definition of "similar" is specific to the task (and data) at hand. Using the
analogy of person identification that often relies on a CNN to decide whether
two images represent the same person, we propose to augment the ANN ap-
proach with a model that decides whether two hits belong to the same particle.
Figure 5.4 illustrates the result of an ANN query in the context of charged
particle tracking.

Figure 5.4: ANN applied to charged particle tracking. A bucket is a track
approximation

Bibliography

[1] https://github.com/spotify/annoy

[2] A. Babenko and V. Lempitsky. Efficient indexing ofbillion-scale datasets
of deep descriptors.Proceedingsof the IEEE Conference on Computer Vi-
sion andPattern Recognition, pages 2055–2063, 2016.

[3] Aumüller, Martin, Erik Bernhardsson, and Alexander Faithfull. "ANN-
benchmarks: A benchmarking tool for approximate nearest neighbor al-
gorithms." Information Systems 87 (2020): 101374.

[4] Fu, Cong, et al. "Fast approximate nearest neighbor search with the nav-
igating spreading-out graph."Proceedings of the VLDB Endowment 12.5
(2019): 461-474

[5] Malkov, Yury A., and Dmitry A. Yashunin. "Efficient and robust approx-
imate nearest neighbor search using hierarchical navigable small world
graphs." IEEE transactions on pattern analysis and machine intelligence
(2018).

[6] Amrouche, Sabrina, et al. "similarity search for charged particle tracking."
2019 IEEE International Conference on Big Data (Big Data). IEEE, 2019.

59

6

The Tracking Machine
Learning Challenge

6.1 Introduction

Although the TrackML challenge [1][2] is not the first public machine learning
challenge addressing a high energy physics problem, it is the first that encapsu-
lates all the complexity of a HEP problem without falling into any specific ML
category. This is particularly interesting from a machine learning perspective
as generally machine learning basics state that a problem is either supervised
or unsupervised, a classification or regression. What about charged particle
tracking for which we have labels from simulation but no classes definition1?

In this chapter, we will take a top-down approach first discussing machine
learning approaches used in HEP and the general directions of the field (re-
gardless of the experiment). Finally, the TrackML challenge will be detailed
as it represented the author’s qualification task as well as the initial dataset
on which the proposed ML models were designed.

6.2 Machine learning for High Energy Physics

In charged particle reconstruction, the multitude of experimental appara-
tuses has led to diverse tracking techniques. However, no standard technique
achieves general track finding under universal experimental conditions. With
tracking generally evolving towards automatic and parameter-free techniques
(see Figure 6.1), an interesting goal is to overcome the architecture depen-
dence. Machine learning contrary to classical combinatorics provides the abil-
ity to learn and improve from experience. It is therefore able to generalize
to unseen examples and to learn implicit patterns. In contrast, combinatorics
and classical pattern recognition techniques do not evolve with experience and
then are not robust against changing conditions.

The work from Peterson [3] is the earliest attempt at using machine learn-
ing for charged particle tracking. He proposed the use of Neural Networks
for track finding in 1989. Every hit constitutes a node in a very large neural
network with an update rule favoring adjacent segments with small angles be-
tween them and discarding track bifurcations. The network showed interesting
results on small datasets (state of the art in 1989). His approach was enhanced
and implemented 13 years later with the Cellular automaton in the Hera-B
experiment increasing the weights of the neurons to find additional points [4].

1Particle cannot be represented as classes otherwise only a unique example (instance)
would be available per class.

61

Template Matching
 (1981)

 Fuzzy radon
 (1994)

Hough Transform
 (1996)

 Neural Nets
 (2002)

 TrackML
 (2018 -)

Drift Chambers
 cells
 (ARGUS)

Fuzzy Radon
 Transform
(ATLAS/ALICE)

Global Pattern
Recognition
 (HERA-b)

Cellular
 Automaton
(HERA-b)

Similarity
Hashing

Quantum
Computing

 DAGs

HEP.TrkX

Firefox blob:https://vectr.com/b86e578d-b836-4153-8a1...

1 of 1 8/30/20, 10:20 AM

Figure 6.1: Evolution of tracking techniques across HEP experiments. Within
the time frame of this PhD thesis more (including ML based) tracking tech-
niques have been proposed than during the last 40 years. The list of techniques
is not exhaustive.

Since that period and until very recently (2016), the use of machine learning
in HEP summed up to Boosted Decision Trees (BDTs) for classification tasks.

Starting from 2016 on the other hand, a number of R&D projects evolved
around the use of modern ML techniques for challenging problems such as
tracking, vertexing, trigger or jet grooming. In particle tracking, a community
conference/workshop annually gathers experts from different experiments and
backgrounds to discuss novel software and hardware techniques : Connecting
the Dots (CTD) [5] is at its 7th edition. Figure 6.2 shows the constant increase
in ML related contributions over the years.

Figure 6.2: Number of contributions based on machine learning (ML in the
contribution title) over the last 5 years. A CTD conference has roughly 30
oral contributions. Different components of this thesis were presented in each
CTD conference starting from CTD 2017.

The last bloc of ML based techniques showed in Figure 6.1 are amongst
the many discussed at CTD conferences and sometimes their evolution can
be tracked over the years. An important number of contributions such as
quantum computing for tracking [6], graph neural networks [1], HEP.TrkX [7]
and similarity search (proposed approach) were built based on the TrackML
challenge dataset released in 2018. Before diving into the challenge motiva-
tion and detector layout, we will briefly review the major ML based tracking

techniques :

• The multi-Threaded Directed Acyclic graph (DAG) [1] got the third
place in the second phase of the TrackML competition with a score
of 92.1% in 7.28 seconds2. The approach is based on DL models that
predict doublet and triplet compatibility inside a DAG that is split on
different threads.

• The HEP.TrkX [7] was a project led by 12 researchers from three uni-
versities with the aim to identify and develop cross-experiment solutions
based on machine learning algorithms for track reconstruction. The au-
thors proposed a graph neural network (GNN) model for tracking show-
ing results on a subset of the TrackML dataset (roughly 2k particles).
A previous study showed performance of RNNs and LSTMs.

• Exa.TrkX is a followup of HEP.TrkX to carry on exploring HEP ad-
vanced tracking algorithms. This time the project focuses mainly on
GNNs and their deployment on FPGAs. The Exa.TrkX groups seven
universities/institutes with 25 researchers. The latest results showed per-
formances of a GNN pipeline on (still) a subset of the TrackML dataset.

• A Quantum algorithm was built on top of the GNN proposed by Exa.TrkX
to perform track reconstruction [10]. The study showed the feasibility
of such alternative on only 1% of the TrackML dataset which is far too
small to draw any conclusions.

Many more research projects exist based on the TrackML dataset and this
demonstrates the successful challenge format. A key aspect of the popularity
of the TrackML dataset was and is the simplicity of the dataset format that
enabled fast prototyping. This format along with the detector layout are
discussed in the next section.

6.3 The TrackML Challenge

The innovative concept of data science competitions started mostly with the
Kaggle platform [11] in 2009. A data competition platform allows its users
to take part in machine learning competitions, share notebooks and discuss
solutions in forums. The competitions are generally proposed by large compa-
nies to solve a specific problem they are facing and for that, they publish their
data and a problem description. These companies challenge the largest public
data community offering significant money prizes. Kaggle for example is the
largest and most diverse machine learning community in the world comprising
the world’s most renowned experts.

TrackML is the third HEP challenge on the Kaggle platform with the Uni-
versité de Genève as a platinum sponsor of the event. The earlier challenges
(whose organizing committee overlaps with the TrackML’s) are the Higgs Bo-
son challenge [12] and the Flavor of Physics challenge [13]. The former aimed
at recognizing novel signal events from common background events and the
latter challenged participants to compensate for systematic bias introduced
by simulators of events. Contrary to previous ML-HEP challenges and to
most ML challenges, the TrackML was organized in two different phases: An
accuracy phase on Kaggle and a throughput phase on Codalab [14].

2The winner had a score of 94.4% in 0.56 second but will not be covered in this thesis as
the approach is an optimized combinatorics algorithm

The TrackML dataset formed the starting point of the approach proposed
in this thesis. The same data structure and properties described in the follow-
ing sections are used to demonstrate ML based approaches in Chapter 7.

6.3.1 TrackML Detector Layout

The detector model is built to simulate measured hits similar to what is ex-
pected for HL-LHC. It is inspired from both the ATLAS and CMS upgrade
tracker designs. The coordinate system is similar to the one presented in
Chapter 2.2.1. The detector geometry with its three sub-detectors is pre-
sented in Figure 6.3. The inner-most sub-detector is the pixel detector with
a spatial resolution of 50µm × 50µm. Short Strips (red in Figure 6.3) have a
resolution of 80µm × 1200µm while the long strips (green) have a resolution
of 0.12mm× 10.8mm. The pseudo-rapidity range covered is |η| < 3.

Figure 6.3: Layout of the TrackML detector with colors showing the three
sub-detectors (pixels, short and long strips) and numbers indexing volumes
(large font) and layers (smaller font per volume).

The dataset simulates a tt̄ pair production (similarly to the ITk event
used in Chapter 8) and overlays a pileup of µ = 200. The collisions are gen-
erated using Pythia 83 [15] and the particles are propagated using ACTS4

fast simulation [16]. The particles simulated are embedded in an inhomoge-
nous magnetic field, i.e. particles bend differently depending on the detector
region they are in. The magnetic field was not provided to participants as
an additional challenge to the robustness of proposed models. A minimum
transverse momentum cut of 150MeV was applied which is lower than the
standard ATLAS cut of 400MeV. Noise hits, i.e. hits without particle label
are also included along with multiple scattering (distorted tracks) and inactive
sensors (holes). The resulting dataset contains roughly 100K hits associated
to 10K particles per event. The transverse momentum, pseudo-rapidity and
particle size distributions are shown in Figure 6.4. These three distributions
were selected as they represent the quantities having the highest impact on
the proposed approach of similarity search. A more complete track parameters
overview of the TrackML challenge can be found in [2].

3Standard software for the generation of events in high-energy collisions
4ACTS encapsulates track reconstruction software into a generic and framework (exper-

iment) independent package

(a) (b)

(c)

Figure 6.4: Relevant track parameters per TrackML event. 6.4(a) shows
the transvere momentum distribution in log scale. The majority of parti-
cles (pileup) have PT < 1GeV. 6.4(b) shows the density distribution along the
pseudo-rapidity η and 6.4(c) the number of hits per particle. Two distributions
are shown to highlight the difference between low PT and particles (< 400MeV)
and high PT ones. The first bin represents the noise hits added per event. On
average a particle has 11 hits in the TrackML dataset (> 400MeV).

6.3.2 Data Files and Setup

The dataset format adopted for the TrackML challenge is the successful en-
coding of nested and complex information into a friendly, machine learning
adapted file format. Generally specialized tools and parsers are needed to
process particle physics events. The csv (comma separated values) format of
the challenge is on the other hand easy to digest by any tool or even read
as plain text. Most machine learning competitions on Kaggle use this format
which enabled participants to process the data without mastery of physics
software. Each event consisted of four csv files :

1. Hits : A List of data points (hits) represented by their id, x, y, z coor-
dinates and volume/layer indices.

2. Cells : A List of activated pixels forming clusters. Each line is mapped
to the corresponding entry in the hits file and contains a variable list of
pixel coordinates (two dimensional) and the deposited charge. A hit can
have one or multiple cells associated with it.

3. Particles : A list of the particles produced. Each entry has an id and
parameters information (momentum and vertex)

4. Truth : A list mapping the hit id to its particle id (labels) with corre-
sponding track parameters and a symbolic weight for the scoring (dis-
cussed in the next section).

Participants to the challenge had access to 100K of such events to create
a model that associates hits to particles. Once the model is built, it runs on
a specific set of 125 files (refered to as test files) that contain only hits and
cells information. The model outputs a list where each entry contains the hit
id and an arbitrary generated track id. For technical reasons all test events
had to be merged in a single file comprising an event id, a hit id and the
associated track id. Participants then created a submission and loaded their
solutions on the Kaggle platform. Internally, Kaggle ranked solutions using
the hit-particle associations that it stores (concretely particle and truth files
of the test events).

In the first phase of the challenge, each submission is scored according to
its quality.

6.3.3 Scoring Solutions

As mentioned throughout this thesis, tracking is a clustering problem. Hits
receive labels that regroup them. A perfect algorithm groups hits according
to their true particle id and a straightforward performance measure is the
comparison of the algorithm’s labels with the actual particle id. Metrics such
as the Adjusted Rand Index (ARI) perform exactly this comparison. The ARI
is a function that measures the similarity of the two assignments, ignoring
permutations. A perfect hit-track association has a score of 1.

Although this scoring succeeds in ranking perfect solutions, what about
solutions that get a score of 0.9 or 0.7 ? Can we interpret the physics quality
of such tracking models? Is a 0.9 solution missing 10% of particles or rather
having all tracks with only 90% purity? These, in physics performance, are
wildly different solutions5. The TrackML scoring function was designed to
incorporate such physics aspects.

Each hit is weighted by its contribution to the track. Figure 6.5 illustrates
an example track with the different weights categories of its hits. The rea-
soning behind using weights is straightforward. A model is penalized less if
it tends to loose hits with low weights because their loss does not compro-
mise the track parameter estimates which are at the end, the very purpose
of tracking. For example, if one removes the fourth and/or fifth hits starting
from the inner most layer, the particle trajectory does not change much when
connecting the remaining hits. On the other hand, loosing the outermost hit
heavily affects the momentum resolution whereas loosing the innermost hit
compromises the vertex finding. The weights are also adjusted with respect
to the particle size.

The scoring procedure is detailed in Algorithm 1. The list of good tracks
is produced per event and used in the global scoring as described by equation
6.1.

S = 1
Nevents

∑
events

∑
good tracks

M∑
i=0

wi (6.1)

where wi is the weight (summing up to 1) of the ith hit in the track and M
the size of the track. If the found track matches perfectly a true particle, the
track score is 1. The final score is normalized between 0 and 1. A proposed
model can leave a number of hits without track assignment (noise hits) and
these do not contribute to the score.

5Charged particle tracking prefers the second scenario as track parameters can easily be
retrieved with 90% of a particle content but loosing 10% of all particles is unacceptable

Figure 6.5: Ranking of the hits depending on their order. Higher weights
translate to higher penalties if the corresponding hits are lost.

Algorithm 1 TrackML scoring function
Input : List of tracks T
Output: List of good tracks GoodTracks
for t in Tracks do
track=MajorityLabel(t) //Get the leading particle in the track
M=size(track)
T=size(t)
if M ≥ 4 then
particle=GetParticle(track) //Get the associated true particle
P= size(particle)
if P ≥ 4 then
ParticlePurity=M

P

TrackPurity=M
T

if TrackPurity ≥ 0.5 and ParticlePurity ≥ 0.5 then
GoodTracks← t

end if
end if

end if
end for

This scoring function was kept for the second phase of the TrackML chal-
lenge that targeted reconstruction speed. Both the solution quality score de-
scribed above and the model speed formed the two dimensional scoring metric
used in the second phase.

6.3.4 Competition Results

The accuracy phase run from 30 April to 13 August 2018 on Kaggle. Within
this challenge, the speed of the approach did not matter in the scoring or in
the final results (Kaggle leaderboard). The three best solutions received the
money prize and three additional approaches were picked by the jury for their
innovation and creativity. The winners of the first phase with scores around
90% are :

• "Top Quarks", an industrial mathematics student who proposed a rather
conventional tracking algorithm consisting of : Pair seeding, triplet ex-
tension, trajectory following, track cleaning. He used machine learning

classifiers to discard bad quality combinations.

• "Outrunner", a software engineer in deep learning. He built a deep neural
network to predict every and any possible hit pair connection probability,
i.e. full event adjacency matrix.

• "Sergey Gorbunov", a physicist and expert in tracking. He used a tra-
ditional tracking algorithm consisting of triplet seeding and trajectory
following. He is the winner of phase 2 and therefore of the full TrackML
challenge.

The jury prizes were awarded to approaches relying on hough transform,
DBSCAN clustering and LSTM deep learning.

In the second phase of the challenge, the two first winning approaches were
both relying on traditional tracking methods optimized for speed with C++.
The approach that won the third place was a Directed Acyclic Graph (DAG)
resulting in a 92% accuracy but with a time execution of 7.2 seconds. The
winning approach takes only 0.56 seconds per event.

A complete study of the proposed approaches in both phases is available
in [2]. Listed below are the conclusions agreed upon in the community:

• A good score translated to good physics performances which demon-
strates the validity of the metric used especially that the only alternative
is to look manually at many distributions.

• The winning solutions that were physics inspired had to optimize a large
(believed to be thousands) number of parameters by hand. This signals
the urgent need for automatic parameter estimation techniques.

• The second phase had 10 active participants on average against hundreds
in phase one. This highlights the impact of the platform popularity but
also that the machine learning community is not necessary interested or
specialized in performance coding. This might change soon as Kaggle is
working on enabling software submissions in order to evaluate the speed.

Thoughts on the lack of ML solutions

The fact that the winning solution is not a machine learning based one
does not mean that tracking cannot be solved with machine learning or that
machine learning is not mature enough. Moreover, the fact that a rather
intuitive combinatorial approach was the winning solution only means that
tracking is an intuitive problem that can be solved by an iterative hand tuned
algorithm.

Tracking is not a hard problem but rather a multi-step one. An ML model
might have better success if it is evaluated on each one of these steps rather
than the full chain. For example, the TrackML challenge rewarded full particle
finding (all good particle) although the seeding step could be considered an
important first achievement. It has been demonstrated that a simple triplet
classifier can produce less fakes (less combinatorics) compared to a traditional
cut based approach [17][18]. If the score rather builds on multiple stages, we
could potentially see that machine learning can already perform better in some
parts (seeding, filtering) rather than a full chain.

This thesis is about the use of a machine learning model(s) for charged
particle tracking.

Bibliography

[1] Amrouche, Sabrina, et al. The Tracking Machine Learning Challenge:
Accuracy Phase [Book Chapter]. No. arXiv: 1904.06778 v2. Lawrence
Berkeley National Lab.(LBNL), Berkeley, CA (United States), 2019.

[2] Amrouche, Sabrina, et al. "The tracking machine learning challenge: Ac-
curacy phase." The NeurIPS’18 Competition. Springer, Cham, 2020. 231-
264.

[3] Peterson, Carsten. "Track finding with neural networks." Nuclear Instru-
ments and Methods in Physics Research Section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment 279.3 (1989): 537-545.

[4] Abt, I., et al. "Cellular automaton and Kalman filter based track search
in the HERA-B pattern tracker." Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 490.3 (2002): 546-558.

[5] Connecting the Dots 2019 edition https://indico.cern.ch/event/
742793/

[6] Tüysüz, Cenk, et al. "A Quantum Graph Neural Network Approach to
Particle Track Reconstruction." arXiv preprint arXiv:2007.06868 (2020).

[7] The HEP.Trk Collaboration https://heptrkx.github.io/

[8] The Exa.TrkX Collaboration. HEP advanced tracking algorithms at the
exascalehttps://exatrkx.github.io/

[9] Farrell, Steven, et al. "Novel deep learning methods for track reconstruc-
tion." arXiv preprint arXiv:1810.06111 (2018).

[10] Tüysüz, Cenk, et al. "Particle Track Reconstruction with Quantum Al-
gorithms." arXiv preprint arXiv:2003.08126 (2020).

[11] The Kaggle plateform https://www.kaggle.com/

[12] C. Adam-Bourdarios, G. Cowan, C. Germain, I. Guyon, B. Keegl,
andD. Rousseau, “The Higgs boson machine learning challenge,” in
NIPS 2014 Workshop on High-energy Physics and Machine Learning.
http://proceedings.mlr.press/v42/cowa14.html

[13] Flavours of Physics: Finding τ− > µµµ https://www.kaggle.com/c/
flavours-of-physics

[14] Accelerating reproducible computational research https://codalab.
org/

[15] Sjöstrand, T., Mrenna, S., Skands, P.: A brief introduction
to PYTHIA8.1. Computer Physics Communications178(11), 852–867
(2008).DOI 10.1016/j.cpc.2008.01.036

69

https://indico.cern.ch/event/742793/
https://indico.cern.ch/event/742793/
https://heptrkx.github.io/
https://exatrkx.github.io/
https://www.kaggle.com/
http://proceedings.mlr.press/v42/cowa14.html
https://www.kaggle.com/c/flavours-of-physics
https://www.kaggle.com/c/flavours-of-physics
https://codalab.org/
https://codalab.org/

[16] Gumpert, C., Salzburger, A., Kiehn, M., Hrdinka, J., Calace, N.:
ACTS:from ATLAS software towards a common track reconstruction
software.J. Phys. Conf. Ser.898(4), 042011 (2017). DOI 10.1088/1742-
6596/898/4/042011

[17] Amrouche, Sabrina, et al. "Hashing and metric learning for charged par-
ticle tracking."

[18] Dietrich, Felix. "Track Seed Classification with Deep Neural Networks."
arXiv preprint arXiv:1910.06779 (2019)

7

Similarity search for charged
particle tracking

Fast search techniques allow to rapidly access a group of data points that
share common properties. Similarity search, uses supervised knowledge to
improve the meaning of the properties shared and align it with the definition
of charged particle tracking. Similarity search therefore allows a fast access to
a combination of points that likely form a particle. Different combinations of
algorithms are evaluated both for fast search (Approximate Nearest Neighbors)
and similarity patterns (deep learning).

Similarity search is first proposed and evaluated on the TrackML challenge
dataset. A second version relying on a novel metric learning model is later
described for the ITk dataset (Chapter 9). In this chapter, we describe the
application of ANN techniques for tracking. Metric learning is then applied to
improve the content of the obtained buckets of neighbors, allowing to retrieve,
often, complete traces. Relevant results have been peer reviewed and published
in IEEE 2019 [1] and NeurIPS 2019 [2].

7.1 Definitions and Notations
When traversing the detector, every pi particle generates a set of hits hj :

pi = {h0, .., hj , .., hni} where hj ∈ Rd (7.1)

The ensemble of particles generated in a collision is P = {pi}. Each hit
is a d dimensional feature vector that encodes the detector readout. Some
tracking applications rely only on the geometrical global coordinates of a hit,
thus d = 3. Depending on the use case and the model used, this number will
vary. If the cells generated by a particle are used as features, each hit will be
additionally represented by a variable size 3D image. The image encodes the
cells shape information and the charge deposited per sensor.

A tracking model returns the ensemble T , a list of m sets of hits:

T = {t0, ...tm} = {{h00, .., h0n′0}, .., {hm0, .., hmn′m}} (7.2)

where n′i is the size of a track ti. The tracking algorithm goal is to return a
set T such that :

T = P (7.3)

Equation 7.3 can never be achieved in practice and various performance
metrics (introduced in Chapter 3) are defined to quantify the closeness of T
and P . In a TrackML event, |P | ≈ 10000 with ≈ 100000 hits.

71

An ANN query q in an event returns a list of B hit candidates referred to
as a bucket.

ANN(q) = {h0, .., hB} associated to particles {pi, .., pj} (7.4)

The leading particle size in a bucket is defined as the most common particle
label associated to the hits. For example, a bucket of B = 10 hits with
associated particle labels {p10, p10, p10, p10, p10, p10, p10, p5, p2, p2} has a leading
particle size of 7 hits, i.e. p10 is the leading particle. The distribution of leading
particle sizes computed from a large number of ANN queries is an important
metric for evaluating buckets quality. If a bucket contains less than 4 hits
from the same particle, it is considered as noise. Such noise buckets should be
minimized in order to improve tracking performances.

In order to evaluate the performances of the proposed approach, the rele-
vant metrics are summarized in Table 7.1.

Quantity Purity Efficiency Event Efficiency Leading
Particle Size Noise Seed

Definition

Majority of hits
sharing the same
particle identifier
over total hits

Majority of hits
sharing the same
particle identifier
over true particle
total hits

Fraction of
particles with
efficiency >80%
in an event

Size of the
highest purity
track in
a bucket

Total hits
matched to a
particle by
less than
4 hits

>3 hits
define a seed.
A particle is
reconstructable

Table 7.1: Summary of parameters and metrics definition.

7.2 Proposed Approach
We propose to combine ANNs with metric learning to rapidly lookup hits
produced by the same particle. A TrackML event is projected into a new
feature space where tracks are separated and well clustered. The ANN index
is built on this new feature space to maximize the probability of containing a
particle in every queried bucket.

The proposed approach is summarized in algorithm 2. The functionmetricLearn()
is a supervised metric learning model that maps a set of hits to a new feature
space where particles are easily found. buildIndex() is the implementation of
an ANN index from a collection of data points with a given metric. In Algo-
rithm 2, the ANN index is built from mapped hits using an euclidean distance.
The index can also be built on the raw features of the hits (such as global
coordinates). In this case, the angular distance results in better results than
the euclidean distance. Once the hits are mapped and stored in an index,
we can either randomly query buckets (as in Algorithm 2) or query all the
possible hits in the index. Various trials have shown that random queries on
a subset of the index achieve similar performances as compared to querying
the full index. This only applies to the TrackML dataset as demonstrated in
the following chapter.

The function cluster2Tracks() is an agglomerative clustering that merges
close-by points until reaching a pre-defined maximum distance.

Classical tracking relies on a function similar to cluster2Tracks1 in large
manually defined bins of up to 800 hits. The main idea behind using ANNs is
to run this CPU intensive function on small event-defined buckets. Running
a function on many small chunks of the data is more effective than running
it on larger ones or on the full event. An illustration of this argument is

1Clustering and combinatorial approaches both compute a large number of distances
(roads in the case of combinatorics) before converging.

Algorithm 2 Tracking with ANNs and metric learning
Input : List of hits H
Output: List of tracks foundTracks
Require: T ← cluster2Tracks(H)
P ← metricLearn(H)
ANN ← buildIndex(P,metric)
foundTracks← ∅
while i ≤ Nqueries do
n← random()
bucket← ANN.query(n)
t← cluster2Tracks(bucket)
foundTracks

+← t
i← i+ 1

end while

shown in Figure 7.1. Such clustering emulates well the exponential behavior
of combinatorics when the dataset (or bin) size increases.

Figure 7.1: Scaling of an agglomerative clustering run on a full dataset com-
pared to the same function run on ANN buckets.

The dataset considered contain 10, 100, 1000 and 2000 unique particles.
Larger datasets could not be considered as the agglomerative clustering large
distance matrix could not fit in memory. The buckets have fixed sizes of 50
hits and the total number of queries performed per dataset is Nqueries = 1

5N
where N is the size of the dataset. This number was found to be the optimal
ratio that produces both minimal number of buckets while containing all the
particles in the dataset.

Running the clustering on ANN buckets built from 10K particles takes
approximately 2.8 seconds on a single thread2. If 10 threads are used instead,
the bucketing and clustering is expected to run 10 times faster. On GPUs, it
is possible to run a thread per bucket resulting in thousands parallel queries
and clustering each taking approximately 2ms. An equivalent study that uses
the ATLAS track finder instead of a clustering algorithm, is conducted on
Chapter 8.

2Tests performed on a personal computer,Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz,
using python.

In the remainder of this chapter, the ANN index and the metric learning
function are detailed with relevant results from the application on the TrackML
dataset.

7.2.1 Indexing Charged Particle Hits

Different ANN techniques are described in Chapter 5. In this section, a tree
based and a graph based ANN structures are used to index hit in an event.
The metric used to build an ANN index from raw data (hits positions) is
the angular distance while the euclidean distance is used after mapping the
dataset with metric learning. Both the tree and graph structure provide similar
buckets (hits content) but show different query time performances.

An example of an ANN bucket is shown along the transverse plane in 7.2.
To obtain this bucket, a TrackML event is indexed with an angular distance
applied to the hits global positions (x,y,z). A query point is (randomly) se-
lected within the hits of the event while specifying the number of neighbors
to return.

Figure 7.2: Example of an ANN bucket using an angular distance on global
hits coordinates.

In Figure 7.2, the bucket size is 50. The true tracks contained in the bucket
are represented by dotted lines. Because the bucket contains multiple tracks
with sizes well above four hits, it can be considered a good bucket.

Figure 7.3 shows the distribution of the leading particle size per bucket
for a bucket size of 20 and 50 hits using the angular distance. A bucket is
constructed for every hit in the event. The unique particle sizes distribution is
also shown in the Figure. This quantity describes the maximum size found for
each particle in the event. The highlighted leading particle size distributions
do not accurately describe the content of a bucket but they rapidly inform
us whether a bucket contains a reconstructable track or not. Indeed, buckets
with a leading particle size of less than 3 hits cannot be reconstructed as they
cannot form a seed. The figure also shows the impact of the bucket size.
Larger buckets increase the probability of containing more hits from the same
particle. We can see from Figure 7.3 that already an ANN with an angular
distance and a bucket size of 50 is able to index seeds (3 hits), tracklets and
even larger (complete) tracks.

In the next section multiple ANN libraries are evaluated on the TrackML
dataset for speed and bucket quality.

Figure 7.3: Distribution of the leading particle size per bucket for different
bucket sizes. The distribution of actual particle sizes per event is highlighted
in the background of the figure and the unique leading particle size distribution
for the two bucket sizes is shown as discontinuous lines.

7.2.2 ANN Techniques Evaluation

We introduce a quality measure that combines two essential quantities in an
ANN bucket:

• Number and size of reconstructable particles.

• The proportion of noise hits per bucket.

For a query point q, the previous quantities are encoded in the following
metric :

Quality(q) =
∑
SRecoParticles

N
− pnoise (7.5)

where SRecoParticles represents the size of reconstructable particles in each
bucket, N is the number of reconstructable particles and pnoise the percentage
of noise hits per bucket. When pnoise is small, the quality tends to describe the
average particle size per bucket (which has to be maximized). In Figure 7.2,
a total of 5 hits do not contribute to any particle which results in pnoise = 5

50 .
The number of reconstructable particles N = 4 and∑SRecoParticles = 45. The
quality metric for this bucket is therefore ≈ 11 which is very close the average
track size we see in Figure 7.2. The second evaluation metric is the speed per
query or throughput, i.e. number of queries per second. As seen in Chapter
5, ANN algorithms are designed to maximize throughput. For evaluation, we
use a full TrackML event considering the three dimensional features (x, y,
z). The ANN index is built using an angular distance and the queries are
selected randomly. Different bucket sizes are tested to highlight the impact
on performances.

In Figure 7.4, three different ANN algorithms are compared. Description
of the techniques is presented in Chapter 5. Annoy is a tree based technique,
Hnsw a graph based algorithm and Faiss relies on quantization and inverted file
index. The two performances axes are shown in the figure : average speed per
10K ANN queries in milliseconds (x axis) and the quality measure introduced
in Equation 7.5 (y axis) also average over 10K queries.

Different techniques are color coded and the marker shape denotes different
bucket sizes. On average Hnsw is the fastest technique (significantly faster

Figure 7.4: Comparison of three ANN techniques along the bucket quality and
time per 10K queries dimensions. Different bucket sizes are used to illustrate
the time and quality impact.

than Annoy). The quality of the buckets is slightly higher for Faiss however.
Using an angular distance, the three techniques return approximately similar
buckets except for one or two hits difference at most. A detailed study of the
Hnsw buckets and their correlation to charged particles can be found in [6].

7.2.3 ANNs Performances on CPUs and GPUs

Most ANN techniques are designed to allow running multiple queries at once.
This behavior is referred to as batch mode and is often faster than running
queries one after the other. Moreover, batch mode is suitable for GPUs that
naturally parallelize the search in the index. Since the buckets are indepen-
dent, i.e. finding a particle in a bucket will not depend on other buckets, it
is possible to heavily parallelize the inner loop of Algorithm 2. When con-
sidering parallel bucketing, a duplicate removal strategy is necessary when all
the outputs of the queries are returned. A discussion on duplicate rate and
duplicate removal is presented in Chapter 8. Figure 7.5(a) shows the different
scaling of ANN queries on GPU and on CPU. The buckets on CPU are built
in a for loop, one after the other to emulate a single thread (process). On
GPUs however, the buckets are produced in parallel through the batch mode
which brings down the total bucketing time by a factor of 56. Figure 7.5(b)
and Figure 7.5(c) show the total time as a function of the number of queries
and the potential efficiency using truth tracking. The efficiency is the fraction
of contained particles in the queried buckets by the total number of particles
in an event. An efficiency of 95% is reached after 4K ANN queries which takes
around 3 milliseconds on GPU. Additionally, the clustering cost per bucket
must be added to this timing in order to get the approximate tracking time.

7.2.4 Learning a Tracking Representation

We propose the use of supervised metric learning techniques to map the event
data into a new feature space where hits that belong to the same particle are
forced into close-by coordinates. This section contributes the similarity of
the chapter’s title. Metric learning is at the core of the proposed approach
within this thesis. It is the portion of the solution that effectively uses sim-
ulation labels to extract a particle pattern and generalize to unseen collision
events. In this section, we focus on the application of Local Fisher Discrimi-
nant Analysis (LFDA) and Triplet Neural Nets to the TrackML dataset.

(a) (b)

(c)

Figure 7.5: Scaling of the query time on GPU and CPU. In (a) the scaling
of ANN queries on GPU is compared to the CPU alternative. (b) shows the
GPU scaling only to emphasise the time difference. (c) shows the efficiency as
a function of the GPU queries.

LFDA for particle representation learning

We use LFDA to learn a mapping from raw event data to a two dimensional
simplified space where the application of a clustering technique can easily
retrieve tracks. LFDA performs linear mappings and the best results were
obtained with the raw features :

√
x2 + y2 and the inner angles θ and φ. The

LFDA model is validated on unseen events. The resulting mapping of a subset
from a validation event is shown in Figure 7.6.

This subset (shown in red in Figures 7.6(a) and 7.6(b)) includes all the hits
with |η| < 1 and particles PT > 2 GeV. Figure 7.6(a) shows the longitudinal
view of the selected subset with the remaining hits (black dots) while Figure
7.6(b) shows the transverse view of the same hits. The LFDA mapping to
a 2D space is illustrated in Figure 7.6(c). The actual (true) particles in this
mapping are denoted by continuous lines of different colors. For visibility
purposes, only tracks with at least 4 hits are shown.

The separation between tracks is easily noticeable and using a clustering
algorithm on top of that mapping allows one to retrieve the full particles in
this subset.

Clustering representations

We propose to run a clustering algorithm on the learned projections (u,v)
illustrated in Figure 7.6(c). Both KMeans and Agglomerative clustering are
studied and tested in this use case since the particles are well separated.
KMeans requires the number of clusters (particles) to be known in advance
while Agglomerative clustering allows to specify a threshold above which

(a) (b)

(c)

Figure 7.6: Application of LFDA metric learning on a subset of TrackML
event. The longitudinal projection of the subset is shown in (a) while the
transverse view is shown in (b). The 2 dimensional output space is shown in
(c) where same particle hits have the same color and are linked by continuous
lines.

points (hits) are not merged into new clusters3. Unless specified otherwise,
the clustering algorithm is a KMeans with default parameters and a cluster
number of 3. This choice is motivated by the bucket size and the average
particle size in order to maximize the size of found particles. The clustering
algorithm is run per bucket and two quantities are measured :

• Cluster purity : Ratio of the majority particle size by the cluster size.

• Particle efficiency : Ratio of the majority particle size by the total
true particle size.

The purity describes whether a cluster contains a unique particle (=1) or
multiple (>1). The efficiency is similar to the classical HEP definition. An
efficiency of 1 means that the cluster contains the full particle. Figure 7.7(a)
shows the 2D distribution of purity and efficiency for all buckets of 20 hits,
with a PT cut of 1GeV and a minimum track size of 4 hits. As can be seen from
the 2D histogram, the majority of 20 hits buckets contain perfectly separated
particles with purity =1 and efficiency =1, i.e. the clusters extracted with
KMeans contain the full trace of particles. Second most common buckets
have perfect efficiency and a purity > 60%. These are clusters that contain
outlier hits from additional particles while containing a full (short) particle.
Buckets with 100% purity and an efficiency > 40% show opposite behavior.
Despite the clusters containing a single particle, the cluster size is smaller than
the actual particle size. This is also caused by the bucket inefficiency that do
not necessarily contain the full particle.

3This is useful when the clusters exhibit a non flat geometry,i.e. different shapes.

(a) (b)

Figure 7.7: Cluster quality distributions. The joint efficiency and purity of the
clusters is shown in Figure 7.7(a). The silhouette coefficient correlated with
the true clustering score is shown in Figure 7.7(b)

.

Some buckets contain clusters with low purity and low efficiency. Conve-
niently such buckets have different geometrical shapes compared to the ones
containing full particles, i.e. the clusters formed within each bucket are not
well separated. In order to detect these cases, we define a shape metric at
the bucket level referred to as the homogeneity value. The homogeneity is a
metric that describes how well defined are the clusters. A cluster is well de-
fined if the distances amongst its elements are much smaller than the distance
between its elements and other clusters. We commonly refer to the average
distances within a cluster as compactness CM (the smaller the distances, the
more compact the clusters) and the average distances between different clus-
ters as isolation IS. Thus, well defined clusters are compact and isolated. The
silhouette coefficient (SC) combines these metrics in the following formula:

SC = IS − CM
max(IS,CM) (7.6)

This quantity is computed for every sample and the final score for a given
clustering output is the average over all samples. Figure 7.7(b) shows the
correlation between a bucket clustering true score and the silhouette coefficient
metric. We use the truth information to compute the true score of a clustered
bucket. The correlation shown in the figure suggests that compact clusters
contain more particles. The SC is then used to discard buckets with poorly
defined clusters of multiple particles or incomplete traces. For this study, a
cut of SC=0.8 is chosen.

The complete tracking strategy is then summarized in the following steps:

1. The raw event is mapped to a new two dimmensional feature space with
LFDA.

2. Buckets of 20 (or 50) hits are built from the resulting mapping.

3. KMeans is applied on every bucket.

4. Clusters from buckets with a SC ≥ 0.8 are readout as reconstructed
tracks.

To compute the event efficiency, the reconstructed tracks are compared to
the true particles given an acceptance threshold (usually 80%). The ratio of
correctly reconstructed tracks to the full event tracks is the final event effi-
ciency. Figure 7.8 shows the different efficiency ratios for acceptance threshold

between 50% and 100%. The different colors indicate different bucket sizes and
the different markers designate the presence or absence of a PT cut at 500 MeV.
A total of 100K buckets have been queried.

Figure 7.8: Event efficiency as a function of the particle purity acceptance
threshold for 100K buckets.

Given the standard purity threshold of 80%, the best efficiency is given by
buckets of 50 hits with 88% on the full event and 94% with a PT cut of 500
MeV. We show different purity cuts to highlight the potential of the approach
for seeding. Nearly all the particles are retrieved when considering a threshold
of 50%. This is on average 5 hits per particle which, if used as initial seeds,
would alleviate the combinatorial seeding time.

Figure 7.9: Efficiency of the approach as a function of PT (GeV) and pseudo-
rapidity (η).

Figure 7.9 shows the efficiencies as a function of PT and eta averaged
over 30 events with an acceptance cut of 80%. The small variations in the
efficiency against PT can be attributed to a low number of statistics in the

high PT regime. In the central pseudorapidity region (|η| < 2) however, the
inefficiencies are due to the nature of the tracks that are not properly mapped
by the metric learning algorithm. This can be explained by the layout of
the detector that results in simpler tracks in the forward region. As will be
discussed in future chapters, this not a feature of the TrackML detector only
but also extends to the ATLAS Inner Tracker Phase II (discussed in the next
chapter).

Generally this behavior of model performance deterioration in the cen-
tral detector region is consistent independently of the specific ML algorithm
used. In Chapter 9, it is solved by training different models on the different
pseudorapidity regions.

7.3 Summary and Conclusions
Similarities between a commercial search engine and charged particle tracking
in an LHC experiment might not be obvious. Seen from afar however, both
applications have the same crucial need : retrieve data points that share similar
properties as fast as possible. In this Chapter, we explored the definition and
evaluation of Approximate Nearest Neighbors for charged particle tracking
on the TrackML dataset. The obtained buckets of hits, defined using the
angular distance, contained at least one reconstructable track. Additionally,
it was shown that the size of the contained track depends on the number
of considered neighbors. The evaluation of buckets comprised CPU vs GPU
tests as well as different types of indexing techniques : Tree structure (Annoy),
graph structure (Hnsw) and inverted file indexing (Faiss). Hnsw yielded the
fastest results closely followed by Faiss. The proposed quality metric included
the average leading particle size per bucket as well as the fraction of noise
hits. This metric slightly favored the Faiss search algorithm. Moreover, the
Faiss library includes a GPU implementation that allowed to emulate a fully
multi-threaded bucketing of hits: 4K queries in approximately 3ms with a 95%
efficiency.

Learning the similarity metric not only allowed to improve the quality of
the buckets but also enabled the use of a clustering algorithm to retrieve the
tracks, i.e. an end to end machine learning approach for tracking. A su-
pervised mapping model was defined and tested with the results showing a
significant improvement in same particle hits grouping especially for high PT
tracks. A KMeans clustering algorithm retrieved the particle trajectories in
the mapped buckets. This technique loses up to 20% of tracks in the central
pseudorapidity region due to the limitation of the KMeans clustering algo-
rithm in disentangling merging tracks. While the majority of tracks have been
successfully found with this approach, an important improvement is the design
of a custom clustering algorithm that takes into account tracking constraints.

The next step is to challenge this technique with a simulation dataset and
more specifically the ATLAS Phase-II Inner Tracker (ITk) simulation dataset.
The fast search is evaluated on the ITk dataset in Chapter 8 while a new metric
learning approach combined with the fast search is proposed in Chapter 9. A
novel tracking inspired clustering algorithm is also proposed in Chapter 9.

Bibliography

[1] Amrouche, Sabrina, et al. "similarity search for charged particle tracking."
2019 IEEE International Conference on Big Data (Big Data). IEEE, 2019.

[2] Amrouche, Sabrina, et al. "Hashing and metric learning for charged par-
ticle tracking."

83

8

Similarity search with ATLAS
Phase-II Inner Tracker

8.1 Introduction

Applying similarity search on an ITk dataset presents a multitude of additional
challenges as opposed to the "toy" detector used in the TrackML challenge. Not
only the ITk optimized geometry is different (with more layers for example)
but also the simulated samples contain the difficulties encountered in the real
world experiments. By design, the granularity of the detector allows only a low
resolution on the inner angles of the clusters (introduced in Section 1.3) thus
penalizing the metric learning model that was successful with the TrackML
dataset.

In this chapter, we will firstly review all of the characteristics of the ITk
dataset and their technical implications on the techniques proposed in Chap-
ter 7. The application of ANN techniques is then demonstrated with a per-
formance analysis of the ATLAS standard tracking restricted to the buckets.

8.2 The ITk simulation dataset

The studied events result from the simulation of a top pair (tt̄) production with
200 overlaid pile-up (similar physics to the TrackML challenge). The standard
tracking reconstruction is ran on the events and provides a reconstructed label
for each hit. The label from simulation will be referred to as truth. The
ITk detector (presented in section 2.2.3) has two sub components : pixels
and strips. The collections of hits created by an event is displayed in Figure
8.1(a) along the R-Z axes with pixels and strips shown in different colors. An
example particle is also highlighted on the plot with its hits represented by
dots on the detector modules. The ITk dataset is simulated using Geant4 (see
Chapter 2.3) and contains detector effects such as charge sharing.

Table 8.1 summarizes the relevant characteristics of an ITk event com-
pared to the TrackML. These dataset characteristics were chosen because of
their impact on the proposed solution of similarity search. For example, we
choose to compare the number of innermost pixel coordinates between the two
datasets because of its significant impact on the finding of particles with an
offset along the beam axis. This is further discussed in Section 8.5.1. In the
TrackML dataset, the particles present in the dataset are also for target of a
model, i.e. simulated tracks = reconstructable tracks. In other words, we are
interested in all the particles simulated in the dataset. In the ITk samples
however, additionally to the truth information obtained through simulation,
it is possible to run the ATLAS standard tracking to obtain only the fraction

85

of interesting1 particles. In the case of the ITk samples then, the total recon-
structed (reco) particles is the subset of total simulated (truth) particles that
pass standard cuts. The major difference with the TrackML dataset is the
number of hits per event. A typical event has on average 400K measurement
which is at least a factor of 4 increase compared to TrackML. The differences
in the total number of hits and also in the number of hits per particle (particle
size) are the result of different detector geometries. The majority of particles
in the ITk sample are noise particles with less than 4 hits. These noise par-
ticles are filtered out in the TrackML dataset to maintain the noise level at
an average of 10% and thus simplify the reconstruction for participants. This
explains the wide difference in noise levels between TrackML and ITk.

The distribution of particle sizes in log scale for both ITk and TrackML
is presented in Figure 8.1(b). As will be discussed further, this size difference
will impact the bucket size definition as well.

(a) (b)

Figure 8.1: (a) Longitudinal view of the ITk layout with pixels in red and
strips in black (only the center is shown). A particle is shown crossing the
different layers (9) of the detector. (b) Particle size distribution in log scale
for the ITk dataset. The TrackML particle size distribution is highlighted in
grey for comparison.

Detector <µ>
Total meas-
urements
(Pixels)

Average
particle
size

Total
Truth
particles

Total
Reco
particles

Innermost
pixel z
>250mm

Noise
level

ITk layout 200 400K (230K) 15 15K 2K 7K 53%
TrackML 200 100K 10 10K / 4K 11%

Table 8.1: Summary of relevant differences between ITk and TrackML events.

The hit merging (Section 3.1) which was not simulated in the TrackML
dataset is also an additional challenge. In the ITk dataset, hits are no longer
associated to a unique particle but rather have a variable list of particle bar-
codes attached to them. On average, 8% of hits are associated to more than
one particle.

Moreover, the ITk pixel cluster shape resolution being different, the in-
ner angles that are derived from ToT2 have also a lower resolution. This loss
primarily impacts the metric learning model that relies on the inner angles
to discriminate between tracks. The distribution of the ITk cluster shapes is
shown in Figure 8.2 while the TrackML one is highlighted in grey for compar-
ison. The two distributions are normalized with a log scale to emphasis larger
clusters. Although both datasets are dominated by one and two pixel clusters,

1Depending on the physics targeted, threshold such as PT can be increased/decreased.
This heavily affects the total number of reconstructed particles.

2In TrackML, the inner angles are derived from the charge and evaluated using the path
of the particle.

the ITk layout produces fewer clusters larger than 3. This is a major difference
as the angle definition becomes relevant starting from 3 pixels, i.e. a two (or
one) pixels cluster shape cannot define an inner angle for the passing particle.
As a consequence, most close-by tracks have pixels with similar inner angles.
Although the resolution of cluster shapes is lower, the shape features, however
little, can be extracted with a Convolutional Neural Network (Section 8.8).

Figure 8.2: Cluster sizes (pixels) distribution for the ITk and the TrackML
dataset. The two distributions are normalized due to dataset size differences.

The different characteristics of the ITk dataset are reflected in the building
of ANN buckets as well as on the application of metric learning. In the next
section we will analyze the content of ANN buckets derived from the ITk.
These buckets will then be used as containers to run the ATLAS standard
tracking on.

8.3 ANN buckets on the ITk dataset

Similarly to the ANN based algorithm presented in Chapter 7, hits of an
event are indexed using an angular similarity on their 3D coordinates (x, y,
z). An ANN bucket of size 503 is constructed for every hit in the dataset.
Each bucket is further investigated to retrieve the full particle trace (if any).
Annoy library is used to construct and query from the ANN index. Figure
8.3 shows the distribution of leading particle sizes per bucket for one event.
In the background, the same metric applied to the TrackML dataset is shown
for comparison. Although both distributions peak at 4 hits, buckets from
ITk contain considerably shorter tracks. This is a direct consequence of the
noise level (introduced in Section 7.1) in the ITk dataset. Indeed, while the
TrackML dataset contains only 11% of noise particles, the ITk has more than
53% of noise particles. In fact, these particles are not reconstructed by the
standard ATLAS tracking since they do not pass standard cuts on energy
and/or PT . Low momentum or displaced particles are reconstructed in a later
iteration of the tracking algorithm with looser cuts.

It is worth noting that since a bucket is constructed for every hit, the
overlap between these 50-hits buckets is non negligible. A particle can be con-
tained in more than one bucket and a filtering strategy is therefore necessary.

3The bucket size is a model parameter and is chosen to maximize the probability of
containing a track.

Figure 8.3: Distribution of the largest particle size per bucket for the ITk
dataset. The TrackML distribution is highlighted in grey for comparison.

Bucket overlap studies are presented in Section 8.7.
In the context of tracking, an ANN bucket is built to reduce the combina-

torial complexity of tracking by increasing the probability of finding a track
(ideally complete) within this small collection of hits. In order to determine
the maximum attainable efficiency of the ANN buckets, we have to examine
the fraction of particles contained in buckets. A particle can be fully contained
in a 50 hits bucket or only partly with some hits escaping the cone shaped
bucket especially in case of long or highly curved tracks. This particle purity
is computed from every bucket in an event and only the maximum purity per
particle is kept. The particle purity, in this case, is defined as the number
of particle hits contained a bucket divided by the total number of hits pro-
duced by the particle. For example, if the complete trace of particle is fully
contained in an ANN bucket, its corresponding purity is 1. Ideally, all the
particles are contained in a buckets but since many physics effects distort the
track shape and the ANN buckets are built from fixed angular distances, the
particle purity ranges from 20% to 100%.

Figure 8.4 shows the particle purity distribution per event. The purity is
computed considering all the possible buckets of an event, i.e. every hit is
queried. We are interested in different purity distributions :

• Purity of reconstructable particles (given the ATLAS standard tracking)
in the full detector. The distribution per event is shown in red in Figure
8.4(a).

• Purity of all simulated particles in the full detector. The distribution
per event is shown in black in Figure 8.4(a).

• Purity of reconstructable particles in the pixel sub-detector. The distri-
bution per event is shown in red in Figure 8.4(b).

• Purity of all simulated particles in the pixel sub-detector. The distribu-
tion per event is shown in black in Figure 8.4(b).

Looking at the pixel purity provides additional information on the seeding
potential of ANN buckets. Figure 8.4(a) shows the distribution of the full

particles against truth and reco while Figure 8.4(b) shows the same quantities
restricted to the pixel sub-detector.

(a) (b)

Figure 8.4: Maximum particle purity distribution in ANN buckets on the ITk
dataset.

Using the standard purity cut of 80%, the potential reco efficiency on
the full detector is of 40%. This means that assuming a perfect tracking
algorithm per bucket, 40% of particles will be retrieved in ANN buckets of
50 hits. This shows the important difference between the TrackML dataset
and the ITk where, in TrackML, more than 90% of particles were contained
in 50 hits buckets. In Figure 8.4(b) we can see that although only 40% of the
distribution fills high bins, the remaining purity values are well above 50%.
This means that the buckets still contain an important part of the track : a
seed. In the next section (8.4), the first scenario is explored where the ATLAS
tracking algorithm runs on each ANN bucket independently. In section 8.5,
the ANN buckets are only used for seeding and the ATLAS tracking algorithm
completes the found seeds with hits from the full event.

8.4 Standard ATLAS tracking in buckets

Although the ATLAS standard tracking algorithm was not designed to run
on very small bins, we show in this section the feasibility of running the full
algorithm in buckets of 50 hits. More specifically, the tracking algorithm, in
every stage, has only access to the hits in the bucket. Figure 8.5(a) describes
the strategy adopted to compare both reconstructions. Technically, multiple
(5000 as an initial test) reconstruction jobs are launched in parallel and every
job has a bucket of 50 hits as input. The tracks reconstructed in buckets are
then compared to the same tracks found in the full event through the track
lists that are produced.

Figure 8.5(b) shows a display of a 50 hits buckets and the two tracks found
in it through the ATLAS tracking algorithm. This is the output of a single
job described in the second step of the pipeline in Figure 8.5(a). The surfaces
shown are the modules that recorded the passage of the particle. The remain-
ing hits that were not used to build a trajectory are shown by the yellow dots.
In this case, the ATLAS tracking algorithm runs on the hits of the bucket
including seeding, track finding and ambiguity solving (see Chapter 3).

It is expected that the standard tracking produces the same tracks when
considering similar input hits. When a track is found in a traditional full event
reconstruction and also when the tracking is restricted to 50 hits buckets,
then this track is referred to as matched. For the purpose of performance
comparison, we consider that a track is matched when both reconstructions

(a)
(b)

Figure 8.5: (a) Standard ATLAS tracking restricted to ANN buckets strat-
egy.(b) Illustration of ATLAS reconstruction in a bucket of 50 hits [1]. The pic-
ture shows the measurements (hits) in the bucket with the two reconstructed
tracks (continuous lines). The surfaces shown are associated to the active
sensors crossed by the reconstructed tracks.

(full event and bucket) produce at least seven4 hits in common. If the bucket
contains all of a particle hits, it is expected that we find the same track whether
inside a bucket or on the full event. In Figure 8.6, the sizes of matched tracks
between the bucket reconstruction and a full event are compared. Every pixel
in the 2d histogram is a matched track with its horizontal axis coordinate
indicating the size of the track in the full event and its vertical axis coordinate
the size of the corresponding track found in a bucket. The colors indicate the
fraction matched per sizes. If every bucket contained a track fully, this plot
would be a bright diagonal. The pixels below the diagonal are tracks that
have more hits when the reconstruction is run on a full event, i.e. the bucket
allowed only a partial reconstruction. The tracks above the diagonal, on the
other hand, have interestingly more hits in the bucket compared to their full
event twins. This is explained by the higher purity of the bucket environment
that significantly reduces combinatorics (noise) and allows better combinations
to be tried (and selected).

4−10

3−10

2−10

1−10

F
ra

ct
io

n
 o

f
m

a
tc

h
e
d
 t
ra

ck
s

5 10 15 20 25 30
Clusters on track - Full event

5

10

15

20

25

30

C
lu

st
e
rs

 o
n
 t
ra

ck
 r

e
st

ri
ct

e
d
 t
o
 b

u
ck

e
ts

ATLAS Simulation Preliminary
ITK Layout - Tracks in bucket

= 200〉µ〈, tt

Figure 8.6: Matching of tracks between a classical full event reconstruction
and a reconstruction restricted to buckets of 50 hits

In order to get a sense of the tracking performance when the track finder
has access to complete traces, a truth extension is applied at the bucket level.

4If two tracks share 7 hits, they both describe the same particle.

Buckets of at least four hits from the same particle are extended to contain the
full traces (adding the particle hits). The obtained buckets have variable sizes
since multiple seeds could be completed in a single bucket. Figure 8.7 shows
the sizes of tracks found inside buckets and compares them to matched tracks
in truth extended buckets. Since the truth extended buckets produce complete
traces (similar to full event reconstruction), Figure 8.6 and Figure 8.7 show
the same patterns indicating that tracks found in truth extended buckets are
comparable to the tracks found in the standard full event reconstruction.

4−10

3−10

2−10

1−10

F
ra

c
ti
o
n
 o

f
m

a
tc

h
e
d
 t
ra

c
k
s

5 10 15 20 25 30
Clusters on track restricted to extended buckets

5

10

15

20

25

30

C
lu

s
te

rs
 o

n
 t
ra

ck
 r

e
s
tr

ic
te

d
 t
o
 b

u
c
k
e
ts

ATLAS Simulation Preliminary
ITK Layout - Tracks in bucket

= 200〉µ〈, tt

Figure 8.7: Matching of tracks between truth extended buckets reconstruction
and buckets of 50 hits

Since the buckets (without extension) do not fully contain particle traces
in the ITk dataset, an alternative is to allow the track finder to complete the
missing hits by accessing the full event. In other words, use the buckets only at
the seeding stage and from there run conventional track finding and ambiguity
solving.

8.5 Standard ATLAS seeding in buckets
In this section, the ATLAS standard tracking algorithm runs the seeding pro-
cedure in ANN buckets and is allowed to complete a found track from the
full event. Since only the seeding is performed inside the bucket, we consider
only pixel hits to build the buckets. First, an ANN index is built for every
event then buckets are sampled from the index and an instance of the tracking
algorithm is run on every bucket independently. The tracks found across the
different jobs are combined and form the output of the tracking pipeline : a
list of particle trajectories. The overall approach is summarized in Figure 8.8.

Given a hit, its associated bucket is defined as the set of hits closest to it
using an angular distance. By building a sufficient number of buckets across
the detector, every track seed is contained in at least one bucket. Seeds are
built from hits contained in the buckets and then completed by the track finder
with access to hits from the full event. If a bucket does not contain any valid
seed, no track candidate and therefore no output track is produced from that
bucket.

A bucket may contain a large number of hits from the same particle. While
only part of these hits are used to form seeds, the remaining hits are used in
the track finding phase to complete the seed into track candidate.

 Raw data
(digitization)

Preprocessing
 ANN index Seeding

 Track Finder

Ambiguity
 Solver

 Pixel
Clusters

Strip
Clusters

Buckets
Pixel
Seeds

Data

Preprocessing

Uses

 Track
Candidates

Tracks

Firefox blob:https://vectr.com/72831b5d-2c3a-4b66-950...

1 of 1 10/22/20, 10:40 AM

Figure 8.8: Proposed pipeline to run the standard ATLAS tracking algorithm
with seeding in buckets. The ANN index is built on pixel clusters only. Fixed
size buckets are sampled from the index and passed to the seeding algorithm.
Seeds are formed by 3 space points compatible with a helical track model
that passes a min PT requirement, a max d0 assumption and a 4th layer
confirmation, i.e. 4 space points to form a seed. The Track Finder, followed
by the Ambiguity Solver return a final track as described in Chapter 3.

8.5.1 Bucket sampling strategy

Although building buckets from each hit in an event guaranties to find all5
track seeds, it is not interesting to do so since only a very small fraction of
them will eventually produce particles. It is therefore necessary to select the
buckets on which to run tracking. Firstly, we present a random selection in
different pseudorapidity bins that is later filtered using a machine learning
based classifier.

Multiple index search

Throughout this document, the ANN index was described with 3D points
coordinates and an angular distance. However, assuming a fixed origin for the
buckets naturally fails to contain displaced tracks. The beam spot spreads
to +/ − 20cm along the z coordinate and produces tracks that cannot be
contained with buckets centered at (0,0,0). Figure 8.9(a) shows a projection
in the (R,z) plane of three different bucket origins. We refer to buckets with
a non zero vertex as displaced buckets.

An ANN index solely built on an angular distance (pointing to the origin
5Considering standard PT cuts

(a) (b)

Figure 8.9: (a) Displaced buckets in z coordinate with three offsets illustrated.
Hits are connected by lines within a bucket for better visualization. The black
cross denotes the query hit position. (b) Reconstructed z0 distribution.

z=0) can produce buckets that contain tracks with a maximum displacement
of 50mm. This maximum threshold was determined after running the standard
reconstruction on non displaced buckets only and analyzing the z0 distribution
of found tracks. It is then necessary to cover the whole z0 range shown in Fig-
ure 8.9(b) by building multiple indexes with different z0 offsets. Technically,
this is achieved by building in parallel different ANN indexes each on a shifted
z coordinate. The contribution of these displaced indexes is weighted accord-
ing to the actual distribution of z0 in an event. For example, indexes with an
offset<70mm have a higher weight than those at an offset>70mm since the
proportion of tracks with z0 < 70mm is much higher. These weights are also
constructed according to the eta η distribution of an event.

8.6 Reconstruction result analysis
When restricting the seeding to fixed-size buckets of 70 hits, we are interested
in the following metrics:

• The fraction of seeds that form track candidates and later accepted
tracks, i.e final reconstruction output.

• The time spent per bucket for :

– The seed creation.
– The building of the track candidate from an accepted seed.
– The ambiguity solving

• The quality of found tracks :

– The size of a track formed from a seeding inside buckets as opposed
to its matched track formed with seeding in the full event.

– The agreement of track parameters in the matched tracks ensemble.

• The event final reconstruction efficiency and the impact point resolution
comparison.

In the remainder of this chapter, the enumerated metrics are presented
and discussed.

In every ANN bucket, the ATLAS seeding procedure, through combina-
torics and minimal thresholds, extracts a number of pixel seeds. This number
varies depending on the quality of the bucket and on the cuts applied in the

queried region. Figure 8.10(a) shows the distribution of the number of space
points (SP) used to construct the seeds. As a reference, the standard seeding
requires few thousands SPs. The illustrated distribution shows two important
bumps at 20 and 70 and very few to no buckets that produce more than 150
SPs. Each track seed is formed by combining three space points from the
bucket hits (or from the full event in the standard reconstruction). The total
number of input space points that are considered to form seeds is illustrated
as a function of the number of output seed in Figure 8.10(b). Whereas in
the standard reconstruction thousands SPs are required to form seeds, only a
maximum of 100-120 SPs are in the case of seeding in the bucket.

(a) (b)

Figure 8.10: (a) Distribution of the number of space points (SPs) used per
bucket to form seeds. (b) Evolution of the number of SPs as a function of
output seeds. A comparison is presented by seeding in the full event (pixel
PPP and strip SSS seeds) and seeding in buckets.

The pure environment of a bucket offers the possibility of building a high
number of seeds with a constant number of space points. This is illustrated
by the flat green line in Figure 8.10(b). In standard reconstruction, the same
number of seeds is achieved through an important increase of the number of
SPs. The linear increase in the standard reconstruction is also due to a non
static bin size. The bins used in standard tracking are formed using a grid
in (z, ϕ) allowing the size of the bin to vary from few dozen points to few
hundreds (up to 800 on average).

As mentioned earlier, the number of seeds varies depending on the region
of the detector and more specifically depending on the eta region considered.
The distribution of the number of seeds as a function of the pseudorapidity
in standard reconstruction is presented in Figure 8.11(a). As a contrast, the
seeding in buckets equivalent is highlighted in Figure 8.11(b). The two figures
are obtained from running on the same data samples. Only the pixels (PPP)
are considered when building the seeds from buckets resulting in the similar
distributions for "All Seeds" and "All PPP Seeds".

From Figure 8.11(b), we can see that the two reconstruction variants pop-
ulate different pseudorapidity regions for PPP seeds. The fraction of track
candidates is similar between the two approaches. The total number of seeds
formed in buckets is noticeably higher than in the standard reconstruction
and this mainly caused by the absence of an overlap removal between buckets
(discussed in Section 8.7). Additionally to an overlap removal, an automatic
classification of buckets into "contains a track" and "does not contain a track"
categories has the potential to significantly reduce the number of buckets con-
sidered and therefore of seeds (discussed in Section 8.8).

One of the main motivations in favor of an ANN based seeding is the
potential time improvement. We are mainly interested in timing the following

(a) (b)

Figure 8.11: Distribution of the number of seeds as a function of the seed
pseudorapidity η. In (a), the seeds distribution in the standard reconstruction
is highlighted with pixel and strip seeds as well as the passage from seeds to
accepted seeds and to track candidates. The same quantities are shown in (b)
with the seeding restricted to buckets. Seeds are formed from pixel hits only,
i.e. no strips only Seeds (SSS).

algorithms per buckets:

• Seed production execution time.

• Track Finding execution time.

• Ambiguity Solving execution time.

These execution times depend on the input size of each algorithm. For
example, the Track Finder execution time depends on the number of seeds in
input and the ambiguity solver depends on the number of track candidates in
input. The seed production time depends on the number of seeds produces
and implicitly, the bucket quality. These execution times are represented in
Figure 8.12.

Figure 8.12(a) shows the evolution of the seed production time, per bucket,
as a function of the number of output seeds (green distribution). As a refer-
ence, the standard seeding execution time on pixels and strips is highlighted
(blue and red distributions). It is interesting to see that for the same num-
ber of output seeds, the seeding in buckets is much faster than the standard
seeding. Moreover, the seeding in buckets results in a nearly flat distribution
that maintains similar execution times independently of the number of seeds
produced. This is a direct consequence of the effects shown in Figure 8.10(b),
i.e. fixed-size buckets (SPs) allow a nearly constant stream in output seeds
and therefore a constant seeding time.

After the seeds are created, the track finder builds trajectories from each
seed by adding hits from the full event (not only the bucket). Due to the
high number of seeds and the combinatorial nature of the track finder, the
process of building track candidates is slow. Figure 8.12(b) shows the potential
speedup of running the track finder on seeds created in an ANN bucket. The
execution time of the track finding algorithm is displayed as a function of the
number of pixel seeds. The scaling is linear and the higher the number of
seeds, the longer it takes to building track candidates from each one of them.
It is interesting to note that since the seeds are formed from buckets of 70
hits, the maximum number of seeds considered per reconstruction job is 60 on
average as opposed to 120 in standard reconstruction. Figure 8.12(c) shows
the distribution of the number pixel seeds and the number of resulting track

(a) (b)

(c) (d)

Figure 8.12: (a) Production time of the seeding. (b) Track finding time as
a function of the number of pixel seeds in a bucket. (c) Number of track
candidates as a function of the number of pixel seeds. (d) Ambiguity solving
time as a function of the number of track candidates per bucket.

candidates. The majority of buckets will produce on average 25 seeds and the
track finder spends an average of 3 − 4ms per bucket for the construction of
track candidates. The somewhat diagonal shown in Figure 8.12(c) illustrates
the conversion of pixel seeds into track candidates. In the majority of cases
only 1 candidate is formed from the seeds of the bucket. More seeds tend
to produce more track candidates and few thousands buckets do not produce
any track candidate. This is also directly related to the minimal acceptance
thresholds considered when building a track. Indeed, from the buckets that do
not produce any track, an important fraction contains seeds of low momentum
particles.

Figure 8.12(d) shows the time spent in ambiguity solving per track candi-
date number. The dependence is also linear and more track candidates directly
translates into more time spent in the ambiguity solving. As mentioned pre-
viously, the wide majority of buckets produce 1 track candidate and it takes
on average 3ms for the ambiguity solver to reject or accept this track. Most
of time this track is accepted.

The mapping between track candidates and final tracks (output of the
ambiguity solver) are shown in Figure 8.13. The majority of buckets produce
one track candidate that is accepted. The second most common cases are
buckets with a single track candidate that is rejected by the ambiguity solver
or two track candidates with only one that is accepted. It is interesting to
see the linear correlation between track candidates and accepted tracks. Some
buckets (few dozen) produce up to 9 track candidates and up to 8 of them are
accepted to make up the final reconstruction output.

Now that we have evaluated the time and the quality of the seeding, the

Figure 8.13: Number of final tracks as a function of the number of track
candidates per bucket.

track finding and the ambiguity solving in ANN buckets, we can analyze and
compare the final output of these algorithms : particle trajectories.

A particle trajectory typically contains 20 hits. Among these, 4 hits where
used as a seed to build the initial track hypothesis (used in the track finder).
Depending on which 4 hits where used as a seed, the final track content might
slightly vary. We are now interested in comparing the size of a track found in
standard reconstruction with the size of a matched6 track found with a seeding
restricted to ANN buckets.

Figure 8.14 shows the distribution of the sizes of matched tracks between
the standard reconstruction and the buckets seeding reconstruction with a
minimum PT cut of 1GeV. For every bucket that yields a track, a matching
is done with the standard reconstruction output tracks. If they share at least
7 hits, both their sizes are recorded. The horizontal axis of Figure 8.14 shows
the sizes of final tracks from the standard reconstruction and the vertical axis
shows the matched tracks from seeding in buckets. If a track is reconstructed
in multiple buckets, all its sizes are recorded in Figure 8.14(a). In Figure
8.14(b) however, only the longest matched size is recorded.

(a) (b)

Figure 8.14: Matched tracks length comparison between standard full event
reconstruction and seeding inside buckets reconstruction. (a) shows the match-
ing between all reconstructed tracks with at least 7 hits while (b) shows only
the matching between a track found in the standard full event reconstruction
and its best (longest) match with the seeding restricted to buckets. In (b)
tracks coming from the hard-scatter vertex are highlighted in a red square.

6We assume that two tracks are matched if they share at least 7 hits. Matched tracks
produce similar track parameters.

Hard-scatter tracks (most energetic and most interesting), denoted with
red squares in Figure 8.14(b), populate the diagonal, i.e. tracks from the hard
scatter vertex are found similarly in the standard reconstruction and in the
bucket seeding reconstruction. The tracks above the diagonal contain more
hits when built with a seed from a bucket than with a seed from standard re-
construction. This suggests that those bucket seed allow a better resolution of
the tracks. Matched tracks below the diagonal result from the opposite mech-
anism where a seed from the standard reconstruction chain provides higher
resolution compared to a seed built in a bucket.

Since the hit content of the tracks returned from a seeding inside buck-
ets are not exactly similar to the ones returned from standard reconstruction,
a comparison of impact point (IP) resolution parameters is necessary. This
comparison is between the d0 and z0 of the vertices in each of the two recon-
structions.

(a) (b)

Figure 8.15: IP resolution along d0 and z0 as a function of the pseudorapidity
η between standard reconstruction (ATLAS Seeding) and seeding restricted
to buckets reconstruction (ATLAS Seeding in bucket).

Figure 8.15 shows the σ(d0) and σ(z0) evolution as a function of the track
pseudorapidity η. The ratios are also shown in the figures. Apart from slight
variations, the two set of tracks are in agreement with few percent and provide
very close IP resolution values.

The final and most important item of comparison is the event efficiency.
The reconstruction efficiency is the fraction of tracks that is successfully found
from the total number of simulated truth tracks. Truth tracks are stable,
charged and with PT>1GeV . The efficiency of the two reconstructions is
shown in Figure 8.16(a). The efficiency ratio is shown at the bottom of the
figure. The seeding inside buckets is slightly less efficient in some pseudora-
pidity regions with an average of 5% inefficiency per event compared to the
standard reconstruction. The lost tracks (inefficiency) appear to be mostly lo-
cated in the central region (|η| < 2). Note that the standard ATLAS efficiency
is around 88%.

The standard reconstruction is optimized to run on the ITk layout. This
optimization implies tighter thresholds to reduce combinatorics (see default
thresholds in Section 2.2.3). In the bucket environment however, the number
of hits being always 70, will allow the production of seeds that do not pass
the acceptance thresholds. The inefficiency seen in Figure 8.16(a) is primarily
due to these tight constraints on the seeding.

To confirm this hypothesis, we loosen up two seeding cuts : The minimum
distance between hits for PPP seeds and the maximum seed d0. Since an ANN
bucket is agnostic to the detector layout, the distance between two hits can
be arbitrary small and the seed d0 arbitrary large as long as the hits within a

bucket are the closest neighbors in terms of the angular distance.

(a) (b)

Figure 8.16: Global efficiency of seeding in buckets reconstruction compared
to the standard ATLAS reconstruction. (a) uses standard seeding thresholds
for both reconstructions while (b) shows the impact of relaxing the seeding
thresholds when running inside buckets. The standard reconstruction in (b)
still uses the standard thresholds.

The changes on the two mentioned seeding parameters are summarized
in Table 8.2. This loosening of the seeding thresholds will not allow more
seeds to be accepted but rather more seeds to be considered. The bucket
environment will therefore be less penalized when containing close-by hits or
larger d0 seeds. These new threshold values were chosen to minimize zero
seeds buckets. The resulting efficiency with this relaxed seeding strategy is
shown in Figure 8.16(b). Note that the standard ATLAS reference in the
Figure still uses standard seeding cuts (not an apple to apple comparison).
The standard seeding thresholds were maintained as a reference to ensure an
optimized reconstruction, i.e. looser cuts in the standard reconstruction (full
event) will result in a combinatorial explosion and a performance loss (that is
why these cuts were chosen in the first place).

Seeding Min hit distance Max d0 seed
Standard Seeding 6 mm 2 mm
Relaxed Seeding 0.1 mm 5 mm

Table 8.2: Summary of the change to the seeding thresholds.

The bucket reconstruction efficiency in Figure 8.16(b) is now much higher
and in fact higher than the standard full event reconstruction although this is
only used as a marker and we are interested in the overall truth efficiency, i.e.
fraction of found tracks from the total simulated. The hard-scatter efficiency is
also highlighted for both reconstructions. We can clearly see that the average
event efficiency is now 90% instead of 88% and that especially in the 1 < |η| < 3
region the ratio of reconstructed tracks is much higher. Moreover, the relaxed
seeding cuts allow to find relevant tracks of PT > 1GeV from the hard-scatter
event. In Figure 8.17 we can see the spread of the reconstruction tracks along
PT , d0 and z0.

Generally, by relaxing the seeding inside the buckets we are able to retrieve
more tracks of different transverse momentum (PT) and offsets (d0,z0). The
high pT spectrum has less statistics and as a result no clear conclusions can be
derived for the efficiency at 4GeV for example. The same can be said for high
d0 and z0 offsets where we can see an increase in uncertainty. The additional
tracks were found from exactly the same buckets that gave a lower efficiency in

(a) (b)

(c)

Figure 8.17: Efficiency of relaxed seeding in buckets as a function of PT (GeV),
d0(mm) and z0(mm).

Figure 8.16(a). This means that although the seeding acceptance thresholds
were lowered, the number of processed buckets is the same.

Unmatched tracks

Additionally to the improved overall performances enabled by a relaxation
in the seeding cuts, the bucket based approach finds more tracks than the
standard ATLAS reconstruction (that uses stricter cuts). These additional
tracks are called unmatched because they do not have a corresponding track
found in the standard reconstruction and yet they are simulated and thus
associated to a truth particle. It is worth mentioning that even when using
similar cuts between the standard reconstruction and the seeding in buckets,
additional unmatched tracks are found.

The fraction of unmatched tracks is overlaid in the efficiency plot of Figure
8.18 as a function of the pseudorapidity. The majority of new tracks are found
in the 1.5 < |η| < 3 region. These unmatched are primarily recovered because
of the high purity of the bucket environment that allows the creation of more
valid hit combinations.

When an unmatched track is found by the bucket seeding reconstruction,
two cases arise:

• The track is matched to a true particle, i.e. a link to an existing particle
can be retrieved.

• The track is not matched to any true simulated particle, i.e. it is unlinked
to simulated particles and therefore it is a fake track. We call these tracks
unlinked.

Figure 8.18: Extra tracks (unmatched) found by restricting and relaxing the
seeding in ANN buckets. The full event tracks represent those found with
standard ATLAS reconstruction. The track count ratio per eta bin is also
illustrated.

The unmatched linked tracks (true extra tracks) span across the whole PT
spectrum but the majority have a PT < 2GeV as shown in Figure 8.19(a). The
unmatched unlinked tracks (fakes) are very rare and their track parameters
are irrelevant since they are non real particle trajectories. They can however
bias the total reconstructed parameters. The fraction of unlinked tracks is
shown in Figure 8.19(a). The unmatched tracks also span across the full d0
and z0 ranges as presented in Figures 8.19(b) and 8.19(c).

There is a simple criteria to distinguish between fake tracks (unlinked) and
valid tracks. Unlinked tracks have a maximum of 9 hits on average whereas
linked tracks have more than 10 hits as illustrated in Figure 8.20. Unlinked
tracks also tend to populate the forward detector region.

In summary, restricting the seeding to 70 hit buckets achieves an overall
efficiency that is 5% lower than the standard ATLAS reconstruction when
using standard seeding cuts and 1-2% higher when relaxing those cuts. In
both cases, we see additional unmatched true tracks with different transverse
momentum and z0, d0 offsets. The standard tracking needs on average 4ms
to find a track in a 70 hit bucket. This process can be massively parallel (on
GPUs for example) since the buckets are queried independently. Two aspects,
however, need further consideration :

1. The overlap between buckets: Querying independent hits in the ANN
index can produce heavily overlapping buckets.

2. Noise buckets : an important fraction of buckets do not produce any
accepted seed.

8.7 Bucket overlap analysis

If two close-by hits are queried, the resulting ANN buckets might share some
of their hits. An example of these cases is presented in Figure 8.21 where two
20 hits ANN buckets share 12 hits. The query hits, denoted by the arrows

(a) (b)

(c)

Figure 8.19: Parameters of the unmatched and unlinked tracks averaged over
10 events.

Figure 8.20: Trajectory size (number of hits) for linked and unlinked tracks.

in the figure, are quite far apart in the euclidean space but aligned along the
angular distance and thus share many neighbors. Depending on the hits that
are shared, overlapping buckets can produce similar seeds and later tracks.
This results in duplicate tracks which is an issue we want to minimize.

Figure 8.22 shows the distribution of the overlap fraction between 10k
randomly queried buckets. This distribution was averaged over 10 events.
The wide majority of buckets do not overlap with any other bucket. The
query of doublet hits however produces identical buckets (bin at 20) and has

to be prevented. A certain amount of overlap can be allowed in order to ensure
a total coverage of the detector. This number is chosen as a trade-off between
containing all the seeds and avoiding duplicate tracks (seeds).

Figure 8.21: Example of two overlapping 20 hits ANN buckets. The query
hits are marked with the blue arrows.

Figure 8.22: Example distribution of the number of overlapping hits between
10k ANN buckets of 20 hits.

The overlap removal is the process of discarding one bucket if a fraction
of its hits are already contained in another bucket. Typically, this fraction
can vary from 70% to 80%. Depending on the size of the buckets, if less than
70% of the hits are contained in two different buckets, then the non common
hits (at least 30%) can be used to create different seeds. Therefore, buckets
overlapping with less than 70% are not removed to ensure a high efficiency.

We test different overlap removal thresholds on one event and analyze their
impact on the total number of seeds produced, the number of candidates and
accepted candidates per bucket and finally the event efficiency loss. For these
tests, we consider 33k ANN buckets of 70 hits. The different distributions are
presented in Figure 8.23. In each case, the standard buckets with no overlap
removal are shown in black and the alternative where buckets that contain

at least 70% of overlapping hits are discarded is shown in red. We can see
that the number of buckets producing no seed has dropped by more than half.
Although the largest impact is on empty buckets, the ones that produce seeds
are also removed, i.e. decrease of the number of buckets producing seeds. This
is directly reflected in the number of candidates and the number of final tracks
(accepted candidates) shown in Figure 8.23(b) and 8.23(c).

(a) (b)

(c)

Figure 8.23: Impact of a 70% overlap removal on the number of seeds, candi-
date tracks and accepted tracks.

The overlap removal procedure checks the fraction of overlapping hits with-
out any specific constraints on the position of common hits. Two buckets that
have 70% of common hits might still produce different seeds if for example
the remaining 30% unique hits are produced in the inner layers and satisfy
seeding criteria such as a minimal distance between hits of at least 6mm. In
this case, removing one of these buckets will result in the permanent loss of the
seed (and later track) it contains. At the event level, this is demonstrated as a
function of the pseudorapidity region in Figure 8.24. The number of discarded
buckets in this example is :

• >85% overlap: 3K buckets were removed.

• >80% overlap: 5K buckets were removed.

• >70% overlap: 10K buckets were removed.

Firstly, the number of buckets removed at a threshold of 85% is quite high
(3K). This number increases rapidly as the overlap threshold is lowered. Re-
moving buckets that have at least 70% hits in common with other buckets
decreases the total number of buckets considered by a third. This third of
buckets contributed by an average of 6% to the event efficiency.

Secondly, it is interesting to note that as the overlap threshold is lowered,
the event efficiency becomes highly dependant on the pseudorapidity region
considered. For example, for 0.5 < |η| < 1.5 and 3 < |η| < 4 the efficiency
is lightly impacted by the buckets removal. In 2 < |η| < 2.5 however, the
efficiency drops significantly compared to any other region. This is explained
by the fact that the number of buckets generated per eta region is not exactly
the same but rather a function of the material distribution in the detector

Figure 8.24: Impact of overlapping buckets removal. Different overlap thresh-
old are considered : 70%, 80% and 85%. The resulting event efficiency after
bucket removal is shown as a function of the pseudorapidity.

(true number of hits). A solution to this overlap removal dependence is to
vary the overlap threshold in the different detector regions.

A more robust solution however is to automatically detect noise buck-
ets and remove them completely additionally to removing highly overlapping
buckets. Bucket filtering is the additional layer to detect empty buckets and
automatically discard them.

8.8 Bucket filter
A bucket that contains a track has to contain 4 hits or more produced by the
same particle. A bucket that does not satisfy this condition is a collection of
random hits that do not contain any information. Such buckets (although a
minority) have to be filtered before any reconstruction procedure is run. The
filter extracts patterns that discriminate between good buckets and bad ones
(noise buckets). Figure 8.25 shows an example of a good bucket with a leading
particle of 14 hits in (a) and a noise bucket with no track larger than 3 hits
in (b).

(a) (b)

Figure 8.25: Illustration of the filter task. (a) is a bucket that contains a track
of 4 hits or more. (b) is a bucket with no track larger than 3 hits, i.e. noise
bucket. The bucket filter task is to distinguish between such buckets.

The filtering of the buckets is in fact a binary classification : good (1) and
bad (0). The classifier takes a bucket as input and produces a binary response.
The bucket is a high dimensional object where each hit is a 6 dimensional
vector: x, y, z, θangle, φangle, pixel/strip. The θangle and φangle are the inner
angles of the hits cluster shape. The pixel/strip is a binary value that takes
1 if the hit is a pixel and 0 if it is a strip.

In this study, we consider buckets of 50 hits. The classifier input is there-
fore a matrix of shape (N, 50, 6) where N is the number of buckets considered.
All input vectors are normalized to unity (between 0 and 1). Buckets are
sampled from 10 events for training and we use 10 additional events for vali-
dation (prediction). The output of the model is set to 1 if a bucket contains
at least 4 hits from the same particle and 0 otherwise. The training dataset
is balanced to contain an equal amount of positive and negative buckets. Two
different machine learning models are tested: a random forest (RF) and a
neural network (NN). We use 200 estimators for the random forest. The NN
has two fully connected hidden layers of 500 units each with batch normaliza-
tion. A stochastic gradient descent is used to optimize the network weights
and a binary cross-entropy loss penalizes the network error. Both models (RF
and NN) output a prediction probability for each bucket. This probability is
confronted to the leading particle size per bucket in Figure 8.26.

(a) (b)

Figure 8.26: Joint distribution of the leading particle size and the filter pre-
diction probability. (a) shows the model response of the neural network while
(b) shows the output probability of the random forest. Colors highlight the
frequency of a pair (leading particle size - model probability).

A perfect model produces a linearly correlated response to the leading
particle size. In both models we can see two distinct blobs around probability
zero with leading particle sizes 4 and around higher probabilities (>80%) with
a more spread leading particle size (centered at 10). With a probability cut of
50%, the majority of buckets returned have tracks of at least 4 hits. The error
of the model, i.e. the fraction of false positives is 3%. The efficiency of the
model, i.e. the fraction of true positives is of 82%. This means that around
18% of positive buckets were classified with a probability smaller than 50%.

Probability cut 30% 50% 70%
RF error (efficiency) 3.4%(82%) 3% (72%) 2.2% (44%)
NN error (efficiency) 3.4%(81%) 3.2% (72%) 3% (51%)

Table 8.3: Error and efficiency of the two models for different prediction prob-
ability cuts.

Table 8.3 shows the evolution of the models error and efficiency when
varying the prediction probability threshold. We can see that both models
show similar performances at different cuts. The random forest has a lower
error at higher thresholds while the neural network has higher efficiency at
higher thresholds. This behavior is also illustrated in the Figure 8.26 where
the distribution of the random forest is more spread vertically around low
probabilities, i.e. good buckets are associated to low prediction probability
wrongly.

Concretely, the filter task is to shift the distribution of leading particle
sizes towards higher values by filtering those with no track. The distribution
of leading particle sizes before any filtering is shown in Figure 8.27 as the
randomly selected buckets (black markers). The resulting distribution after
applying a neural network (DL) filter with a probability cut of 50% is shown by
the red markers in Figure 8.27. For reference, the true particle size distribution
is highlighted in the background of the figure.

Figure 8.27: Impact of the bucket filtering on the leading particle size distri-
bution.

The shift in distribution from the blue histograms to the black markers is
attributed to the ANN buckets quality. The majority of buckets contain four,
five and six hits tracks. The filter shifts the distribution further towards higher
values. The number of buckets with non reconstructable tracks (<4 hits) is
significantly reduced. After the filtering and on average, a bucket contains 8
hits produced by the same particle. The distributions shown is Figure 8.27
were obtained by averaging the model response on 10 unseen events.

Adding more input information to the model helps in increasing the overall
accuracy. The cluster shape information, for example, is a valuable feature for
extracting the descriptive patterns of a bucket. In Chapter 10 we present a
pipeline model that take as input the full information captured by the detector:
raw hit features, activated clusters as images as well as the detector geometry
information.

8.9 Summary and conclusions
This chapter presented a full evaluation of the fast similarity approach on
the ITk simulation dataset. The proposed approach being first designed and
tested on the TrackML challenge, it is expected that its application on a
realistic simulation dataset presents many more challenges. However, despite
the enumerated dataset differences and the need for adjusting ANN parameters
such as the total number of queries, the fast search approach allowed to define
fast reconstructable buckets. Due to the noise level in the ITk dataset, the
number of necessary ANN queries grew from 4K (on the TrackML dataset)
to approximately 70K while the size of the bucket was increased to 70 hits
(instead of 50 hits). Moreover, a necessary addition was the introduction of
displaced buckets that capture tracks with a z offset.

Additionally, this chapter established the possibility of running the AT-
LAS standard tracking chain on a very small number of hits as opposed to

the full event. While the standard seeding and track finding algorithms were
designed to process thousands of points in input, they successfully constructed
tracks in buckets of 50 and 70 hits. In order to cope with the noise level in
the ITk dataset, buckets were tested for seeding only since the ANN buckets
were unable to contain the full particle trajectory. However, this new direc-
tion showed promising efficiency and timing results compared to the standard
tracking in the full event. Tracking in buckets allowed to retrieve more tracks
in the low PT region.

The two shortcomings of the presented approach, namely duplicate tracks
and noise buckets, were addressed with an overlap analysis and a filtering
model. The approach presented in this chapter can show an important speed-
up potential when the ongoing multi-threading and GPU tracking algorithms
are fully deployed. The parallel tracking can be performed in buckets on
thousands of threads.

While the fast search approach consistently contained tracks and seeds, the
metric learning model presented in Chapter 7 was not able to cope with the
ITk dataset challenges. As a consequence, in Chapter 9, we propose to design
a novel metric learning model that explicitly addresses the characteristics of
the ITk dataset.

Bibliography

[1] Hashing for track reconstruction : Hashing and similarity learning
for track reconstruction https://atlas.web.cern.ch/Atlas/GROUPS/
PHYSICS/PLOTS/IDTR-2019-008/

109

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2019-008/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2019-008/

9

TrackNet : Tracking aware
embeddings

Standard metric learning techniques yield poor performances on the ITk sim-
ulation sample. In this chapter, we propose a novel model that performs
tracking aware metric learning.

9.1 Motivation

Chapter 7 discussed the successful application of LFDA and UMAP on the
TrackML dataset. Both techniques, using supervised particle information,
were able to produce mappings that clustered together hits produced by the
same particle. As discussed in previous chapters, these mappings were possible
due to the properties of the TrackML dataset (low noise level). The classes
defined by the particle label information allowed to learn consistent patterns
and shapes that accurately generalized to unseen events. When training an
UMAP model on the ITk simulation sample, the resulting 2D mapping does
not reassemble at all the desired output1. Figure 9.17(a) shows the resulting
mapping of the hits in the central pseudorapidity region |η| < 1 as a grey
background as well as a selection of 10 long particles (with at least 12 hits).
Hits produced by the same particle have the same color and are linked by
continuous lines.

The large spread of similarly colored points in Figure 9.17(a) is an indicator
of a poor mapping. As a comparison, a similar subset (similar pseudorapidity
region and number/size of highlighted particles) from the TrackML dataset is
mapped with UMAP in Figure 9.17(b). We can see that although the mapping
is not perfect, different particles are well separated and all the hits are mapped
into different locations as opposed to the seemingly random behavior seen in
Figure 9.17(a).

UMAP is considered the current state of the art in manifold learning yet it
fails to capture track patterns in the ITk simulation sample. At this stage, this
inability to generalize from TrackML to ITk is expected due to the numerous
differences. We use the lessons learned from previous comparisons to propose
a custom metric learning model.

9.2 The TrackNet loss function

In deep learning models, the loss function establishes the desired output and
penalizes the network accordingly. The purpose of the model is to estimate

1This is despite running a grid search on all the UMAP parameters

111

(a) (b)

Figure 9.1: Mapping of particles using UMAP applied to (a) an ITk event and
(b) a TrackML event.

from a dataset X some target values ŷ that approximate as much as possible
the true target values y. The loss function quantifies how close is the model
prediction to the true values. It is therefore of the form :

L = γ(ŷ, y) (9.1)

where γ is a function that measures the agreement between predictions and
true values. For example, one of the most popular loss function is the Mean
Squared Error (MSE) where γ = 1

n

∑n
i=0(ŷi − yi)2 and n the total number of

data points.
Many forms of the loss function exist. However, these standard functions

apply well to standard problems (classification, estimation, regression). Our
goal with the metric learning model is to assign new coordinates to every hit
such that tracking becomes intuitive. Characteristics of this intuitive output
have to be encoded in the loss function.

Figure 9.2 shows the global model architecture as well as the input and
output. The model takes in hits and returns them in a new d dimensional
space. A bucket of n hits can be given as input to the model. To illustrate
the model actions, Figure 9.2 shows two particles as input : P1 and P2. Each
hit in the input is an m dimensional feature vector. We use all the available
information per hit : x, y, z coordinates, layer and volume identifiers, pixel
inner angles and the modules directions. In total 14 variables per hit. The
contributions of the input features is also discussed in this chapter.

The different layers of the neural network propagate the hits using a tanh2

function on the learned weights to produce the output hits (2 dimensional
in the figure). The actions of the loss function are illustrated in the figure
through the arrows directions. An intuitive tracking space is one where hits
from different particles exist in different locations and those produced by the
same particle are close-by. The loss function tries then to pull apart hits from
different particles (action of the outward large arrows) and pushes together
same-particle hits (action of the inward small arrows).

In Figure 9.2, the output of the model constitute two distinct blobs where
one contains hits from P1 and the second hits from P2. Additionally to the
pushing and pulling actions, a clustering feedback computed on the output is
incorporated into the loss value at the end of every epoch.

The proposed loss form is introduced in Equation 9.2. It has three weighted
components : The compactness term Lc , the isolation term LI and the clus-
tering term LCL. The compactness and isolation enforce the push and pull

2Chosen after a grid search. More details can be found in the Model fine tuning section
9.3

10
0

ta
nh

10
0

ta
nh

10
0

ta
nh

10
0

ta
nh

O
ut

pu
t

 2
 ta

nh

In
pu

t

Firefox blob:https://vectr.com/b8142e9f-ee99-41ac-90b...

1 of 1 9/29/20, 8:53 AM

Figure 9.2: The TrackNet model. Learns to map input hits into a new feature
space where particles are well separated.

effects while the clustering term provides a general feedback on quality of the
clusters in each epoch.

LTrackNet = (αLC + βLI + γLCL)ζ (9.2)

LC =
K∑
i=0

S(ci) ; LI = 1
S(µ[1..k])

; (9.3)

The impact of each term of the loss function is regulated through the
weights : α, β, γ. The ζ power of the loss takes values starting from 2 to
ensure a larger penalty for larger errors. The compactness loss, detailed in
Equation 9.3, addresses the variance S() within each particle cluster ci. It is
computed for every K clusters in the batch. The variance is defined as S(x) =∑n

i=0(xi−x)2

n−1 where x is the ensemble of points of interest. The smaller the
variance of a particle in the learned space, the smaller the model penalty. The
isolation, expressed in LI , concretely isolates the centroids µ of the particles.
The network learns to shift the hits of a particle cluster such as their centroid
is sufficient far from other centroids. In turn, the compactness term ensures
that the hits within a particle are close enough that their centroid remains a
good representative. As a consequence, the higher the variance of the particle
cluster centroids, the larger the isolation. In LI , we choose to minimize the
inverse of centroids variation.

Although the compactness and isolation terms seem to describe the desired
output space, there are cases where the two losses are minimized but the
output space is not ideal. For example, the majority of particles can be pushed
apart into different locations but a hit or two can escape from this location.
This is because both the variance and the mean operate on the average value
and are therefore robust to outliers, i.e. a wrongly mapped hit does not heavily
impact the mean and variance. Moreover, since the goal of the TrackNet
model is to facilitate the use of a clustering technique to retrieve the tracks, a
clustering quality metric is a powerful addition to the loss function.

We chose as a clustering metric the silhouette coefficient SC (introduced
in Section 7.2.4). This metric is defined for every hit in the output space and
the returned value is the average over all the hits. The clustering loss LCL
is exactly this metric averaged over all mapped hits in a given batch. The
silhouette coefficient loss term is defined as:

LCL = b− a
max(a, b) (9.4)

With a the mean distance between a hit and other mapped hits produced
by the same particle and b the mean distance between a hit and all other hits
in the next nearest particle cluster. The strength of the silhouette coefficient is
that it considers all distances between hits. It varies between -1 and 1 where 1
describes perfect clusters (well separated). Towards 0, the clusters are overlap-
ping and negative values indicates random clusters. The SC range of variation
is used throughout this chapter to compare different model configurations.

An additional evaluation metric
Although the silhouette coefficient sufficiently describes the quality of a

clustering, we might be interested in a fraction of the hits only. For example,
if a bucket contains 20 hits, of which 10 belong to the same particle and
the remaining points represent noise hits (2 or 3 hits per particle), we are
interested in the clustering of the leading particle (10 hits in this case) and
not in the shorter tracks. We propose to add an additional evaluation metric
that focuses on the mapping of the leading particle in the model output. Such
metric combines both the efficiency and purity of the cluster of interest c and is
known as the Intersection Over Union (IoU) or the Jaccard Index. Effectively,
it is the intersection of prediction and truth over their union:

IoUc =
∑N
n=0 1[yn = c & ŷn = c]∑N
n=0 1[yn = c or ŷn = c]

(9.5)

where 1 represents an indicator function that takes a value of 1 if the
condition is met and 0 otherwise. In the standard definition of IoU (generally
used for classification tasks), yn is the truth label of the data point n and ŷn
the predicted label. c is the class of interest, i.e the leading particle cluster.
We propose the following formula:

IoUparticle =
∑N
n=0[yn = p & cn = p̂]∑N
n=0[yn = p or cn = p̂]

(9.6)

where yn is the true label of the hit n and cn the corresponding clustering
label. p is the identifier value of the leading particle and p̂ the majority
clustering label in the leading particle. Figure 9.3 shows an example of a
clustering label assignment (numbers) and the truth hit identifiers (colors). In
the example, the leading particle is the one shown in blue (p = blue) and the
majority corresponding clustering label is p̂ = 250. In this case, the IoU is
equal to 6[blue and 250]

7[blue or 250] = 0.85. The silhouette coefficient value in this example
is much smaller (approximately 0.6) since the blue point wrongly labelled 10
is much closer to its true neighbors (blue) than similarly labelled points (red).

A clustering algorithm

The computation of the IoU metric requires a labelling of the hits, i.e. a
clustering algorithm. Applying a clustering algorithm on the output of the
TrackNet model allows to retrieve particle tracks and therefore to evaluate
the quality of the model. The complexity of the selected clustering algorithm
is inversely proportional to the quality of the TrackNet mapping. Indeed,
the majority of existing clustering algorithms would successfully retrieve par-
ticle traces if all learned mappings fulfill the requirements of isolation and
compactness. Section 9.4 describes a novel clustering strategy proposed and
designed to run on the output of the TrackNet model. The optimization of
the TrackNet model however is independent of the clustering technique used.
As a consequence, the optimization of the model is conducted with a simple
Agglomerative Clustering (AC) with a variable threshold distance. Details on

250

10
250

250

250
250
250

10

10

10
10

55
55
10

Firefox blob:https://vectr.com/c1cfe59b-0549-4308-82c9-e8fa5...

1 of 1 11/23/20, 9:57 AM

Figure 9.3: Illustration of a clustering output. The labels predicted by the
clustering are encoded as numbers and the truth hit identifiers as colors. The
leading particle is the blue one with 7 hits, 6 of which are correctly assigned
similar labels by the clustering algorithm.

the standard AC algorithm are presented in Chapter 4. The threshold distance
is the maximum distance at which the algorithm stops merging clusters. A
dynamic distance means that the most suitable distance value will be selected
depending on the TrackNet mapping (with a grid search), i.e. it is considered
as an additional parameter to tune. In the remainder of this chapter, all IoU
values are computed using an agglomerative clustering.

9.3 Model Fine Tuning
Many input parameters play an important role in the mapping of hits from
their raw feature space into a new meaningful coordinate system. The fine
tuning of these parameters as well as the understanding of their impact is
crucial. Very often, a slight variation in any of the parameters can result in
large disruption of the output. The TrackNet model relies on:

• The input shape : The dimension of the hits to map including global
coordinates of the hits, layers and volumes, cluster angles and modules
orientations. We evaluate different combinations as well as considering
all of the available features.

• The model architecture : Number of layers, number of units per layer,
activation functions, optimizer, batch size, number of epochs.

• The input hit pseudorapidity. We evaluate the model on all the detector
as well as on individual pseudorapidity bins.

• The loss function weights: Studying the effect of putting more weight
into the compactness or into the isolation.

• The dimensionality of the output space: 2D mappings allow to visually
inspect and understand the model output whereas higher dimensions
generally allow a better separation of the particles.

In the remainder of this section all the enumerated parameters are discussed
and evaluated one by one. The number of hits passed to the model is selected

depending on the application. Along this chapter, we choose a bucket size
of 20 hits as input to the model. This is motivated by earlier studies that
showed a 20 hits bucket has a high enough probability to capture a track
while maintaining a small size for a faster clustering.

9.3.1 The model input

Every hit in the dataset is described by the following features:

• x, y, z : global coordinates.

• Layout coordinates: barrel endcap index, layer disk index, eta and phi
modules.

• List of activated pixels: (eta coordinate,phi coordinate,ToT).

• Inner angles of the activated pixels: eta angle, phi angle.

• Direction of the module surface in the detector, i.e. norms along x, y
and z.

Similarly to the study conducted in Chapter 8, the TrackNet model is
trained on pixels only. All of the above features are considered except for
the list of activated pixels3 (the inner angles are however considered). The
model architecture search cannot be separated from the input shape analysis.
An architecture might work for a purely 3 dimensional input while a different
architecture is needed if more features are considered. The grid search is
therefore ran on the input shape and the model architecture simultaneously
thus exploring all possible combinations.

Figure 9.4 shows the result of a grid search on the model architecture and
the input features along the two evaluation axes: SC and IoU. Each dot (or
cross) is a variation of either the model architecture parameters (or input
features). The number of epochs for the training of the model is color coded
in the figure.

Figure 9.4: Model performance with different architectures and input features.
Crosses denote a 3D input while the dots show the performance when consid-
ering all the available variables as input. Colors indicate different number of
epochs.

3Including variable size images as input is not feasible with the selected network archi-
tecture. In Chapter 10, we propose a model that takes these images as input.

The best performing configuration is a 4 layer fully connected network
where each layer is composed of 200 units and a tanh activation function.
We use a batch size of 500. As can be seen by the colors spread, a higher
number of epochs does not necessarily improve the performances. The ideal
number of epochs is determined through early stopping. Early stopping is
a binary feature in neural network training. If it is turned on, the model
will monitor the evolution of one interesting variable (usually the validation
loss) and automatically stop the training if its values do not improve over
a certain number of epochs (referred as tolerance, usually 5 or 10 epochs).
In our application, we choose to monitor the validation loss with a tolerance
threshold of 10 epochs.

Feature importance

In order to evaluate the importance of the hit features, a common approach is
to alternatively set a feature value to zero and analyze the impact on the out-
put representation. By doing so, features with low contribution (lower network
weights) will minimally affect the mapping whereas the absence of important
features will significantly worsen the result. To quantify the impact in a metric
learning application, we propose to measure the shift in the particle cluster
variance and centroid coordinate of the leading particle. Our reference space
is a mapping that considers all the input features. At every step, we select one
feature from the input and set all its values to zero. In the resulting mapping,
we compare the new position of the leading particle with the reference one.
Figure 9.5 illustrates this comparison on two example variables.

The input hits (right most plot) are shown in the longitudinal plane and
the leading particle is highlighted in red (4 hits). In the central plot and as
an example, the norm of the module along the x axis is set to zero while in
the left plot the phi coordinate of the module is neglected. For comparison,
the reference mapping of the leading particle with all the features is shown as
a grey discontinuous line. In this example, ignoring the phi module of the hit
changes the output mapping noticeably more than ignoring the norm along x
and the resulting mapping is improved (more compact cluster).

Figure 9.5: Illustration of the feature importance evaluation strategy. The
leading particle is highlighted in red.

We quantify then the impact of the different features by measuring the
shift in the mapping of the leading particle. In the example above, the shift
is between the reference mapping (grey discontinuous line) and the mapping
with a feature set to zero (red continuous line). The change in the map-
ping is evaluated by measuring the euclidean distance between the respective

centroids and the change in the cluster variance. The further away the new
centroid of the particle is from the reference position, the higher the impact
(positive or negative) of the feature. The change in variance however can be
interpreted directly as negative if it increases and positive if it is smaller as the
goal remains to map the particles into compact clusters. As a result, in the
example mapping shown in Figure 9.5, removing the phi_module information
from the input improves the mapping.

The results of the different shifts in the mean and the variance of the
mappings are summarized in Figure 9.6. These quantities are averaged on an
unseen event.

Figure 9.6: Input features impact on the mapping of the leading particle.

It is interesting to note that the geometry related features (layer disk, eta
and phi modules coordinates) play an important role in the model mapping.
As expected, the r and eta of the hit have the highest impact on the model
output. The inner angles of the hit clusters contribute significantly to the out-
put despite their lower4 resolution. The analysis of feature importance and
subsequently the selection of the best features allows to increase the inter-
pretability of the model and reduce significantly the training time. Figure 9.5
demonstrates that the module norm information along the three axis as well
as the barrel_endcap coordinate do not impact the mapping and can therefore
be removed.

In the next section, we study the case of training different models in dif-
ferent pseudorapidity regions.

9.3.2 TrackNet and Pseudorapidity

In the previous sections, the TrackNet model is trained on the full detector.
It was observed throughout this work that ML models yield different perfor-
mances depending on the pseudorapidity region considered. In chapter 7 and
8 different performance evaluations showed as slight drop in efficiency in the
central region compared to the forward region. The TrackNet model is no
exception to this behavior since the same TrackNet configuration, evaluated

4As compared to the TrackML dataset.

in different pseudorapidity regions results in widely different scores. Figure
9.7 shows the different results obtained in 8 pseudorapidity bins each with a
0.5 width. The evaluation axes are the average IoU and the average SC for all
possible buckets of 20 hits on an unseen event. The pseudorapidity range is
annotated on top of the markers.

Figure 9.7: Spread of the model performance in different pseudorapidity re-
gion.

Since the same model configuration works differently depending on the
pseudorapidity bin considered, we propose to optimize and train a TrackNet
model per bin.

TrackNet performance in |η| < 1
Figure 9.8 shows the performance of the model when considering only the

central pseudorapidity region |η| < 1. The performance is presented by the
joint distribution of the SC per bucket and the IoU per leading particle. We
also highlight the coordinates where charged high PT particles are strongly
present (>10%) by red squares. We choose to maintain the full SC range
in the figure to highlight the gradual shift from pseudorapidity region to the
next, i.e. more forward region have higher SC values. As a reminder, SC
values close to 1 denote a good clustering with respect to all the hits present
in the bucket. Values close to 0 denote overlapping clusters.

As expected, the separation of the leading particle is better than for the
rest of particles. This is apparent from the higher values of the IoU compared
to the SC. This is also the case for all the pseudorapidity regions.

TrackNet performance in 1 < |η| < 2
As expected, the performance in the following pseudorapidity region im-

proves significantly. This is despite optimizing each model individually and
selecting the best configuration per bin.

Figure 9.9 shows the performance of the mode in 1 < |η| < 2 region. This
pseudorapidity region shows higher SC and IoU values. Charged, high PT
particles are mostly located in buckets with a 50% SC score and a 60% IoU
score.

TrackNet performance in 2 < |η| < 3
Starting from 2 < |η| < 3, the correlation between SC and IoU becomes

significant in the performances plot on Figure 9.10. Many more buckets have
high SC scores (>30%) and high IoU scores (>60%). The TrackNet model

Figure 9.8: TrackNet performance in the central η region (|η| < 1). The red
square represents charged particles with a PT greater than 900MeV.

Figure 9.9: TrackNet performance in the 1 < |η| < 2 region. The red square
highlights bins with an important fraction (>10%5) of charged particles and
PT>900MeV.

exhibits the best performance in this region with an average SC of 13% and
an average IoU of 46%.

TrackNet performance in 3 < |η|

The results from the best performing TrackNet model for the forward re-
gion (3 < |η|) are summarized in Figure 9.11. Charged, high PT tracks have
noticeably lower IoU values in this region. This is consistent with a similar
drop in efficiency, also at the edge of the pseudorapidity coverage, presented
in Chapter 2.2.3.

The red squares in the different performance plots do not exhibit a consis-
tent pattern, i.e. charged, high PT tracks are not necessarily easier to retrieve.

Figure 9.10: TrackNet performance in the 2 < |η| < 3 region. Red squares
highlight charged particles with PT>900MeV.

Figure 9.11: TrackNet performance in the 3 < |η| region. The red square
highlights charged particles with PT>900MeV.

9.3.3 Output Dimensions

In an application where the goal is to map hits into a new feature space, the
number of dimensions the model is allowed to use is crucial. Intuitively, the
higher this number the easier it is to disentangle hits. In this section we analyze
the mapping performances when increasing the number of output dimensions
from 2 to 20. The maximum output dimension size is selected to be 20 since
the available number of input feature is 14 and a higher dimensionality is not
necessary. Figure 9.12 shows the performances of different output dimension-
ality choices. Each marker represents the best scoring model configuration for
the current dimension. This means that not only the size of the output is
different but also the model architecture and convergence. For example, the
majority of tested models6 converged after approximately 25 epochs but some
needed 100 epochs. It is worth noting that an increase in the dimensionality
of the output space does not necessarily improve the mapping. Moreover, the

6The best performing models are shown in Figure 9.12 and Table 9.1. Approximately ten
models have been trained and tested per output dimension.

Output dimension Epochs Learning
rate

Number
Nodes Avg SC Avg IoU

2 92 10−3 50 0.07 0.44
3 100 10−3 50 0.11 0.44
4 21 10−2 200 0.09 0.46
5 84 10−3 50 0.09 0.45
6 100 10−3 50 0.10 0.46
7 100 10−3 50 0.08 0.44
8 100 10−3 50 0.08 0.47
9 14 10−3 200 0.09 0.43
10 31 10−3 500 0.08 0.43
20 11 10−3 50 0.08 0.42

Table 9.1: Configuration of the best performing models per output dimension.

performances variation along the SC axis is more prominent. This is explained
by the higher sensitivity of the SC metric where a bad mapping of few hits
has an impact on the value.

The TrackNet mapping that maximizes both metrics has 6 dimensions.

Figure 9.12: Performance evaluation of different output dimensionality. An-
notated text indicate the dimension of the model output space.

The configurations of the best performing models per output dimension are
summarized in Table 9.1. Half the models reach their optimal performance
after 20 epochs. Interestingly, the models that require more epochs also require
less hidden units: Only 50 hidden units per layer. This is 4 to 10 times less than
the size of the models that converge after fewer epochs. The only exception to
this behavior is the model that maps a bucket into a 20 dimensional space. The
remaining hyper-parameters, activation function and batch size, are similar for
all tested models. The activation function for the hidden layers as well as for
the output node is a tanh. The batch size consists of 500 buckets.

9.4 Dynamic Tracking Linkage : A new clustering
approach

The clustering algorithm that takes a TrackNet mapping to produce particle
tracks cannot solely rely on the mapping quality. Hits that are merged into

clusters have to make sense from a physics (or physical) perspective. In this
context, we propose a novel clustering algorithm that incorporates tracking
knowledge and automatically predicts the stopping (merging) criteria, making
it dynamic : Dynamic Tracking Linkage (DTL).

An example input-output of DTL is illustrated in Figure 9.13. The input
of the clustering algorithm is a collection of hits mapped to a new feature space
(6 dimensional as determined in the previous section). The output is a list of
tracks. Contrary to standard clustering algorithms, DTL does not necessary
label every hit in the input. The example shown in Figure 9.13 illustrates
this characteristic. From the 20 hits present in the input, only 13 are labelled
(8 and 5 hit tracks). The clustering of "track 1" is a good example of why a
tracking oriented clustering is needed. While the first hits in track 1 form the
closest neighbors (highest u,v coordinates), the last 3 hits are contaminated by
noise hits (marked as crosses). The DTL algorithm, using tracking knowledge
and dynamic stopping criteria ignores noise hits despite the fulfilment of the
distance criteria.

Figure 9.13: Clustering hits into tracks. Closest neighbors do not necessarily
belong to the same track.

The specifications (and novelty) of the DTL algorithm are:

• The algorithm starts by simultaneously forming kernels of hits using the
smallest euclidean distances.

• Only kernels of at least 3 hits are considered.

• Neighboring hits that fulfil tracking constraints are merged into clusters.

• Consistency of the clusters is determined automatically by a trained
binary classifier.

• Consistent clusters are returned as tracks.

Figure 9.14 describes that DTL clustering strategy. In the remainder of
this section, we first enumerate the pairwise tracking constraints, then the
"consistency" of a cluster is defined through a classifier. Finally, we evaluate
the TrackNet+DTL tracking pipeline.

9.4.1 Pairwise tracking penalty

The tracking constraints penalize an association of two hits that violates detec-
tor geometry properties. Hits that belong to different sub-detectors or similar
ones but different regions are not considered by this penalty. The following

DTL

 Cluster
Consistency

 Merge
Neighbors

Input Output

Firefox blob:https://vectr.com/946475c7-8722-4ea9-95d2-9957...

1 of 1 1/4/21, 3:26 PM

Figure 9.14: The DTL clustering strategy.

conditions denote the cases where a pair of hits is penalized and excluded from
forming a cluster.

• If pixel hits occur on the same layer and the same module (in the eta or
phi coordinates).

• If non endcap strip hits occur on the same module (in the eta or phi
coordinates) with a distance in r smaller than 1mm.

• If endcap strip hits occur on the same module (in the eta or phi coordi-
nates) with a distance in z smaller than 1mm.

The penalty is implemented as a large weight added to the euclidean dis-
tance of the pair. The DTL similarity distance between two mapped hits h1
and h2 becomes:

Distance(h1, h2) = Euclidean(h1 + h2) + Penalty(h1, h2) (9.7)

Where Penalty() is a function that returns a large weight (>> 1) if any of the
previously enumerated conditions are met and 0 otherwise.

To illustrate the impact of the penalty function in the new distance com-
putation, we assign different weights depending on which of the previously
listed conditions is met. For example, if the first condition (pixel hits on the
same layer and module) is met, the penalty has a fixed of value of 7. The
second condition is associated with a weight of 8 and the third with a weight
of 9. The weight values can be chosen arbitrary as long as they are greater
than the maximum distance7 allowed by the mapping. Figure 9.15 shows the
distribution of the DTL pairwise distance for negative pairs as compared to
a standard clustering using only the euclidean distance.

Samples with coordinates 7,8 and 9 are negative pairs that would have had
a 0 distance based on the TrackNet mapping. Generally, all the samples with
distances ≥ 7 are excluded early on by the DTL distance function resulting in
less false positives.

After defining the distance computation space and the tracking exclusion
rules, the next step is the formation of the clusters. The merging of hits into
clusters is referred to as linkage. The DTL algorithm uses a trained classifier,

7The tanh function bounds values between -1 and 1. The maximum distance is the one
between the coordinates [-1,-1] and [1,1] :

√
8.

Figure 9.15: Distribution of negative pairwise distances in DTL as compared
to a standard clustering algorithm (euclidean distance).

referred to as cluster consistency model, to determine whether clusters should
be merged or not.

9.4.2 Cluster Consistency

We propose to build a classifier that decides if a hit should be merged with
the current cluster. More specifically, the classifier will produce a probability
on a set of hits at every stage of the clustering algorithm. The consistent
clusters (final tracks) correspond to the latest clusters prior to the change
from a positive to a negative prediction.

Throughout this work, multiple variants of hit classifiers have been de-
scribed. Some models relied on a 3D hit input while others used cluster images
(also combining both). All of the models aimed at demonstrating the feasibil-
ity of deciding whether a set of hits were produced by the same particle or not.
The cluster consistency constraint also aims at deciding if a group of hits were
produced by the same particle. The major difference to any of the presented
models (Bucket filter in Chapter 8 and later VCS-Conv in Chapter 10) is the
variability of the input size. Indeed, the cluster consistency model can produce
a decision on an input formed by 4 hits, 5 hits...up to 10 hits. While 4 hits
represent the minimal requirement to form a seed, 10 hits represent a good
track estimate (on average, a particle is formed by 10 hits). The size of the
model input has therefore 10 units. When fewer hits are passed to the model,
the remaining units are deactivated, i.e. their values are set to zeros. The
training dataset contains variable lists of hits along with a binary indicator
that takes 1 if the hits are produced by the same particle and 0 otherwise.

Figure 9.16 shows the distribution of training set input size in positive
(same particle hits) and negative clusters. The size of negative clusters is bal-
anced while the most common positive cluster is 4. Larger positive clusters are
less frequent which reflects the actual proportions of the dataset, i.e. particle
tracks form a small fraction of the overall dataset.

The cluster consistency model is a 3 layer neural network that uses all the
features available from the detector: global coordinates (x,y,z), identifiers of
the barrel endcap and disk layer, identifiers of the modules in eta and phi,
inner angles of the pixels and the norms of the surfaces. After optimization
of the model through a grid search, the number of units per hidden layer

Figure 9.16: Distribution of the input size in positive and negative instances

is fixed at 200 with a tanh activation function. The output is a single unit
with a sigmoid activation function. The training dataset is designed to be
balanced. It is scaled using a standard scaler (subtracting the mean and
scaling to the variance). The validation set is formed by ANN buckets that
will contain varying leading particle sizes (unbalanced validation). Contrary to
most models presented in this work, the cluster consistency classifier requires a
relatively large number of epochs before reaching its peak performance. Figure
9.17 shows the training and validation accuracy in (a) and the precision8 in
(b) as a function of the number of epochs.

(a) (b)

Figure 9.17: (a) Accuracy and (b) precision of the cluster consistency model
over the epochs.

In Figure 9.17(a), we can clearly see the model learning until approximately
epoch 500 where a slight overfitting starts to take place. We use early stopping
to select the appropriate number of epochs during training. The accuracy of
the model on unseen clusters is of 89% at epoch 500 while the precision reaches
87%. These values are computed on the validation set presented in Figure
9.18(a). When selecting a set of hits from ANN buckets, the most common
case is the one where no track is found. With an accuracy of 90%, the majority
of negative clusters are correctly identified as negative while a precision at 87%
means that most predicted positive clusters are true tracks (seeds). Figure
9.18(b) shows the confusion matrix of the model on the validation set.

9.5 Particle finding with TrackNet and DTL
With a defined distance function and a model accurately deciding whether an
arbitrary sized set of hits form a consistent cluster, the next step is the merging

8Precision in statistics is equivalent to purity in particle tracking.

(a) (b)

Figure 9.18: (a) Particle size distribution of the validation set. (b) Confusion
matrix of the model.

of hits into tracks. This process starts with the computation of the pairwise
distance between hits in a mapped bucket. The closest neighbors are merged
into clusters of incremental size, i.e. a cluster of 3 hits is formed then the closest
hit added to form a 4 hits cluster and this process repeats until reaching 10
hits. At every stage, the consistency classifier produces on a probability on
the quality of the current cluster. The cluster with the highest probability
is selected as a final track output. According to this description, overlapping
or duplicate clusters can be formed. A duplicate removal procedure is run
on top of the output tracks. If clusters with similar quality probability are
overlapping, the DTL algorithm selects the one that minimizes the spread
in the TrackNet feature space. The spread is the maximal width or height
reached by the cluster, i.e. how much does a cluster spread along the new
feature space. Algorithm 3 details these steps.

Algorithm 3 The DTL clustering strategy.
Input : List of hits in raw feature space
Output: List of tracks

Buckets=ANN(hits,distance=Angular)
MappedBuckets=TrackNet(Buckets,eta,OutputDim)
for mb in MappedBuckets do
D=PenaltyDistance(mb)
for N in [3,4,5,6,7,8,9,10] do
Clusters=GetNeighbors(D,N)
ClustersProbability ← ConsistencyModel(Clusters)

end for
ClusterSpread=Spread(Clusters)
Tracks← Clusters[min(ClusterSpread) andmax(ClustersProbability)]

end for

The ANN() function (detailed in Chapter 5 and 7) creates buckets from
the global coordinates of the hits with the angular distance. The TrackNet()
function maps hits (in buckets) into a new feature space. The PenaltyDistance,
defined in Eq. 9.7, returns a pairwise distance matrix D where D[i, j] con-
tains the penalized euclidean distance between the hit i and the hit j. The
GetNeighbors(D,N) selects N closest neighbors from each hit in theD matrix.
The hit and its neighbors form a cluster. The ConsistencyModel(), intro-
duced in Section 9.4.2, produces a probability per cluster of size N . Spread()
returns the maximal range of the cluster. It is the max(∑d

u=0max(pu) −
min(pu)) where d is the dimension of the TrackNet output and pu the uth
feature in the learned space. The track that maximizes the consistency model
probability while minimizing the spread is retained for the final output.

Figure 9.19 shows the final tracks size distribution as returned by Algo-
rithm 3. As expected, the distribution follows the leading size particle distri-
bution in ANN buckets. The tracks found by the DTL are a subset of the ones
contained by ANN buckets and more specifically the ones with at least 4 hits
(as defined in the DTL algorithm).

Figure 9.19: Retrieved track size after TrackNet mapping and DTL clustering.
Only unique and highly ranked tracks are selected.

With the current minimum input size of the DTL clustering as well as the
bucket size of 20 hits, the tracks found are mostly seeds of 4 hits or more.
The TrackNet+DTL strategy takes as input ANN buckets that can be viewed
as fast binning of the dataset. Increasing the size of the input buckets will
allow the capturing of larger tracks that are in turn reconstructed by the DTL
clustering.

Figure 9.20 shows the efficiency of the TrackNet-DTL strategy as a function
of PT in (a) and as a function of the pseudorapidity η in (b). The efficiency
is computed on the tracks contained in the ANN buckets. If a track is not
contained (by 4 hits or more), it is not represented in this evaluation.

(a) (b)

Figure 9.20: Efficiency of the TrackNet+DTL approach versus the transverse
momentum PT and the pseudorapidity η.

In order to obtain the efficiency along the pseudorapidity range, the map-
pings of 4 TrackNet models are combined, i.e. one model per pseudorapidity
bin. As discussed in the TrackNet evaluation section, the performances vary
depending on the pseudorapidity bin. For example, the mapping performances
are the lowest in the central region (|η| < 1) and this is reflected in the final
efficiency after applying the DTL clustering.

We are now interested in evaluating the impact of the penalty term in the
clustering distance computation. As previously shown in Eq. 9.7, the penalty
is an additional weight in the pairwise euclidean distance when two hits are

physically incompatible in forming a track. Figure 9.21 shows a comparison of
the efficiency when keeping or removing the penalty term in the pseudorapidity
bin of 2 < |η| < 3. The impact of the penalty weight is significant: on
average, the efficiency gain is of 10%. When keeping wrong pairs of hits
(no penalty), clusters are formed around them instead of around compatible
pairs. This results in more fakes and less true positives since only the best
cluster is selected by the consistency model. The exclusion rules implemented
by the penalty function are therefore not learned by the consistency model
and enforcing them into the pairwise distance helps the model focus on more
relevant combinations.

Figure 9.21: Impact of the penalty term on the tracking efficiency. The effi-
ciency is a function of the transverse momentum PT .

9.6 Summary and future directions
In this chapter we presented a first end to end machine learning approach for
particle track reconstruction designed and applied on ATLAS Phase-II Inner
Tracker events. This is a particularly complex task that required the design of
novel metric learning model as well as a novel clustering algorithm. The unique
feature of the TrackNet model is its "tracking aware" loss function. The loss
function shapes the output into a clustering ready space. However, due to the
nature and strong presence of noise hits in the dataset, the clustering cannot be
a trivial euclidean distance grouping. The Dynamic Tracking Linkage (DTL)
is a clustering algorithm that uses a penalized distance function as well as a
trained model to detect and select the consistency of a cluster.

The results showed a high efficiency with respect to the input content
(ANN buckets). The first improvement that can be considered is an increase
in the input size with larger ANN buckets or binning. The TrackNet model
has to be retrained on larger inputs and the consistency classifier can either be
kept the same (with an output of size 4 to 10) or retrained with a larger output
range (output of size 4 to 20 for seeds and 10 to 30 for tracks for example).

TrackNet+DTL has been tested in the pixel sub-detector. In order to ex-
tend the testing to the full detector, either a retraining including the Strip
sub-detector is necessary or the development of (an additional) Strips Track-
Net model amounting to one model per sub-detector and per pseudorapidity
bin (approximately 8 models in total).

The consistency model in the DTL clustering is crucial. It is able to correct
wrong clusters formed on the TrackNet output. The more accurate the model

is, the less false positives and fake tracks are returned. It is possible to improve
the consistency model by including additional features: cluster images. The
next Chapter describes a convolutional network that learns the quality of ANN
buckets from the cluster images.

10

CS-Conv: Convolutions on
the Cluster Shape

The interaction of a particle with the detector consists of more than module
coordinates. At every interaction, a number of pixels can be activated through
the charge lost by the particle. As a result, every hit in the detector can
be seen as a 3D image where the pixels correspond to the activated pixels
and their color to the deposited charge. The number and shape of the these
images encode important information on the hit. In Chapter 7, the metric
learning model is trained on inner angles computed from the pixels in the
image. These angles contributed significantly to the high accuracy of the
model. In Chapter 8, due to the ATLAS Phase II Inner Tracker (ITk) layout
and the new pixel resolution, these angles did not yield similar impact. The
inner angles represent a description of the information encoded in the full
cluster images. In this Chapter, we will explore the use of Convolutional
Neural Networks (introduced in Chapter 4) to extract all the information
encoded in the cluster shape of the hits. Although this technique is tested on
both the TrackML dataset and the ITk dataset, the key results are shown for
the ITk dataset.

(a) (b)

Figure 10.1: TrackML dataset, an example of a 13 hit particle. (a) Longi-
tudinal view of the particle. (b) Images from clusters and deposited charge
associated to the hits in (a). The images are shown in arbitrary axis.

Figure 10.1 shows a particle from the TrackML dataset (a) in the R-Z plane
and (b) with the corresponding images of the clusters. Each image represents
a hit shown in 10.1(a) with consistent order along the Z axis. The colors in
the images are proportional to the deposited charge. The 5 inner-most hits
belong to the pixel sub-detector (see Section 6.3.1 for the TrackML detector
layout). The associated inner-most images have therefore the most granular
resolution. Short and long strips contain less information with only one or two
modules activated.

131

Figure 10.2 shows a particle from the ITk dataset. It contains 13 hits as
well but contrary to Figure 10.1, only pixel hits are shown. On the left side
of the Figure, the particle is displayed along the R-Z plane while on the right
side, the corresponding images from the cluster shape of the hits are shown
ordered along the Z coordinate (arbitrary axis).

(a) (b)

Figure 10.2: ITk dataset, an example of a 13 hit particle. (a) Longitudinal
view of the particle. (b) Images from clusters and deposited charge associated
to the hits in (a). The images are shown in arbitrary axis.

In the case of the ITk dataset, the charge is replaced with the Time over
Threshold (ToT) information. As a consequence, the colors in the images are
proportional to the ToT. The distribution of the ToT values recorded in a
single ITk event is shown in Figure 10.3. Since the clusters are considered
as images, not only the shape is important but also the spread of the ToT
values within a cluster and their correlations. By design of the ITk detector
layout, the shapes of the clusters encode less information as compared to
Figure 10.1(b). In the reminder of this Chapter, only the ITk dataset is
considered.

Figure 10.3: Time over Threshold distribution for an ITk event. The ToT is
recorded per activated module so one or more ToT values are associated with
a single hit.

The idea of this Chapter is to train a CNN on pixel images to predict
whether a group of hits is produced by the same particle. In the next section,
we discuss the techniques and choices made to convert the cluster shape into
images and the construction of the training dataset.

10.1 Charge clusters to images

The number of pixels per hit vary greatly. Figure 10.4 shows the distribution
of the cluster sizes per hit for an ITk event (approximately 250K pixels). While
very large clusters (>100) are attributed to delta electrons (see Chapter 1), the
majority of hits are associated with fewer than 20 pixels. In order to generate
same size images from the clusters, we propose to translate all clusters into
35x35 centered images. The clusters with less than 35 pixels on either axis will
be centered in 35x35 image and completed with zero values. Larger clusters
will be cropped (and centered) into 35x35 images as well. A size of 35x35
images is a trade-off to contain the majority of pixels while maintaining a
small enough image dimensions. A larger size would result in the majority of
images being spare.

Figure 10.4: Distribution of the number of pixels per hit for one event.

After homogenizing the sizes of cluster images, the second dataset format
decision is the number of hits or images to consider as input to the model.
The task at being to learn correlation between cluster images, it is important
to consider multiple images that likely contain a particle or a seed. This is
consistent with Approximate Nearest Neighbors (ANN) discussed in details
in this document. The input of the model is therefore a bucket of cluster
images. The bucket is defined as a set of neighbor hits using the angular
distance and the global coordinates as features. These considerations have
been demonstrated to provide high quality bins for the finding of a particle
or a seed (four hits or more produced by the same particle). Technically, the
input of the model will have the shape (number_samples,35,35,bucket_size).
Images have 35x35 dimensions. The bucket size is a parameter of the approach
and can be selected depending on the application intended. In our case, for
finding seeds or tracks, buckets of 20 hits are sufficient. For the model however,
the different images of a bucket will be represented as image channels similarly
to RGB channels of a colored image.

Figure 10.5 shows an example of a 20 cluster images bucket built along
the angular distance. No reconstructed track is associated with this bucket.
In fact, the fraction of buckets that contain a reconstructed track is small
compared to the ones that contain only noise hits. This is due to reconstruc-
tion cuts applied on the dataset that allow only a fraction of particles to be
considered for reconstruction. More precisely, in a typical ITk dataset and
considering only pixel hits, only 20% of the hits contribute to reconstructed
particles. The remaining 80% are noise hits and therefore are not associated
with any reconstruction particle. This results in a heavily unbalanced dataset.

Figure 10.5: A bucket of hit clusters as centered and resized images.

10.2 Dataset balance

As specified earlier, the target of the model will be whether a bucket contains
a reconstructable particle or not. This is achieved by labelling the buckets
with 0 if no track larger than a certain threshold if found and 1 otherwise.
This threshold will be referred to as min_hits. A standard value for min_hits
would be 4 but we are also interested in exploring tighter requirements such
as values above 7. Higher values allow to find longer tracks. We will analyze
the seeding results of the model with a min_hits=4 and the tracking results
with a min_hits=7.

When choosing min_hits=7, the fraction of positive values in a random
sample from an ITk event is approximately 10%. It increases to 25% with
min_hits=4. This creates a massively unbalanced dataset. Since the consid-
ered dataset is formed by images, we use the undersampling approach.

Undersampling implies the removal of instances associated with the ma-
jority class. This is the removal of a subset of noise buckets from the dataset
such as the number of positive instances (buckets with tracks) is approximately
equal to the number negative instances (buckets with no tracks). Balancing
the dataset is only applied to the training set and not to the test or validation
set. The idea is that the model learns from a balanced dataset but is evaluated
on a real (thus unbalanced) dataset.

10.3 CS-Conv model

The CNN used in this application has the standard architecture of sequential
convolution layers, pooling and normalization layers and, at the end, a fully
connected layer that maps the last weights into a single probability, i.e. the
output of the model. The architecture is chosen as follows:

1. The first model contains only one convolution and one dense layers.

2. After each evaluation of the network on a validation sample, an addi-
tional hidden (convolution, fully connected or normalization) layer is
added.

3. The previous step is repeated until the performances decrease when
adding more hidden layers.

After incremental improvement of the architecture of the model, CS-Conv
is formed by two convolution layers with a normalizing layer in between. Con-
volutions are performed with a kernel size of 5x5. A pooling layer is then
added followed by a drop-out layer. The output is then flatten and finally
a dense layer transforms the output into a a single probability using a Soft-
max function. Convolutional layers use a Relu function. The architecture is
presented in Figure 10.6. Since the task is to classify bucket cluster images,

Figure 10.6: CS-Conv model architecture.

we use a categorical cross entropy loss function with an Adam optimizer. The
model is trained on all the possible buckets in an event. Each bucket is labelled
as positive if it contains at least 7 hits and negative otherwise (min_hits=7).
The accuracy of the classifier directly translates its ability to decide whether
a bucket of cluster images contains a reconstructable particle or not. The evo-
lution of the accuracy on a training set as well as on a validation set is shown
in Figure 10.7(a). The model output for positive and negative buckets (on
the validation set) is shown in Figure 10.7(b). We can see a clear separation
in the model response between a reconstructable bucket and a noise bucket.
Positive samples with low probability (<0.5) constitute fake negatives while
negative samples with high probability (>0.5) form the fake positives.

(a) (b)

Figure 10.7: (a) Evolution of the training and validation accuracy over the
epochs. (b) Distribution of the model output probability for positive buckets
and negative buckets on a validation sample (unseen examples).

The model reaches an accuracy of 78% on unseen samples and with a
minimum threshold of 7 hits for positive buckets. The training set consists
of 37K buckets with a balanced positive/negative ratio. The validation is
performed on 10K additional buckets. It is expected that the model improves
further when increasing the size of the dataset (to millions or billions buckets).
It is interesting to see however that even with relatively low statistics, the CNN
is able to extract a pattern from the cluster images only and make a decision
on their content with at least 78% accuracy. The cluster images do not contain
any information on the detector layout, i.e. which detector region is associated
with the cluster. This information is crucial for the reconstruction of tracks
given that the detector layout changes as a function of the pseudorapidity. This
means that the cluster images will be dependent on the detector geometry and
therefore on the pseudorapidity. This substantial improvement of the model
is presented in Section 10.4. In the remainder of this section, we discuss
two additional aspects of the model : The performance of the model when

lowering the threshold to min_hits=4 and the correlation between the model
error (fake positives and fake negatives) and the size of the reconstructable
particle in a bucket.

The accuracy of the model drops by approximately 10% when the labelling
of positive buckets changes from min_hits=7 to min_hits=4. This is when
considering exactly the same architecture and hyper-parameters. It appears
that an additional optimization of the model is necessary when changing the
label definition.

Figure 10.8: Model validation accuracy for a min_hits=4 and min_hits=7.

Figure 10.8 illustrates the drop in validation accuracy when lowering the
minimum track size per bucket. This decrease in performance is however
expected since the dataset with a threshold of 7 hits is a subset of the one with
a threshold of 4 hits. The learning task becomes therefore more challenging.
Figure 10.9 shows the impact of the leading particle size per bucket on the
model decision. This result is obtaining when running the model on an unseen
event and recording the leading particle size for each bucket. The correlation
of the leading particle size and the model response is visible on the figure. The
model makes more accurate decisions on buckets containing larger tracks. As a
reminder, noise buckets (<4 hits) do not contain any ATLAS reconstructable
track but can (and in fact with considerable proportions) contain a truth
simulated track.

The proportions of buckets with no reconstructable track (size 0 in the
x-axis of the figure) but with a simulated truth track are also highlighted in
Figure 10.9. The black squares that overlay some of the pixels in the figure,
denote that more than 50% of the buckets represented by the pixel contain a
truth track with at least 4 hits. It is interesting to notice that most of these
boxes are associated with a high model output. This means that although
the model presents false positives, i.e. no reconstructable track and a positive
probability >0.5, at least half of these contain a truth track.

10.4 Upgraded CS-Conv
Upgrading the CS-Conv model is done following two axis : 1/ A model per
pseudorapidity region and 2/ Geometry features as well as global coordinates
of the hits are considered via a binary and a multi-class classifier. Figure 10.10
summarizes these upgrades. The global model, now referred to as VCS-Conv
(Voting Cluster Shape Convolutions), takes as input buckets of hits queried
from a single pseudorapidity region. The cluster information is translated

Figure 10.9: Impact of the leading particle size on the model decision. Positive
buckets contain at least 7 hits produced by the same particle. Black squares
denote the presence by at least 50% of truth tracks in noise buckets.

into 20x20 images and passed to the CS-Conv. The raw information consist-
ing of global hit coordinates (x,y,z), module coordinates (barrel endcap and
layer disk) as well as cluster summary features are passed to a binary and a
multiclass classifier (separately). The summary features include the follow-
ing values: the number of modules in the cluster, the maximum ToT value
within the cluster and the average value (Refer to Figures 10.3 and 10.4 for
the distributions of these values).

Both the CS-Conv and the binary classifier output a probability of contain-
ing a seed (or track depending on the threshold considered). The multiclass
classifier is trained to return the category of the leading particle:

• 0 if no reconstructable particle is contained.

• 1 if the leading particle size is between 4 and 6.

• 2 if the leading particle size is between 6 and 9.

• 3 if the leading particle size is larger.

Figure 10.10: Combination of multiple models : CS-Conv on cluster images,
binary and multiclass classifiers on raw hit information.

It is possible to train the model on the actual leading particle size rather
than its category. The model would choose from a set of 16 values (values <
4 are always classified as noise). Such a model would require a much more
complex structure compared to a model with fewer output values. Moreover,
discriminating between a bucket that contains a 7 hit track and one with 8
hits has only a minor impact on the global goal of the proposed approach. As
a result, the multiclass classifier will have 4 distinct output when min_hits=4
and 3 distinct output when min_hits=7. The decisions of the trained three
models are later combined in a dense layer to vote for the correct output.

The first step in the voting process is to optimize the raw features clas-
sifiers individually. Two pre-processing choices are made before any training:
Balancing of the dataset through over-sampling and the scaling of the different
features. Over-sampling involves the production of synthetic examples from
the minority class (buckets with tracks in our case) such as the number of
positive and negative examples is approximately the same. A wealth of tech-
niques are available to perform over-sampling on an unbalanced dataset [1].
For the classification of buckets, we propose to use Adaptive Synthetic Sam-
pling (ADASYN) [2] since the core idea behind it aligns well with the nature
of hit buckets achieving therefore superior results to any other over-sampling
algorithm. In ADASYN, every sample from the minority class produces a
number of synthetic examples. As the authors describe it, the number of syn-
thetic examples per minority sample is dependant on the complexity of the
sample (hence the adaptive characteristic). To determine the complexity of a
sample, ADASYN evaluates the proportion of majority class examples in the
neighbourhood of the sample. The idea is the following: a sample from the
minority class surrounded by samples from the majority class is much harder
to classify. The classifier needs to see many more examples of it. Once the
number of synthetic examples is determined, new instances are constructed as
follows[2]:

si = xi + (xzi − xi)× λ

Where si is the synthetic example, xi the minority example that is over-
sampled, xzi a randomly selected minority example from the neighborhood
of xi and λ a predefined weight between 0 and 1. The difference (xzi − xi)
represents the euclidean distance between the two samples in the d dimensional
space. d is the number of dimensions of each sample from the dataset (or
number of features).

Figure 10.11 shows an example of a generated bucket projected to the R-Z
plane. The bucket is shown along an original bucket that contains a 7 hit
track. The euclidean distance between the synthetic bucket and the closest
original bucket is of 0.5 (along all features). The bucket shown in the figure
however has a 1.7 distance to the original bucket. This choice was make to
highlight the impact of the ADASYN algorithm along the R-Z coordinates.

After applying the ADASYN oversampling, the number of positive buckets
and negative buckets is the same in the case of the binary classifier. For the
multiclass model, the oversampling also generates an equal number of example
in each category. The next step is to scale the dataset and ensure that all
examples have the same variation range. After several trials, we choose the
Robust Scaler technique [3]. Instead of removing the mean and scaling to
unit variance (as it is done in standard scaling), the Robust Scaler removes
the median and scales according to the quantile range. This simple difference
makes the scaler robust to outliers. More specifically, we use the interquantile
range between the 25th quantile and 75th quantile. The classifier is then
trained on a balanced, scaled dataset.

Figure 10.11: Example of an ADASYN synthetic bucket in the R-Z coordi-
nates.

For the classification tasks, we propose to use a voting classifier. The final
predicted label, both for the binary and multiclass case, will be the majority
one between : A logistic regression (LR), a random forest (RF) and a Support
Vector Machine (SVM).

The performances of the voting classifier are summarized by a confusion
matrix obtained from the predictions of unseen validation sample. Each con-
fusion matrix shows the results of a single pseudorapidity region and decision
mode : binary or multiclass. With the confusion matrix, we can extract the
fake positive and fake negative rates as well. A perfect classifier fills only the
diagonal ([0,0] and [1,1] pixels). Figure 10.12 shows the confusion matrix for
buckets sampled from |η| < 1 bin with a binary classifier in (a) and a multi-
class one in (b). The overall accuracy of the different models is much higher
than the CS-Conv model since it relies on all the information collected from
the detector.

(a) (b)

Figure 10.12: Confusion matrix of the (a) binary decision model and (b) the
multiclass model. The pseudorapidity region considered is |η| < 1 with a
min_hits=7.

For each pseudorapidity region, the decision produced by the binary clas-
sifier, the multiclass classifier as well as the CS-Conv model is combined into a
single value through a fully connected network structure. The input is a three
dimensional vector, one hidden layer is used to combine the decisions and a
single node is used as global output.

The global model (VCS-Conv) combines the decision of the three models
through a single hidden layer consisting of a 100 node with a Relu activation
function. The output is obtained with a Sigmoid function. We use the mean
squared error loss with the Adam optimizer at a learning rate of 10−4. As

(a) (b)

Figure 10.13: Confusion matrix of the (a) binary decision model and (b) the
multiclass model. The pseudorapidity region considered is 1 < |η| < 2 with a
min_hits=7.

(a) (b)

Figure 10.14: Confusion matrix of the (a) binary decision model and (b) the
multiclass model. The pseudorapidity region considered is 2 < |η| < 3 with a
min_hits=7.

previously established, the dataset consists of the output probability of the CS-
Conv, the binary classifier and the multi-class classifier, producing therefore a
three dimensional dataset. Under-sampling is used to balance the positive and
negative ratios. The result presented next focus on the central pseudorapidity
region with |η| < 1.

Figure 10.16 shows the model output probability distribution for the three
initial models : CS-Conv, Binary classifier and Multiclass classifier and the
global model VCS-Conv that combines their decision to produce a more robust
prediction. It is apparent that while the three input models have a wider range,
the VCS-Conv model (black discontinuous line) tends to produce narrower
probabilities with the lowest prediction around 0.15 and the highest at 0.90.
VCS-Conv is trained to make predictions that are as accurate as the best input
model or better if the error of the best classifier can be compensated by the
rest of the models.

The ROC curves associated to the models are shown in Figure 10.17. It is
the evolution of the true positive rate as a function of the false positive rate.
A random classifier would produce a diagonal with as many false positives
as true positives (highlighted as discontinuous back curve in the figure for
comparison). The VCS-Conv model leverages the different models strength
and weakness to produce a more robust decision considering cluster images
and raw hit features. VCS-Conv outperforms the three input models along
the full range of false positives.

Starting from a false positive rate of approximately 30% (0.3 in the x-axis),
VCS-CNN and the binary classifier predictions are similar. We can also notice
that at approximately the same false positive rate (22%), CS-Conv achieves
a better performance than the multiclass classifier and ultimately reaches the
true positive rate of the VCS-Conv.

The goal of this chapter was to propose a method that extracts relevant
information from the collected data including images of activated clusters, ge-

(a) (b)

Figure 10.15: Confusion matrix of the (a) binary decision model and (b) the
multiclass model. The pseudorapidity region considered is 3 < |η| with a
min_hits=7.

Figure 10.16: Distribution of the different models output probability as well
as the global VCS-Conv model.

ometry information, global hit coordinates, inner cluster angles as well as the
coordinates of these clusters. We proposed to train a convolutional network as
well as binary and multiclass classifiers on this heterogeneous dataset. More-
over, the output of the three models is combined in a dense neural network to
predict the most likely label : presence or absence of a track in a set of hits.
This approach resulted in a high accuracy and precision. An extension of this
work would be to consider a much larger dataset (thousands or hundred thou-
sands events) in order to further validate the performances and potentially
extract interesting correlations between the different models.

Figure 10.17: ROC curve of the different models as well as the global VCS-
Conv model.

Bibliography

[1] Chawla, Nitesh V. "Data mining for imbalanced datasets: An overview."
Data mining and knowledge discovery handbook. Springer, Boston, MA,
2009. 875-886.

[2] He, Haibo, et al. "ADASYN: Adaptive synthetic sampling approach for
imbalanced learning." 2008 IEEE international joint conference on neural
networks (IEEE world congress on computational intelligence). IEEE,
2008.

[3] Robust Scaler on Scikit-learn https://scikit-learn.org/stable/
modules/generated/sklearn.preprocessing.RobustScaler.html

[4] Rokach, Lior. "Ensemble-based classifiers." Artificial intelligence review
33.1-2 (2010): 1-39.

143

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html

Conclusions and Future
Outlook

A slow but fundamental shift is taking place across high energy physics ex-
periments. From theoretical modeling and performance optimization to the
search for new physics, machine learning models are at the core of many large
scale on-going studies. While not yet relied on in the ATLAS framework, a
large number of ML projects that were implemented and tested around "toy"
datasets are either currently or in the near future being confronted to actual
ATLAS simulation datasets. An expected consequence is that many of these
novel models will outperform current algorithms either in speed, accuracy or
both opening new solid research directions.

This thesis details such a journey, starting from an idea to rapidly cap-
ture particle tracks, growing into a multistage framework optimized on the
TrackML dataset and later fully "upgraded" into an end to end ML based
tracking software for the ITk detector. Figure 10.18 summarizes the various
components of the conducted research and places them along the tracking
pipeline (x-axis) and along the readiness metric (y-axis).

Figure 10.18: Overview of the thesis. Implemented models and future research
directions as a function of their positioning along the tracking chain and their
readiness for use.

The readiness metric allows to place the different techniques and models
as a function of their performances and their ease of integration into tracking
frameworks. As such, a technique that is at least as efficient as the standard
tracking requirement and that is easily portable or already available for use in
a tracking framework (ATLAS or ACTS) is placed closer to the x axis. The
various models are also placed along an approximate tracking pipeline starting

145

with seeding to track finding and ambiguity solving. Although the proposed
models do not necessary fit the standard tracking chain, a parallel can easily
be made where algorithms that bin the data fall closer to seeding while models
that learn a tracking feature space resemble track finding and finally algorithm
that define the boundaries of tracks and evaluate overlaps are placed closer
the ambiguity solving.

Interesting future extensions are denoted by grey discontinuous boxes and
error bars along the x axis represent the range of the techniques in terms of
standard tracking. As a result, event processing techniques are placed closer to
the seeding stage while algorithm that process tracks are located closer to the
ambiguity solving. Approximate Nearest Neighbors (ANNs) allow to split an
event into buckets of hits that likely contain tracks. Various techniques have
been evaluated in this thesis and selected libraries provide C++ APIs making
them ready to use in any tracking framework. Combining standard tracking
and seeding with ANNs resulted in high efficiencies (as compared to standard
requirements) and demonstrated the feasibility of restricting the seeding to a
reduced number of hits. To obtain these results, the various components where
already tested in the ATLAS standard tracking framework but do require
additional integration to form a standalone tracking software. The metric
learning model and the clustering algorithm with the consistency model and
the penalty function were implemented and evaluated in a standalone python
framework. Although the necessary effort to integrate a trained network into
any software is negligible, the overall efficiency of the model is still below the
standard requirements and is therefore placed further away in the readiness
axis. The cluster shape convolutional network demonstrated superior accuracy
as compared to the alternative model relying on raw data only. Similarly to
the metric learning model, although its integration is straightforward and the
accuracy of the model is higher than required, an extensive validation on a
very large number of events is necessary in order to be used as an alternative
input in standard tracking. The bucket filter as well as the standard tracking
restricted to ANN buckets resulted in low efficiency as compared to standard
tracking. An interesting extension is to evaluate tracking in buckets after
mapping with a metric learning model.

In the following, the various building blocks of the approach, from data to
evaluation, are summarized.

Data and hardware directions

The data used in this research focused on ttbar collisions events with a
pileup of 200. An interesting extension is to investigate different physics signa-
tures and pileup such as a Long Lived Particle (LLP) data sample, a displaced
tracks sample, a dense environment (Jets) sample, a µ = 1000 sample such
as the one expected at the Future Circular Collider (FCC). Each data sample
would challenge different properties of the proposed tracking approaches and
could, with some iterations, show potential.

While ANNs were demonstrated for GPUs, all of the models presented in
this work have been evaluated on CPU only. It has been established by now
that most machine learning models can be significantly accelerated on hard-
ware (GPUs and FPGAs). A very promising direction is the deployment of the
proposed framework on hardware especially that every component presented
in this thesis was intentionally designed and optimized for a multi-threaded
execution. N ANN buckets can be generated, mapped with a metric learning
model and clustered in a completely independent workflow. With this acceler-

ation, the approach can also be considered for triggering where reconstructed
tracks of electrons or muons are required (to complete the calorimeter infor-
mation) for their identification.

From events to buckets

The first contribution of this work is the use of Approximate Nearest Neigh-
bors for fast particle tracking. Building trajectories with ANNs is a novel idea
within and outside high energy physics. It is intended as the first step to digest
and navigate physics events for tracking purposes. ANNs build data-driver sets
of neighbors where a particle track is most likely found. Contrary to binning,
which is the closest alternative in standard tracking, ANNs return a set of
neighbors depending on the event data structure and use any defined simi-
larity measure (including learned functions). This completely alleviates the
problem of having arbitrary large bins in dense detector regions and allows to
bend the bucket according to the considered similarity function. While in this
thesis ANNs have been combined with metric learning to project the dataset
into a new feature space, it is interesting to envision an extension where the
search function would iteratively work with the metric learning function to
jointly map and search hits.

For applications where a bucket of hits is not mapped through a similarity
model, it is necessary to use a filtering. Filters are binary classifiers that learn
to distinguish between a bucket that contains a track from one that does not.
In this thesis, we propose filters based on raw information of the hits as well
as on heterogeneous input : raw features and cluster images (CS-Conv). More
complex filters can be investigated where the task is not only to distinguish
buckets but also to classify the hits within the buckets into particles or noise.
Another interesting topic is the evaluation of the query position impact. Both
extensions have been proposed and studied in master projects in our research
group.

Metric Learning

The second major contribution of this thesis is the use of metric learning
for particle tracking. Metric learning uses the supervised information obtained
through simulation to map raw hits into a new feature space where particles
are easily retrieved. Standard metric learning techniques (LFDA) were used
on the TrackML dataset while a novel design was proposed for the ITk layout.
While ANNs combined to LFDA achieved high performances on the TrackML
dataset, the approach could be further improved by training a model per pseu-
dorapidity region. The shift from TrackML detector to the ITk represented
a significant transition in this work due the dataset differences discussed in
this document. The complexity of the dataset allowed to conceive a novel
metric learning model termed TrackNet. While the overall performance of
the model is currently below the standard requirements in tracking, its design
concepts and implementation allow a variety of improvements. The loss func-
tion is proposed to translate tracking constraints into the deep learning model
with an adaptable structure easily augmented with additional terms. More-
over, a single TrackNet model is proposed for each pseudorapidity region with
the selected optimal parameters. Interesting extensions include Neural Archi-
tecture Search (NAS) for the optimization of the architecture, Reinforcement
Learning (RL) for the automatic learning of all the parameters (including ANN
parameters such as the bucket size) and the inclusion of cluster shape features.

Fast Search in Standard Tracking

Another contribution of this work is the evaluation of the ATLAS standard
tracking algorithm in ANN buckets. The first prototype ran the full tracking
algorithm in buckets of 50 hits. This approach was successful in retrieving
particles only when they are fully contained in the buckets. While this first
trial demonstrated the feasibility of running standard tracking in small bins,
it also performed only as good as the bucket quality (which lowered from
TrackML to ITk). The second prototype using standard tracking used ANN
buckets only for the seeding stage with displaced buckets to capture tracks
with an important Z0 offset and an overlap removal procedure. This approach
allowed to find all the tracks of interest in an event without penalizing the
speed of the tracking. It requires only 5ms to build a track in a bucket with a
number of additional low PT tracks resulting from the loosening of the seeding
cuts. An interesting improvement is to use metric learning prior to the buck-
ets sampling. This could not only improve the quality of the buckets but also
the performance of the filtering reducing the total number of buckets. The
ANN bucketing for seeding can be directly integrated into a tracking software.
Although a full multi-threaded integration into a tracking framework is nec-
essary to assess the speed-up factor, the various tests (especially on GPUs)
show a considerable speed-up potential. In this context, the ACTS framework
appears as the most adapted tracking software for the integration of both the
similarity search and the TrackNet model.

Clustering

The Dynamic Tracking Linkage (DTL) clustering, unlike standard clus-
tering algorithms that use static merging constraints, automatically chooses
the ideal cluster using prior learned knowledge rather than geometrical rules.
The DTL algorithm further uses a penalty function to exclude pairs of hits
that violate tracking constraints. This function can be easily enriched with
additional terms likely resulting in an improved clustering. An important im-
provement could be to augment the consistency model with physics driven
knowledge. While the current proposal is already "adaptive" by learning from
data, it is still unaware of detector layout or the physics meaning of the hits.
The model can therefore be mutated into a learned Kalman filter.

Machine learning models thrive in massive datasets and each model pre-
sented in this research can immensely benefit from training on billion hit,
labelled dataset.

Acknowledgements

This thesis has been a true adventure with many sacrifices (I partly worked
in computer vision), dramatic twists (obtained a grant and quit my job) and
hectic changes (including 6 months of weekly flights between Geneva and Vi-
enna). At the end, each of these had a significant positive impact on both
my work and my life. Many people made this journey possible, on so many
different levels. I hope I will not leave anyone out.

This work would not have been possible without my thesis advisor Prof.
Tobias Golling. Thank you for giving me the opportunity to join the ATLAS
group at Geneva university. Thank you for all the fruitful discussions, advice
and for your flexibility. Your precise questions and comments at every meeting
helped me become the researcher I am. I am also delighted that our collabo-
ration went beyond particle tracking and into the organization of a successful
hackathon and a first data science collaboration with the Vienna University.

I would like to thank Andreas Salzburger for answering my email on Feb
2015, nearly two years before the official start of this thesis. Thank you for
being enthusiastic about machine learning, already a while ago. Thank you
for all the tracking notions you passed on to me. And finally, thank you for
always seeing the big picture and providing guidance accordingly. This work
would not have been the same if I sat anywhere else than outside your office.

I am thankful to Moritz Kiehn for his feedback and constructive input all
along this work.

Many studies in this work would not have been possible without the talent
and expertise of Noemi Calace. Thank you for providing and directly helping
with the Standard ATLAS Tracking. I enjoyed working with you and learned
a lot. Thank you also for being such a good friend and for providing support
in difficult times.

I would like to thank Prof. Claudia Plant for all her feedback on clustering
techniques. It was a renewed pleasure to learn from you and build on your
input.

I would like to thank all the present and past members of the ATLAS-
UniGe group for all the fruitful discussions.

I would like to thank my former supervisor Benedikt Gollan and CEO
Peter Bruck at Research Studios Austria for allowing me to work part time
and maintain a good balance on my thesis. Thank you for the mentoring and
encouragement. What started as a regular job turned out to be one the best
growth opportunities in my life.

A special thanks to Pauline Gagnon whom I first met (I was an undergrad-
uate) in 2013 during the CERN open days where she told me that yes it should
be possible for you to do your master thesis at CERN. When reaching out to
her shortly after, she started asking researchers and group leaders about such
opportunities (after knowing me for 2 minutes). Thank you for believing in
me and in the equality of such opportunities.

I would not have been able to start this thesis without the support of my
best friend, my lighthouse Dalila Salamani. We crossed the Mediterranean

149

sea determined to pursue a PhD at the intersection of physics and machine
learning. Thank you for encouraging me during my moments of doubt, thank
you for being my office mate and my homeland away from my homeland.
Thank you for sharing every step of this journey with me.

Thank you to my family in this continent: my brother Faouzi. Thank you
for your support and advice.

I cannot thank enough my parents for their support and their strength.
Thank you for believing in me and for trusting me to take risks. Thank you
for your courage, your patience... in the distance.

	Introduction
	Experimental Particle Physics
	The Standard Model of particle physics
	Colliding Particles
	Particle detection

	The ATLAS experiment at the Large Hadron Collider
	The Large Hadron Collider
	The ATLAS Detector
	Detector Coordinate System
	The Inner Detector
	Detector Upgrades
	Electromagnetic and Hadronic Calorimeters
	The Muon Spectrometer
	The Trigger

	Monte Carlo Simulation

	Track Reconstruction
	Tracking Notions
	From Detector to Space Points
	Building Seeds
	Combinatorial Track Finding
	Ambiguity Solving
	Faster Tracking

	Machine Learning
	Key Concepts and Definitions
	The Learning Task
	The Performance Measure
	The Experience

	Clustering
	Distance and Similarity Measures
	Hierarchical Clustering
	Graph Theory Based Clustering

	Deep Learning
	Convolutional Neural Networks
	Long Short Term Memory Neural Networks

	Metric Learning
	Deep Learning Based Techniques
	Uniform Manifold Approximation and Projection for Dimension Reduction

	Approximate Nearest Neighbors
	Problem Definition
	Similarity Search Models
	Tree Based Techniques

	Graph Based Techniques
	Facebook AI Similarity Search
	Relevance to Charged Particle Tracking

	The Tracking Machine Learning Challenge
	Introduction
	Machine learning for High Energy Physics
	The TrackML Challenge
	TrackML Detector Layout
	Data Files and Setup
	Scoring Solutions
	Competition Results

	Similarity search for charged particle tracking
	Definitions and Notations
	Proposed Approach
	Indexing Charged Particle Hits
	ANN Techniques Evaluation
	ANNs Performances on CPUs and GPUs
	Learning a Tracking Representation

	Summary and Conclusions

	Similarity search with ATLAS Phase-II Inner Tracker
	Introduction
	The ITk simulation dataset
	ANN buckets on the ITk dataset
	Standard ATLAS tracking in buckets
	Standard ATLAS seeding in buckets
	Bucket sampling strategy

	Reconstruction result analysis
	Bucket overlap analysis
	Bucket filter
	Summary and conclusions

	TrackNet : Tracking aware embeddings
	Motivation
	The TrackNet loss function
	Model Fine Tuning
	The model input
	TrackNet and Pseudorapidity
	Output Dimensions

	Dynamic Tracking Linkage : A new clustering approach
	Pairwise tracking penalty
	Cluster Consistency

	Particle finding with TrackNet and DTL
	Summary and future directions

	CS-Conv: Convolutions on the Cluster Shape
	Charge clusters to images
	Dataset balance
	CS-Conv model
	Upgraded CS-Conv

	Conclusion

