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Brain: an apparatus with which we think we think.
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Résumé

Le cerveau est l’une des structures les plus complexes de notre organisme.
Chez l’homme, même s’il s’agit d’un relativement petit organe (environ 2%
de la masse totale du corps), le cerveau consomme par lui-même environ
un cinquième de toute l’énergie produite par le corps. La quantité totale
d’énergie disponible pour le cerveau est cependant limitée. Ainsi, la consom-
mation d’énergie est un paramètre essentiel du fonctionnement du cerveau,
et de nombreuses études ont démontré qu’une altération des ressources én-
ergétiques de cet organe peut être en lien avec diverses maladies et troubles
neurologiques. Ces contraintes énergétiques ont aussi façonné la manière
dont le cerveau fonctionne.

Les synapses, les structures cellulaires entre les neurones responsables de
transmettre les signaux d’un neurone à l’autre, sont le lieu où la majorité
de l’énergie du cerveau est consommée. Étonnamment, la transmission de
signaux par les synapses n’est pas nécessairement fiable. En effet, dans le
système nerveux central, la probabilité qu’un signal électrique soit transmis
entre deux neurones est estimée entre 25 et 50%. Cela signifie que les neu-
rones ne transmettent pas toute l’information qu’ils reçoivent, probablement
car cela coûterait trop d’énergie à l’organisme. A la place, de précédentes
études ont démontré que certains neurones maximisent le rapport entre
l’information qu’ils transmettent et l’énergie utilisée pour transmettre cette
information. Ce phénomène est appelé l’efficacité énergétique de la transmis-
sion d’information.

Pour pouvoir étudier l’efficacité énergétique, il est important d’être capa-
ble d’estimer de manière fiable l’information transmise par les neurones. Bien
que développée dans le but d’être utilisée en sciences de la communication,
la théorie de l’information est aussi largement utilisée en neurosciences et
est très utile dans ce cas de figure. Cependant, il est parfois difficile d’utiliser
cette théorie sur des données biologiques. En effet, la quantité de données
collectées lors d’expériences est souvent limitée (que cela soit une expéri-
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vi RÉSUMÉ

ence avec un animal ou avec des cellules in vitro) alors que la théorie de
l’information nécessite souvent une quantité de donnée élevée pour éviter
toute forme de biais. Il peut aussi parfois être compliqué de binariser ces
mêmes données biologiques.

Cette thèse de doctorat a pour but de mieux comprendre l’efficacité én-
ergétique de la transmission d’information, en se focalisant sur les neurones
du système visuel. L’approche choisie est une approche computationelle,
où des données d’entrée sont générées selon une certaine statistique et des
modèles de transmission synaptiques sont utilisés pour générer les données
de sortie. Trois études sont incluses dans cette thèse. La première se con-
centre sur la consommation d’énergie dans le cerveau et les découvertes
expérimentales liées à l’efficacité énergétique. La deuxième étude compare
la performance de deux mesures développées en théorie de l’information et
adaptées aux neurosciences pour mesurer l’information transmise par les
neurones: l’information mutuelle et l’entropie de transfert. Ces deux mesures
sont appliquées avec des méthodes de correction visant à réduire les biais
et elles sont comparées selon la taille des données générées et la complex-
ité du modèle utilisé. La deuxième étude a aussi pour but de reproduire
certaines des découvertes expérimentales concernant l’efficacité énergétique
dans le noyau géniculé latéral (dans le thalamus), à l’aide d’un modèle de
type Hodgkin-Huxley pour simuler la transmission synaptique. La troisième
étude ajoute à ce modèle un moyen de modéliser la dépression synaptique,
afin d’examiner les effets, sur l’efficacité énergétique, de la neuromodulation
induite par la sérotonine aux synapses des cellules thalamiques relai.

La comparaison entre l’information mutuelle et l’entropie de transfert
montre que leurs performances respectives dépendent du type de données
simulées ainsi que des propriétés de transmission synaptiques considérées
entre les données d’entrée et les données de sortie. Pour les cas simples,
généralement peu représentatifs du fonctionnement d’un neurone, l’étude
montre que l’entropie de transfert souffre moins des biais induit par les
petits jeux de donnés que l’information mutuelle, même en utilisant des
méthodes de correction. Une simulation plus complexe, basée sur un modèle
de type Hodgkin-Huxley, montre que l’entropie de transfert est plus sensible
aux propriétés de transmission, la rendant ainsi plus difficile à utiliser,
alors que l’information mutuelle (avec les méthodes d’estimation utilisées)
est robuste face à ces problèmes. L’étude montre aussi que dans les cas
complexes, l’information mutuelle et l’entropie de transferts ne mesurent
plus nécessairement la même quantité.

L’étude de l’efficacité énergétique avec notre modèle montre que le neu-
rone modélisé (basé sur les propriétés des cellules thalamiques relai) maximise
bien le ratio entre information et énergie correspondante, en accord avec les
études expérimentales. L’étude montre aussi que, quand la neuromodulation
induite par la sérotonine a lieu, l’information et l’énergie sont réduites, mais
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que le ratio entre les deux est toujours maximisé par le neurone.
Les résultats obtenus durant cette thèse sont d’une grande aide pour

mieux comprendre la transfert d’information à travers les synapses. La
comparaison entre les deux mesures de théorie de l’information étudiées
(information mutuelle est entropie de transfert) offre de très utiles aperçus des
limitations de ces métriques et il est permit d’espérer que ces résultats seront
utiles pour aider les neuroscientifiques à concevoir leurs expériences. De plus,
les différents résultats obtenus lors de l’étude de l’efficacité énergétique du
transfert d’information indiquent que ce concept pourrait être un principe
général dans le cerveau, même si d’autres études sont encore nécessaires
pour comprendre comment les neurones atteignent cet état. Dans ce sens, le
modèle développé pendant cette thèse sera un excellent outil pour étudier
plus en détail l’efficacité énergétique et la transmission synaptique.





Summary

The brain is one of the most complex structure in our organism. In humans,
even though it is quite a small organ (it represents around 2% of the whole
body mass), it is responsible by itself for around one fifth of the whole-body
energy consumption. Still, the total amount of energy available to the brain
is limited. Energy consumption is thus an essential feature of the brain’s
function, and studies have shown that alterations to the brain’s energy
supplies are linked to many diseases and neurological disorders. These energy
constraints have also shaped how the brain works.

Synapses, the part of the neurons where signals are transmitted to other
neurons, are where the majority of the energy of the brain is consumed.
Surprisingly, signal transmission across synapses is not necessarily reliable. In
the central nervous system, the probability of signal transmission between two
neurons is estimated to be around 25 to 50%. This means that those neurons
do not convey all the information they receive, probably because this would
cost too much energy to the organism. Instead, previous studies have shown
that some neurons work at an energetically efficient level for information
transmission, maximizing the ratio between information conveyed and energy
used doing so.

In order to study energetic efficiency, it is important to be able to reliably
estimate the information transmitted by neurons. Although it was developed
to be used in communication sciences, information theory is also widely used
in Neuroscience. It can however be difficult to use this theory on biological
data. The amount of data collected during experiments is usually limited
(the experiment being conducted on an animal or directly on in vitro cells)
and limited data can lead to biases when information theory is applied. It
can also be complicated to binarize those same biological data.

This PhD thesis aims to better understand energetic efficiency of infor-
mation transfer, focusing on neurons of the visual pathway. The approach
used is a computational approach, where input data are generated with a
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given statistic and models of synaptic transmission are used to generate
output data. Three studies are included in this thesis. The first study focuses
on energy consumption in the brain and experimental findings of energetic
efficiency. The second study compares the performances of two metrics
developed in information theory and adapted in Neuroscience to measure
information conveyed by neurons: mutual information and transfer entropy.
Those two metrics are used with correction methods designed to reduce the
biases and they are compared according to the size of the dataset generated,
as well as the complexity of the model used. The second study also aims at
reproducing experimental findings about energetic efficiency in the lateral
geniculate nucleus (in the thalamus), with the help of a Hodgkin-Huxley-
type model to simulate synaptic transmission. The third study adds to this
model a way of modelling modulation of synaptic depression in order to
investigate the effects of neuromodulation induced by serotonin at thalamic
relay synapses on energetic efficiency.

The comparison between mutual information and transfer entropy shows
that their respective performance depends on the type of data simulated, as
well as the transmission properties considered between inputs and outputs.
For simple cases, usually not representative of how a neuron operates, the
study shows that transfer entropy suffers less from biases induced by small
datasets than mutual information, even with the correction methods used.
A more complex simulation, based on a Hodgkin-Huxley-type model, shows
that transfer entropy is more sensitive to transmission properties, making
it more difficult to apply and that mutual information (at least with the
estimation method used) is robust to this kind of issues. The study also
shows than in complex cases, mutual information and transfer entropy do
not necessarily measure the same quantity.

The study of energetic efficiency with our model shows that the modelled
neuron (based on thalamic relay cells properties) indeed maximize the ratio
between information and concomitant energy consumption, in accordance
with experimental studies. It also shows than, when neuromodulation induced
by serotonin occurs, the information transmitted by the neuron, as well as
the energy used doing so decrease, but that the ratio between the two is still
maximized by the neuron.

The results obtained during this thesis are of great help to better un-
derstand information transfer across synapses. The comparison of the two
metrics of information theory studied (mutual information and transfer
entropy) offers very useful insights on the limitations of those metrics and
will hopefully be helpful for neuroscientists when designing experiments.
Moreover, the different results obtained when studying energetic efficiency
of information transfer at synapses indicate that this concept could be a
generic principle in the brain, even though further studies will be necessary
in order to understand how this is achieved by neurons. In this sense, the
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models and tools build during this thesis will be of great use to study in
details energetic efficiency in neural networks.





Acronyms

5-CT 5-carboxytryptamine
5-HT 5-hydroxytryptamine
AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
ATP adenosine triphosphate
CNS central nervous system
EPSC excitatory postsynaptic current
GABA γ-aminobutyric acid
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CHAPTER 1

General Introduction

1.1 Aims of the study
Brain function has been shaped throughout evolution by energetic constraints.
The brain is a relatively small and lightweight organ, but it consumes a big
portion of the energy produced by the body. Importantly, the energy the
body can allocate to the brain is limited and this has led to notable features
in the functioning of the brain, one of them being the fact that some synapses
do not maximize the information they convey, but maximize instead the
ratio between the information they convey and the energy they use doing so:
the so-called energetic efficiency of information transfer. A brief discussion
of these issues has been published as Conrad et al. in the proceedings of
IEEE IEDM 2017 (published in 2018; see Paper 1 in Chapter 2).

The present thesis aims to better understand how energetic efficiency in
the brain works and is modulated. For this purpose, the first point addressed
is to better characterize how the information conveyed by synapses can be
measured, by comparing the advantages and trade-offs of two information
theory metrics: the mutual information and the transfer entropy. Those
two metrics were compared on different types of modelled spike trains,
from very simple synthetic spike trains to more biologically realistic spike
trains. These metrics were then used to calculate the energetic efficiency of
information transfer in relay neurons in the lateral geniculate nucleus (LGN).
This work is currently under review. A preprint can be found at https:
//www.biorxiv.org/content/10.1101/2020.06.01.127399v1 (see Paper

1
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2 in Chapter 2).
This work also aims to better understand the effect neuromodulation

can have on synapses by evaluating its effect on the energetic efficiency of
information transfer. Specifically, we are interested in better understanding
what is the effect of serotonergic modulation of paired-pulse depression on
energetic efficiency of information transfer in the LGN, using the same metrics
of information theory. Preliminary findings on this work will be published in
the proceedings of ICANN (international Conference on Artificial Neural
Networks) 2020 (see Paper 3 in Chapter 2).

The next section introduces the literature relevant to the subjects studied
in this thesis. We will start by discussing energy consumption in the brain,
how energy is used (and by which processes) and stored, and what is the
interplay between presynaptic release probability, postsynaptic gain, energy
consumption and energetic efficiency of information transfer at synapses. We
will then introduce information theory and the metrics studied in this work
and their application in Neuroscience. Lastly, we will overview the role and
effects of neurotransmitters, focusing on serotonin and synaptic depression.

1.2 Introduction
1.2.1 Energy consumption in the brain
The brain is a very complex structure, and the human brain has evolved to
become what is probably the most sophisticated computational device we
know. This organ is also one of the main consumers of the energy produced
by the body. The human brain, for example, represents approximatively 2%
of the whole body mass, but it consumes by itself around 20% of the oxygen
needed by the resting body in adults [1]. The vertebrate brain is also the
one that consumes the most oxygen relative to the total body needs [1].

In humans, the average power consumption of an adult is about 100 W [2],
which translates to the average power consumption of the brain (20%) being
around 20 W. We will discuss later in this introduction how the brain
is not necessarily extremely reliable when it comes down to information
transmission between neurons, but let us first try to better understand what
those 20 W represent.

In March 2016, AlphaGo, a computer program using artificial neural
networks, beat Lee Sedol (9th dan) 4:1 at Go, a Chinese strategic board
game, which is considered to be the most computationally intensive game
ever created. It took no less than 1920 CPUs and 280 GPUs [3] to beat
one of the best players of Go in the world. It was estimated than the total
power consumption of AlphaGo was around 1 MW [4], 50’000 times the
consumption of the human brain. It is important, however, to note that the
only thing AlphaGo can do is to play Go, or as Lee Sedol put it after the
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game [5] "[...] robots will never understand the beauty of the game the same
way that we humans do".

The brain is a very powerful computational device, and this was achieved
through evolution. As humans evolved from primates, their cranial capacity
increased approximatively 4-fold, which also caused an increase in energy
use [1, 6]. The question of what allowed humans to have larger brain is still
debated. One of the main hypothesis is that cooking was what allowed human
encephalization [6, 7], as cooked food is easier to masticate and to digest than
raw food, thus potentially delivering more energy to the body and the brain
from the same amount of foodstuff extracted from the environment. Another
hypothesis is the use of bi-pedal locomotion by humans, as it consumes less
energy when displacing than quadrupedal locomotion [8]. Nonetheless, a lot
of energy is needed to fuel the modern human brain, but the amount of
energy the body can supply is limited. This most likely shapes information
processing in the brain.

During adulthood, brain energy use is mainly stable, but this is not the
case during development [9]. Before adolescence, the energy use of the brain
increases, in relation with the thickening of the cortex (as many synaptic
connections are made). From adolescence onwards, energy use constantly
decreases in correlation with cortical thinning (as connections are pruned)
until the brain reaches its mature state, between 20 and 30 years of age [10–
12].

Energy consumption at synapses

As mentioned above, the brain itself is responsible for about 20% of the
whole-body energy consumption, but what exactly is responsible for this
high energy consumption in the brain?

Adenosine triphosphate (ATP) is the main store of chemical energy
in the brain (and in living matter in general) [13]. In 2001, Atwell and
Laughlin estimated the ATP consumption for the main subcellular processes
for signalling in rat cerebral cortex [14] (their main results can be seen
in Figure 1.1). In 2003, Lennie performed a similar study for the human
cortex [15]. In both these studies, estimates are based on a bottom-up
detailed biophysical budget, considering the rate of ATP consumption of
every process consuming energy in the brain. Interestingly, a study by
Jolivet et al. published in 2009, developing instead a top-down budget
approach to calculate the brain’s energy budget, where the total average
glucose and oxygen utilization of the brain was used to estimate the average
ATP production of processes, reached similar conclusions with respect to
the relative contribution of various ATP-consuming processes [16]. It is
nonetheless important to note that those different budgets are based on
many hypotheses and the results should be considered with caution.
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Those papers showed that the main processes that use ATP in the
brain are action potentials, the resting potentials of neurons and glia and
synaptic transmission (see Figure 1.1). The processes mediating synaptic
transmission are, by themselves, responsible for about 60% of the total
energy use [17] (highlighted in red in Figure 1.1). Figure 1.1 also shows that
the great majority of those 60% is used to reverse ion movements generating
postsynaptic responses through cellular membranes, even though a lot of
other processes are necessary for synaptic transmission. Housekeeping energy
(i.e. all the biochemical processes that maintain the infrastructure of the
cell), is not taken into account in this budget.

Figure 1.1: Percentage of adenosine triphosphate (ATP) predicted to be used on
subcellular mechanisms underlying signalling in the rat cortex [14] . The three main
processes consuming ATP are reversal of ions entry at resting potential (20%), reversal
of ions entry for action potentials (22%) and synaptic transmission (58%, highlighted
in red). Adapted from reference [17].

Figure 1.2 summarizes all the processes underlying signalling occurring
at synapses. Let us focus on the processes consuming ATP. Presynaptically,
those processes are the Na+/K+-ATPase (restore the sodium gradient and
drives the Na+/Ca2+ exchanger responsible of calcium removal), the Ca2+-
ATPase (lowers internal calcium concentration), the vacuolar H+-ATPase
(energizes transmitters uptake by vesicles), the endocytosis of empty vesicles
and motor proteins (move mitochondria and vesicles inside the cell). Post-
synaptically, those processes are the Na+/K+-ATPase, the Ca2+-ATPase,
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returning Ca2+ to intracellular stores and motor proteins. In astrocytes,
those processes are restoration of the sodium gradient through the Na+/K+-
ATPase and the conversion of glutamate into glutamine.

Figure 1.2: Schematic representation of mechanisms underlying signalling at
synapses. Post- (bottom) and presynaptic (up) sides of the synapse are shown, as well
as an astrocyte (right). ATP consumption is shown with white arrows (the thicker the
arrow, the larger is ATP use). Presynaptically, ATP is used by the Na+/K+-ATPase,
the Ca2+-ATPase, the vacuolar H+-ATPase, endocytosis of vesicles and motor pro-
teins. Postsynaptically, ATP is used by the Na+/K+-ATPase, the Ca2+-ATPase,
returning Ca2+ to intracellular stores and motor proteins. In astrocytes, ATP is used
by the Na+/K+-ATPase and conversion of glutamate into glutamine. Some processes
that do not consume ATP are also shown. Adapted from reference [17].

ATP and mitochondria

The ATP used by the adult brain is almost entirely generated by the
glycolysis, followed by complete oxidation of glucose in oxidative metabolism.
Consequently, mitochondria provide about 93% of the ATP used in the
brain [18]. The fact that the majority of the energy is used by synapses can
also be verified via the physical localization of mitochondria, that matches
loci of high energy consumption [19, 20]. On average, there is 1 mitochondria
on either side of most synapses (see [21] for the presynaptic terminals and [22]
for postsynaptic terminals). ATP-producing mitochondria are drawn in yellow
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in Figure 1.2.
An increase of neuronal activity will result in an increase of energy

usage, and most of the surplus ATP necessary in this case is generated by
mitochondria [23, 24]. In order to sustain neuronal activity, it is essential that
ATP is made available to the cells when necessary. This means that correct
location of functioning mitochondria is essential, both for the development
of the nervous system, and for its plasticity and health. Mitochondria are
formed at the soma. It is thus necessary that they can travel rapidly and
efficiently to the place where they are needed. They are transported long-
distance along microtobules, driven by kinesin and dynein motors with a
speed of between 0.3 and 1 µm/s [25, 26]. For short distances, they travel
along actin filaments, driven by myosin motors [27]. However, movement of
mitochondria costs ATP, meaning that there are energetic limitations to
their movement. This might explain why mitochondria are stationary 80%
of the time [17].

Changes in energy use and diseases

As mentioned above, the brain use in energy is mainly stable during adult-
hood. Nonetheless, synaptic plasticity can alter energy expenditure be-
cause it can change synaptic strength, as can be seen in Figure 1.3A. For
example, long-term potentiation can increase the number of AMPA (α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors in postsy-
naptic membranes, which increases the strength of synapses (green synapse
in Figure 1.3A) but also their energy consumption [28]. The inverse is also
possible, when a negative feedback mechanism adapts to low levels of cellular
energy supply by stopping the maintenance of the synapse [29] (red synapse
in Figure 1.3A). Synaptic plasticity can also help synaptic transmission save
energy. An example of this is the case of silent synapses. These appear when
long-term depression leads to synapses producing zero postsynaptic current,
as observed by Isope and Barbour in cerebellar parallel fibers connecting
to Purkinje cells [30]. These silent synapses were predicted theoretically in
2004 by Brunel et al. [31] for optimal storage of information. A few years
later, in 2009, Howarth et al. [32] showed that they massively reduce the
amount of energy used synaptically.

For stable energy use in the brain, it is also important that depleted energy
levels are restored when necessary, or possible. There are a lot of reasons
to think that sleep helps to restore energy in the brain [33]. Physiological
evidence of this was found by Dworak et al. [34]. They reported differences
between energy consumption during awake and sleep states. If cells use a
lot of ATP during awake periods, for electrical and chemical signalling at
synapses, then it is only during sleep that ATP can be allocated to other
tasks in order to fuel restorative biosynthetic processes.
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Sleep is probably also the time when the brain adjusts synaptic strengths,
and therefore ultimately also the energy expenditure of synapses, with the
help of homeostatic plasticity [35], as can be seen in Figure 1.3B. During the
awake state, synaptic plasticity leads to strengthening of synaptic connec-
tions (Figure 1.3B, left), and consequently, to an increase in energy usage.
The signal-to-noise ratio is also reduced as synaptic weights can become
saturated. The homeostasis hypothesis [36] proposes that sleep allows for
the renormalization of synaptic strengths (Figure 1.3B, right), leading to
a desaturation of synapses, and thus to an increase of signal-to-noise ratio.
According to this hypothesis, sleep also allows restoration of energy supplies,
and consolidation and integration of memories.

A

B

Figure 1.3: Schematic representation of synaptic plasticity and homeostatic plasticity
effects on synaptic strength. Blue circles are postsynaptic cells and black lines and
circles are synaptic inputs. Greater synaptic strength is represented with larger
synaptic inputs. A: Synaptic plasticity induced by particular inputs to the neuron
can lead to strengthening (potentiation; green) or weakening (depression; red) of
synaptic connections. B: Homeostatic plasticity leads to proportional changes of the
strengths of all synapses to a neuron. For instance, strong synapses are renormalized
with homeostatic plasticity so that less energy is used and the signal-to-noise ratio is
increased. Adapted from reference [37].

Synapses account for the majority of energy use in the brain. This means
that disorders of mitochondria trafficking or function will affect synapses,
and vice-versa. Mitochondria dysfunctions or abnormalities have been shown
to play a role in several diseases including Parkinson’s disease [38], Hunt-
ington’s disease [39], Alzheimer’s disease [40, 41], the motor neuron disease
called familiar amyotrophic lateral sclerosis [42], and cerebral ischemia [43],
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highlighting the importance of brain energy metabolism in these pathologies
An other interesting way to approach the link between brain’s dysfunc-

tions and energy is the free energy principle developed by Karl Friston [44,
45]. This principle, quite complex, is based on the minimization of the free
energy, defined as the difference between the state a system expects to be in
and the state its sensors tell it that it is in. In other words, this principle
aims to reduce any form of surprise. The free energy principle can in theory
be applied to any system, from a monocellular organism to a very complex
system like the brain. According to this principle, a change in functioning
and energy usage in the brain (either too much or too little) would be associ-
ated with a change of the state the brain’s sensors can evaluate, potentially
leading to neurological conditions implying hallucinations and delusions.
For example, the free energy principle has been used to explain features of
Parkinson’s disease [46], addiction [47] and schizophrenia [48]. Nonetheless,
it is important to note that the free energy considered in this principle is a
concept wider than the concrete concept of energy considered in Biology in
general.

Synaptic release probability and energetic efficiency

As mentioned above, synapses are responsible for a large fraction of the energy
usage of the brain, but the total energy available to the brain is limited. As
studies in Anthropology and Neuroscience have showed, energy constraints
are probably one of the key factors that have shaped the evolution of the
human brain [6], but also the evolution of the brains of other species [49]. It
is also likely that energy constraints have shaped how the brain processes
information.

Information is conveyed from one neuron to another when an action
potential reaches the synapse, activating the release of vesicles of glutamate
(or other neurotransmitters) in the synaptic cleft, as can be seen in Figure 1.2.
Glutamate then docks to the corresponding receptors of the postsynaptic
neuron, triggering an excitatory postsynaptic current (EPSC) that can lead
to the generation of an action potential [50]. One could expect that a vesicle is
released every time an action potential reaches the presynaptic terminal, but,
surprisingly, in the central nervous system (CNS), the typical vesicle release
probability at synapses is around 0.25-0.5 [14]. This low release probability
offers several advantages to synapses: allowing efficient computation for
time-varying signals, increasing information transmission from correlated
inputs and maximizing the storage of information [51–53]. More in context
with the present work, the low release probability can also have energetic
advantages.

Firstly, synaptic failure is essential to reduce energy wastage [54]. Let
us consider a dendritic tree receiving signals from several synapses, for
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example a cortical neuron receiving inputs from around 8000 presynaptic
terminals [55]. In this case, the rate at which information arrives from all
synapses is greater than the rate at which the output axon can convey
information. Energy would then be wasted if information that cannot be
passed on by the postsynaptic cell was transmitted. A low release probability
is thus essential to avoid this waste of energy.

Moreover, most axons create more than one release sites to a postsynaptic
cell (for example in the cortex, it is usually between 4 and 6) [56], each with
a given probability of releasing a vesicle. Having more than one release site
increases the reliability of signal transmission and the fraction of the input
information that is received [56–58]. Several release sites in parallel (often
on different spines) also allow stable network connectivity even in the case
of spine turnover [59], because there is a response in the postsynaptic cell
when it receives at least one synaptic current.

This is not the only advantage of several release sites. Indeed, in the case
of several release sites, the ratio of the information transmitted per ATP
molecules needed is maximized for low release probability [14]. This means
that the energetic design of synapses is optimized for low neurotransmitters
release probability. As suggested by Levy and Baxter [60], the nervous
system does not maximize the rate of information transfer, but the ratio of
transmitted information to energy consumed. This phenomenon is called, or
referred to as, energetic efficiency of information transfer [61, 62].

Levy and Baxter were actually the first to theorize this principle, when
they studied synaptic firing rates [60]. As we will develop in Section 1.2.2,
information theory [63] is very helpful in Neuroscience and is used abundantly
to characterize information flow in neural systems. By using information
theory, Levy and Baxter have argued that the firing rate that maximizes the
rate at which information arrives in an input train is around 200 Hz [60].
However, the mean firing rate of in vivo neurons is around 4 Hz, or much
lower [14, 64]. This low firing rate in vivo means that the nervous system
could convey more information (by firing more action potentials), but this
would have a higher energy cost

Figure 1.4 shows a theoretical example based on reference [17] to help
better understand how the information transmitted and the ratio between
information and energy vary with the number of release sites N and the
release probability p. At first, let us focus on the black curves. In this example,
the input firing rate is 4 Hz, which corresponds to a probability s = 0.01 of
an action potential arriving in any given interval ∆t = 2.5 ms. Figure 1.4A
shows the fraction of information transmitted as a function of the release
probability p. The information transmitted increases sigmoidally with p
(once all the information has been transmitted, it is impossible to transmit
more, even if p increases). In this example, the energy needed to convey
this information is calculated as N · s · p, the number of vesicles released
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per ∆t, assuming that energy use is proportional to the number of vesicles
released. Figure 1.4B shows then the ratio between transmitted information
and energy use. As it can be seen, for N > 1 the maximum of the ratio is at
p = 0, which is not very realistic.

A B

Figure 1.4: Theoretical evaluation of the energetic efficiency as a function of the
release probability. A: Fraction of information arriving from an axon and transmitted
across N release sites, each releasing one vesicle with a probability p, in the absence
(black) or presence (red) of spontaneous release. B: Ratio of fraction of information
transmitted (from A) to postsynaptic energy used, taken as N · s · p (the number of
vesicles released by action potentials per ∆t), in the absence (black) or presence (red)
of spontaneous release. In both panels, s is the probability of an action potential
arriving in any given interval ∆t and spontaneous release occurs in the whole cell
with a probability m per ∆t. ∆t = 2.5 ms. Adapted from reference [17].

This example is not very representative of neurons as it is lacking one
important features: spontaneous release. Synapses can spontaneously re-
leases a vesicle, even without an incoming action potential. This produces
a postsynaptic effect indistinguishable from the one triggered by an action
potential [17]. The red curves in Figure 1.4 show the case with spontaneous
release at a rate of 1.2 Hz. This is equivalent to a probability m = 0.003
that the release occurs per ∆t = 2.5 ms. Spontaneous release from all input
synapses reduces the maximum amount of information transmittable (see
Figure 1.4A), because some postsynaptic currents will not be caused by
presynaptic action potentials, thus creating noise. In the case where the
frequency of action potential-evoked release probability is close to the one of
spontaneous release, the ratio of information transmitted per energy used
decreases (less information is transmitted but more energy is needed). A
typical physiological spike rate of around 4 Hz combined with a spontaneous
release rate of 1.2 Hz (as measured in cortical pyramidal cells by Dani et
al. [65]) would give a release probability that maximizes the ratio information
over energy of around 0.05-0.25 depending on the number of release sites, as
shown in Figure 1.4B.
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As can be seen in Figure 1.4B, the maximum of the ratio between
information and energy emerges for p 6= 0 only in the case where spontaneous
release is taken into account, but also only for more than one release site
(N > 1). Figure 1.4B also shows that the optimal release probability decreases
if the number of release sites increases. Interestingly, similar results have
been obtained in experimental studies, comparing the release probability
with the number of release sites. A correlation between the number of release
sites and the release probability was found in cortical synapses [66] (see
Figure 1.5A) and in hippocampal synapses [67] (see the closed circles in
Figure 1.5B). Figure 1.5B also shows that, for these synapses, the release
probability adapts only to the number of synapses made by the presynaptic
cell on the same dendrite, while no correlation is observed when the synapses
are made on different dendrites (open circles).

A B

Figure 1.5: Experimental correlation between the number of release sites and the
release probability. A: Correlation of the number of release sites with the release
probability for pyramidal neurons in layer 2/3 of the rat visual cortex. Adapted from
reference [66]. B: Correlation of the release probability with the number of release sites
for rat hippocampal neurons. The closed circles represent the number of synapses that
one axon makes on the same dendritic branch (these are the release sites discussed in
the Introduction). The open circles represent the number of synapses that one axon
makes on different different dendrites (in this case, no correlation is observed with
the release probability). Adapted from reference [67].

There also have been experimental studies on the energetic efficiency
level, and they have shown that some neurons do apply this (or a similar)
principle of energetic efficiency with respect to how much information is
conveyed. Figure 1.6 shows the results obtained by Harris and colleagues at
synapses of thalamic relay neuron in the lateral geniculate nucleus (LGN;
a nucleus in the thalamus) in rat brain slices [68]. Figure 1.6A shows the
circuitry of those relay neurons. Thalamic relay cells are part of the visual
pathway. They receive signals from the retina, with a one-to-one connection,
and then send their signals to the cortex. This circuit is thus essentially
feed-forward. As shown by the grey arrows in Figure 1.6A, modulation by
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descending inputs from the cortex and the local inhibitory network in the
thalamus were removed or inactivated (see reference [68] for details).

A B

C D

Figure 1.6: Measure of energetic efficiency of information transfer when experimen-
tally modulating the postsynaptic gain of synapses of relay neurons in the lateral
geniculate nucleus (LGN) in rat brain slices. A: Circuitry of the LGN. Relay neurons
in the LGN receive signals from the retina and send signals to the visual cortex. The
circuit is a feed-forward circuit. The grey arrows indicate the neglected pathways
(descending inputs from the cortex and the local inhibitory network in the thalamus).
B: The information measured at those synapses increases sigmoidally with the synap-
tic gain (the size of EPSCs). C: The energy used to convey the information from B
increases linearly with the synaptic gain. D: The ratio between information (from
B) and energy (from C) is a monophasic curve with one unique maximum at the
physiological postsynaptic gain of the synapse. The red arrows point to the original
physiological gain of the synapse. Adapted from reference [68].

The difference between these experimental results and the theoretical
example showed in Figure 1.4 is that the experimental results shown in
Figure 1.6 are plotted against the normalised synaptic gain gsyn, not the
release probability. The synaptic gain is a measure of the number of glutamate
receptors on the postsynaptic membrane, and, thus, of the postsynaptic peak
conductance (i.e. the amplitude of the generated EPSCs, assuming that
there is always enough glutamate released in the synaptic cleft to activate all
the receptors). The release probability is a presynaptic property of a given
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synapse, while the synaptic gain is a postsynaptic property. The results of
Harris and colleagues shown in Figure 1.6 thus address the same question
of energetic efficiency of information transfer but focus on the postsynaptic
side of the synapse (number of postsynaptic receptors), while the example in
Figure 1.4 focuses on energetic efficiency of information transfer with respect
to the presynaptic side of the synapse (release probability).

Figure 1.6B shows that the information transmitted by this synapse
increases sigmoidally with the postsynaptic gain, similarly to the theoretical
case we considered earlier for the presynaptic release probability shown
in Figure 1.4A. Figure 1.6C shows that the energy used to transmit the
information increases linearly with the postsynaptic gain. The red arrows
indicate the original physiological gain of the synapse (for a normalised
synaptic gain of 1). Figure 1.6C indicates that this synapse does not transmit
all the information it could, but transmitting more information would cost
more energy to the system. This leads to the ratio between information flow
and energy consumption to have a unique maximum (Figure 1.6D), this
maximum sitting at the physiological gain of the cell (as shown with the red
arrow). These results indicate that synapses impinging on LGN thalamic
relay cells from the retina operate according to the energetic efficiency of
information transfer principle: maximizing the ratio between information
flow and energy consumption instead of simply maximizing the amount of
information transferred.

As mentioned above, information transmitted by neurons is evaluated
using information theory. Being able to correctly estimate the information
is thus an essential task when studying energetic efficiency of information
transfer. The next Section (Section 1.2.2) focuses on information theory and
its applications in the cases this thesis is interested in.

1.2.2 Information theory
Information theory is a mathematical framework created to study the trans-
mission of information through communication systems. It was primarily
developed by Claude Shannon, with a first publication in 1948 [63]. This
paper was focused on the transmission of information in the presence of
noise in the channel of communication. It also introduced the concept of
entropy, which we will describe in detail later in this Introduction. Soon
after this publication, the scientific community recognized the significance
and flexibility of this method and researchers started to apply information
theory to fields outside of its original scope, for example in statistics, bi-
ology, behavioural science or statistical mechanics, and also, obviously, in
Neuroscience [69]

The way in which neurons transmit information was debated at the time
the paper from Shannon was published. Information theory thus appeared
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to be the perfect tool to answer this question [70]. The first works using
information theory in Neuroscience were published in the 50s and indeed
showed that neurons are able to relay large quantities of information [71–73].
These works were the starting points for many subsequent studies trying to
better characterize information flow in specific neural systems. Information
theory has been used to address many different Neuroscience questions and
in a number of different contexts. It has led to a number of advances and
developments of theories for brain functions, and it is still used today in order
to better understand how neural cells process information. The interested
reader can see references [74], [75], [76] and [77] for reviews on the subject.

Information theory in Neuroscience

Information can have different meanings in different contexts [78]. In Neu-
roscience, information is often evoked when discussing stimulus encoding
(information encoding), decision-making (information processing) or memory
(information storage). Information of a neural variable is generally associated
with a reduction in uncertainty of another variable or stimulus [79]. Informa-
tion is measured in bits, which should allow for straightforward comparisons
between cells, brain regions, tasks or subjects.

Data obtained from Neuroscience experiments are frequently noisy and
often represent systems with non-linear interactions. They also can be
composed of numerous variables (e.g. physiologic, behavioural or stimulation
data) that interact. Information theory offers a number of multivariate
analysis tools, it can be applied to different types of data, it can capture
non-linear interactions and it is model-independent. Because of its general
applicability, information theory is widely used in Neuroscience, for example
on analysis of electroencephalography (EEG), magnetoencephalography
(MEG), functional magnetic resonance imaging (fMRI) and trial-based data,
or on studies on connectivity or sensory coding [77]. It can detect a wide
range of interactions and structure, even in large or complex systems.

The results of information theoretic analysis can quantify the uncertainty
of variables, the dependencies between variables and the influence some
variables have on others [79]. It thus can be used to quantify encoding
(how much information a neuron conveys) [80, 81], or complex encoding
relationships (how much information two neurons convey together) [82, 83].
It is important to note that information theory can not produce models that
describe how the system works (but it can be used to restrict the space of
possible models) [77].

The following sections present the metrics of information theory used
in the present thesis. Other tools to measure information exists, for more
details on those, see for example reference [77].
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Entropy

The concept of entropy is something physicists are utterly familiar with.
Developed in Boltzmann’s theories about statistical mechanics and thermo-
dynamics, entropy measures the disorder in a system. The entropy used in
information theory and developed by Shannon has a similar mathematical
formulation but the reason why Shannon chose to also call it entropy is
attributed to John van Neumann [84]: " The theory was in excellent shape,
except that he needed a good name for "missing information". "Why don’t you
call it entropy", von Neumann suggested. "In the first place, a mathematical
development very much like yours already exists in Boltzmann’s statistical
mechanics, and in the second place, no one understands entropy very well,
so in any discussion you will be in a position of advantage. "

The entropy is the fundamental quantity in information theory. It mea-
sures the uncertainty contained in a variable. For a variableX with individual
states x, the entropy H(X) is defined as [63, 79]:

H(X) =
∑
x∈X

p(x)log2
1

p(x) . (1.1)

This ensures H(X) ≥ 0, as a negative uncertainty would not have any
meaning. Moreover, systems with one absolutely certain state haveH(X) = 0,
as there is no uncertainty over their state. In this thesis, we will concentrate
on discrete distributions, but it is interesting to note that there also exists
an extension of entropy for continuous distributions [79].

For systems with two variables, X with states x and Y with states y, the
joint entropy H(X,Y ) is defined as:

H(X,Y ) =
∑
x∈X
y∈Y

p(x, y)log2
1

p(x, y) . (1.2)

The average uncertainty in a variable, given the state of another variable,
is calculated with the conditional entropy H(X|Y ) (also called noise entropy)
and is defined as:

H(X|Y ) =
∑
x∈X
y∈Y

p(x, y)log2
1

p(x|y) . (1.3)

Conditional entropy can also be used to rewrite the joint entropy:

H(X,Y ) = H(X) +H(Y |X). (1.4)

Figure 1.7 gives a more visual interpretation of Equations 1.1 to 1.4, where
it can be seen that the total area of H(X,Y ) is composed by the areas of
H(X) and H(Y |X), or equivalently H(Y ) and H(X|Y ).
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H(X|Y) H(Y|X)

H(X) H(Y)

H(X,Y)

I(X;Y)

Figure 1.7: Venn diagram of entropy and mutual information. The entropies H(X)
and H(Y ) each are a circular area. The area formed with the combination of H(X)
and H(Y ) is the joint entropy H(X,Y ). The conditional entropy H(X|Y ) is the area
formed by removing from H(X) the part of H(X) that intersects with H(Y ). The
other conditional entropy H(Y |X) is the area formed by removing from H(Y ) the
part of H(Y ) that intersects with H(X). The area at the intersection between H(X)
and H(Y ) is the mutual information I(X;Y ). It can also be constructed as the area
of H(X) minus the area of H(X|Y ), or equivalently H(Y ) minus H(Y |X).

Mutual information

The entropy measures the uncertainty in one variable. If two variables are
dependent from each other (for example the output spike trains of two
connected neurons), then learning the state of one variable reduces the
uncertainty in the other variable. This means that one variable will provide
information about the other variable. This can also be written as:

H(X) = H(X|Y ) + I(X;Y ), (1.5)

where H(X|Y ) is the entropy that remains in X, given knowledge about Y ,
and I(X;Y ) is the information provided by Y about X measured in bits.
This is also illustrated in Figure 1.7. Equation 1.5 can be rewritten as:

I(X;Y ) = H(X)−H(X|Y )

=
∑
x∈X
y∈Y

p(x, y)log2
p(x, y)
p(x)p(y) .

(1.6)

I(X;Y) is called the mutual information [79]. It corresponds to the reduction
of uncertainty in X, given knowledge of the state of Y . H(X) ≥ 0 implies
that I(X;Y ) ≤ H(X).
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By symmetry, I(X;Y ) can also be rewritten as [79] (see also Figure 1.7):

I(X;Y ) = H(Y )−H(Y |X)
= I(Y ;X).

(1.7)

This means that the information Y provides about X is the same as the
information X provides about Y . Furthermore, if we combine Equation 1.7
with Equation 1.4, we obtain the alternate form:

I(X;Y ) = H(X) +H(Y )−H(X,Y ). (1.8)

It is possible to expand the mutual information to take into account more
than two variables [79]. An alternate form of mutual information that is very
helpful for causal relations is the mutual information between two variables
conditioned on a third variable, the conditional mutual information:

I(X;Y |Z) = H(X|Z)−H(X|Y,Z)

=
∑
x∈X
y∈Y
z∈Z

p(x, y, z)log2
p(x, y|z)

p(x|z)p(y|z) . (1.9)

Transfer entropy

The transfer entropy was first introduced by Schreiber in 2000 [85] as a
tool to measure the statistical coherence between systems evolving in time.
It is defined as a conditional mutual information with assumptions about
temporal order:

TE(X → Y ) = I(X−;Y +|Y −)
= H(X−|Y −)−H(X−|Y +, Y −)

=
∑

x−∈X−

y+∈Y +

y−∈Y −

p(x−, y+, y−)log2
p(x−, y+|y−)

p(x−|y−)p(y+|y−) .
(1.10)

This quantity measures the information about the future state of a variable
Y + provided by another variable in the past X− given the information
provided by the past state of the first variable Y −. The transfer entropy
measures the changes caused in Y from X that cannot be derived only by
the past states of Y , like it is the case for example if X was an inhibitory
neuron impinging on neuron Y , i.e. the past of X is more informative about
the future state of Y than the past of Y itself.

In a Neuroscience context, and in this thesis in particular, when applied
to spike trains, transfer entropy measures the information flow between
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neurons, and mutual information measures the encoding of stimulus and
behavioural information shared by individual neurons. Mutual information
is symmetric under the exchange of the variables. On the contrary, transfer
entropy measures the direction of information flow and is, by definition,
non-symmetric. Thus, transfer entropy can be seen as a conditional mutual
information with assumptions about temporal structure. This means that
depending on the temporal structure of the data, mutual information and
transfer entropy could evaluate similar quantities. This is interesting, because
even if the quantity evaluated is similar, the estimation methods will differ.
The accuracy of those estimation methods seems then to be an important
point to study.

Application and limitations of those metrics

The basic idea when conducting a Neuroscience experiment aiming to measure
the information flow or encoding is to send a stimulus to a neuron (input)
and to record the response of the neuron (output). Information theory and,
specifically, the metrics introduced above, can then be used to calculate the
information flow between the recorded input and output. But, to do that,
the data used need to be discretized, even though biological processes are
continuous. In a Neuroscience experiment, the recording on the computer of
continuous biological processes ends up being discrete with some sampling
rate determined by the experimenter and dependent on the equipment used.
The recording is usually sampled at a higher frequency than necessary for
data analysis with information theory, and must be downsampled by using
binning or discretization methods [86]. The choice of the method used is
important for a correct evaluation of the probability distributions. This is a
very system-specific procedure, and a poor choice of discretization will lead
to a wrong evaluation of the information theory metrics [77].

Estimating probability distributions is necessary to any information
theoretic analysis, and, in an experimental context, these distributions
must be determined from raw experimental data. In 1998, De Ruyter et al.
developed a relatively straightforward way of estimating information carried
by a spike sequence, as well as a new method for the application of information
theory to neural spike trains [87]. This new method represented an advance
from a methodological point of view and has led to many applications.

The issue one will encounter when evaluating the information from
probabilities reconstructed from experimental data is the bias that appears
due to a finite sample size. To calculate the information it is necessary to
reconstruct the probability of each possible state (as it can be seen in the
above Sections, every metrics introduced is based on probabilities). A state
can be, for example, a word formed as a string of bins, such as 100 010 001
101 011 110 111 000 for words of length 3. The probability of a given word
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is reconstructed by counting every occurrence of this word in the data and
dividing this number by the total length of the data. But, if the dataset is
not big enough, there is a risk to poorly evaluate those probabilities. For
example, let us consider a very unlikely word, with a very small (but still
bigger than zero!) probability of occurrence. In a small dataset, chances are
that a very unlikely word is never observed. The probability of this state
would thus be evaluated to be zero, an underestimation. Of course, because
the sum of all the probabilities must, by definition, be equal to 1, this implies
that the estimates of the other probabilities will also be incorrect, some of
them will be overestimated.

This then propagates in the estimation of the entropies, resulting in the
entropies being underestimated [88]. Intuitively, this bias can be understood
because the entropy is a measure of variability in the dataset, which means
that a smaller dataset is less likely to fully sample the full range of possi-
ble responses. A more mathematical understanding can be achieved with
the help of Figure 1.8, where we can see that miss-evaluating very small
probabilities will impact the evaluation of the function h(x) = p(x)log 1

p(x)
the most. Indeed, a small probability underevaluated leads to a big error
in the evaluation of h(x) (as shown with the red arrows in Figure 1.8), as
a higher probability overevaluated leads to a smaller error in h(x) (see the
orange arrows in Figure 1.8). This means that the entropy, calculated as∑
x h(x) (see Equation 1.1) will be underestimated. This graph also shows

that the largest error will be for probabilities close to zero, which are the
most difficult to correctly sample.

If we take the case of the evaluation of the mutual information (see
Equation 1.6), the entropy and the conditional entropy will both suffer
from this bias and be underestimated. Interestingly, the conditional entropy
will often be underestimated by a larger amount that the entropy. The
estimation of the entropy necessitates the evaluation of all the probabilities
p(x) (see Equation 1.1). For words of length L for instance, there are 2L
possible combinations of p(x) that need to be evaluated. On the other hand,
conditional entropy necessitates the evaluation of 22L possible combinations
of p(x|y) (see Equation 1.3). This means that in a limited dataset, p(x)
will be better sampled than p(x|y), resulting in the conditional entropy
being more significantly underestimated than the entropy. This usually
results in the mutual information (entropy minus conditional entropy) being
overestimated.

Poor evaluation of the probabilities will bias the estimation of entropies
and mutual information, but enough observations can help adequately sample
the space of states and reduce this bias [89]. This is however not always
possible from an experimental point of view. To alleviate this issue, several
correction methods for biases have been developed. The first theoretical (as in
non-empirical) correction method was developed by Treves and Panzeri [90]
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Figure 1.8: Plot of the function h(x) = p(x)log 1
p(x) . The arrows show two examples

were the probabilities are slightly miss-evaluated. The red arrows show a small
probability (> 0) evaluated to be zero (underevaluation), leading to a big impact in
the evaluation of h(x). The orange arrows show a much larger probability slightly
overevaluated, leading to a relatively smaller impact in the evaluation of h(x). Both
errors in the evaluation of the probabilities have the same magnitude.

in 1995. A few years later, in 1998, Strong and colleagues developed the
so-called direct method [91], which is relatively easy to implement and
is thus widely used by experimentalists. For a more thorough review on
correction methods, see [88]. It is important to note that all these correction
methods are designed for the mutual information. Nonetheless, because
transfer entropy is also the subtraction of two entropies, its estimation could
suffer from similar biases too.

This Introduction focuses on the direct method, as it is the method used
in this thesis for the evaluation of the mutual information. It was also used
in this thesis to adapt a correction method for the transfer entropy (see
Chapter 2 for more details).

The direct method

The direct method applies two distinct corrections for the evaluation of
both entropies entering the calculation of the mutual information. The first
correction aims to correct the bias due to a limited dataset. The idea is
to extrapolate the entropy (total entropy or conditional (noise) entropy)
to an infinite dataset by plotting the entropy for fractions of the dataset.
Figure 1.9 shows an example of how this correction is applied in the original
work from Strong and colleagues, for words of length 10 bins. The total
entropy Htot is computed for the whole dataset, as well as fractions of the
dataset ranging from 1

2 to 1
5 . The points are then fitted with a function
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of the form Htot = H0 + H1
size + H2

size2 , where size denotes the inverse data
fraction. The intercept at the fraction 1

0 , H0, gives the extrapolated value of
the entropy for an infinite dataset.

H0

Figure 1.9: First correction of the direct method of Strong. Words used in this
example have a length of 10 bins. Total entropy is evaluated over different fractions of
the whole dataset. To extrapolate the value of the entropy for an infinite dataset, the
points obtained is fitted with a function of the form Htot = H0 + H1

size
+ H2
size2 . The

intercept H0 is thus the value for an infinite dataset. Adapted from reference [91].

In addition to correcting the bias occurring for a small dataset, the direct
method also offers a way to correct the bias due to finite word lengths.
Ideally, the entropies should be estimated with an infinite word length to
accurately take into account possible long-range correlations or stereotypical
temporal patterns. Correlations and patterns reduce the information content
of a spike train, but their time scales are usually not known. An infinite
word length would thus ensure that they are all taken into account. For a
small dataset, long words will particularly suffer form the bias described
above, creating what is referred to as a sampling disaster by Strong and
colleagues [91]. A sampling disaster occurs for relatively long words, when
the first correction is not sufficient to correct the bias, leading to a strong
underestimation of the entropy (see Figure 1.11C below). Interestingly, when
the correlations have a limited range, their contribution to the entropy is
usually a constant and emerges before the sampling disaster [91]. This means
that entropies calculated for word lengths before the sampling disaster occurs
(i.e. for relatively short words) can be used to extrapolate the estimates of
the entropy and conditional entropy for words of infinite length (again, see
Figure 1.11C).
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A good example of the application of the direct method (and specifically
the second correction) on experimental measurements can be observed in
the work of Reinagel and Reid [92]. In this work, the authors used the
direct method to calculate the stimulus-dependent information conveyed by
single neurons in the cat lateral geniculate nucleus in response to randomly
modulated visual stimuli (Figure 1.10 shows an example of how this kind of
experiment is conducted). Their data were discretized accordingly.

Figure 1.10: Example of a typical experiment on the cat visual pathway. A randomly
modulated visual stimuli is shown to a cat and electrodes are used to record the
responses of the target neurons. Adapted from reference [93].

Figure 1.11 shows how they evaluated mutual information for their mea-
surements. As defined in the direct method, they evaluated the probability
distributions for several word lengths. The entropy is evaluated from the
responses to unique stimuli (see Figure 1.11A) and the conditional entropy is
evaluated from the responses to a repeating stimuli (see Figure 1.11B). The
mutual information is then calculated as the entropy minus the conditional
entropy (see Equation 1.6).

One of the very powerful ideas introduced by the direct method (apart
from the corrections) is how the conditional (or noise) entropy itself is
evaluated (before applying the corrections). Instead of evaluating the joint
and conditional probabilities for states between the input and output (like
Equation 1.3 suggests), the conditional entropy is evaluated by comparing
several outputs (called repetitions) generated by the same repeated input.
The repetitions are aligned and a value of conditional entropy is calculated
for each particular word position in the outputs across the repetitions (as
can be seen in Figure 1.11B). The estimate of the conditional entropy
is then evaluated as the average over all particular word positions. This
allows the estimation of the conditional entropy to be decorrelated from
the transmission processes between the input and the output. Those can
indeed be a source of issues in estimating the information flow, or simply
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be experimentally inaccessible. It is nonetheless important to note that this
does not remove the conditionality on the input, as every repetition of the
output is aligned so that each bin in every repetition corresponds to the
same bin in the input (as shown in Figure 1.11B).

CA

DB

Figure 1.11: Example of the application of the direct method to estimate the mutual
information. A: Probability distribution of words of length L = 8 for time bins of
1ms used for the calculation of the entropy. The inset is a sample of responses to
a non repeated stimuli, with some words of length 8 highlighted. B: Probability
distribution of words of length L = 8 for time bins of 1ms used for the calculation
of the conditional entropy at one particular word position. The inset is a sample
of responses to a repeated stimuli, with words with a fixed timing highlighted. C:
Estimated entropy rate (top) and conditional entropy rate (bottom) as a function of
the inverse word length 1/L. The dashed line is the extrapolation from the linear part
of the curves to words of infinite length. D: Space of parameters of the calculation of
the mutual information I(L, dt), indicated by color. The arrow indicates the state for
the time bin dt = 1ms. Adapted from reference [92].

Both corrections of the direct method were applied by Reinagel and
Reid [92]. Figure 1.11C shows the application of the second correction.
After application of the first correction (not shown), the entropy and the
conditional entropy are plotted as a function of the inverse word length. The
sampling disaster can also be observed. In this case, it appears for words of
length above L ∼= 10 for the entropy and L ∼= 12 for the conditional entropy.
The correction for this bias implies to extrapolate the linear part of the
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curve to words of infinite length, as it can also be seen in Figure 1.11C. The
bias also appears for the evaluation of the mutual information, as shown in
Figure 1.11D. The effect of the size of the discretized bin is also shown in
Figure 1.11D.

The direct method is, as shown above, relatively easy to implement and
efficient to evaluate the mutual information in experimental contexts. This
makes it a powerful tool to study what processes can affect the information
transmission. Section 1.2.3 focuses on one particular process that can modify
information transmission: neuromodulation by serotonin.

1.2.3 Serotonin modulation of synaptic depression
Neurotransmitters

There are several processes used by neurons to communicate (electrical
synaptic transmission, ephaptic interactions or hormonal signalling to name
a few), but the major mode of neuronal communication is through chemical
messengers also called neurotransmitters [94].

The general mechanisms involved in chemical synaptic transmission are
summarized in Figure 1.12. Neurotransmitters are synthesized in neurons.
In order to protect them from the enzymes responsible for their metabolic
inactivation, most of them are stored in vesicles in neurons, before they are
released by those same cells. Vesicular release is triggered by physiological
stimuli and involves the fusion of the vesicle with the cellular membrane.
Once released, neurotransmitters interact with receptors or other proteins on
the membrane of other cells, producing a functional change in the properties
of that cell. They can also interact with autoreceptors present on the emitting
cell as a feedback signal for the transmitter release or synthesis. To avoid
overstimulation, it is important that the effect of the neurotransmitters can
be stopped after an appropriate period of time. For this purpose, several
termination mechanisms exist. The first one is the reuptake by neurons or glial
cells with the help of transporter proteins. There also are enzymes in neurons
responsible for degrading neurotransmitters. Finally, some neurotransmitters
can diffuse away from the synaptic region.

The most understood and studied category of neurotransmitters so far
are the so-called classical neurotransmitters, which regroups acetylcholine,
biogenic amines (dopamine, norepinephrine, epinephrine and serotonin) and
amino acid transmitters (γ-aminobutyric acid (GABA); the major inhibitory
neurotransmitter, glutamate; the major excitatory neurotransmitter, and
aspartate). Most of them were already recognized as neurotransmitters in the
late 1950s. Classical neurotransmitters are synthesized in the nerve terminal,
stored in small vesicles (∼ 50 nm in diameter) and their reuptake is an
energy-dependent process that allows the transmitters to be reused [94].
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Figure 1.12: Schematic representation of the life-cycle of a neurotransmitter. The
neurotransmitter (Z) is metabolized from the accumulation of a precursor amino acid
(X) in the neuron (1 and 2). The vesicular transporter then accumulates the transmitter
into vesicles (3). After the release, the transmitter can either interact with postsynaptic
receptors (4) or autoreceptors (5). High-affinity membrane transporters (6) are
responsible for terminating the transmitter action. The action of the neurotransmitter
can also be terminated either by diffusion from the active sites (7) or with the help
of a membrane transporter that accumulates the transmitter into glia (8). In the
case where the transmitter re enters the neuron it originated from, it will undergo
metabolic inactivation (9). Adapted from reference [94].

Neuropeptides are considered to be non-classical transmitters. They are
synthesized in the cell-body of neurons (as opposed to the axon, where
classical transmitters are synthesized). Neuropeptides are stored in bigger
vesicles (∼ 100 nm in diameter) that take them to the axon, where they
are released. Peptides are usually released when neurons discharge at high
frequencies or when they exhibit burst-firing patterns. So far, no transporters
have been identified for being responsible for the reuptake of peptides, which
means that they are inactivated by enzymes and by diffusion [94].

Classical transmitters were the first to be discovered because they are
present in the brain in relatively high concentrations. Peptides transmitters
are present in lower concentrations than classical transmitters, which makes
them more difficult to study. More recently, some unconventional transmitters
have also been discovered, like endocannabinoids, which are not stored into
vesicles but synthesized and released from lipid precursors located in the cell
membrane [95], or gases like nitric oxyde, carbon monoxyde and hydrogen
sulfide [96]. Gases are not stored, their molecules diffuse freely across cellular
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and vesicular membranes, which makes them messengers independent of
the neuronal activity, unless they are modified or released by neuronal
metabolism. Other unconventional transmitters are growth factors and
neuroactive steroids [94].

There are dozens of different neurotransmitters that we currently know
of and one could ask why so many transmitters are needed by the brain.
There are several reasons for that. Firstly, a neuron can receive many inputs
simultaneously. If those inputs are encoded by different neurotransmitters,
they are easier to differentiate for the receiving neuron. Moreover, different
transmitters can signal different functional states to the target cell. This
is the reason why most neurons release more than one transmitter, and
why different transmitters are released by different processes. Different neu-
rotransmitters also have different temporal responses, which increases the
temporal repertoire of responses that can be elicited. Finally, neurotrans-
mitters are also used by brain cells for non-synaptic communication, for
example communication between neurons and glial cells [94].

Serotonin

5-hydroxytryptamine (5-HT), also called serotonin, is a biogenic amine
neurotransmitter and is depicted in Figure 1.13. The serotonin present in the
brain represents only about 1% of the total body stores of serotonin [94], as
it is used for several other function in the body, like gastrointestinal motility,
cardiovascular function, peripheral vascular tone, cerebral vascular tone and
platelet aggregation [97, 98]. Serotonin was actually first characterized by
Rapport and Page in 1948, as they were studying platelets, which are the
main storage of serotonin in the body [99]. It was then a few years later
that two different studies showed the presence of serotonin receptors in the
vertebrate brain [100, 101], which led in 1957 to the first paper proposing
serotonin to be a neurotransmitter [102].

Figure 1.13: Skeletal formula of 5-hydroxytryptamine (5-HT), also called serotonin.
Adapted from reference [97].

Serotonin is considered to be a classical neurotransmitter and its life
cycle thus follows what is depicted in Figure 1.12. In the CNS, serotonin is
synthesized and stored in axons and released into the synaptic cleft when
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neuronal depolarization occurs. The main inactivation process for serotonin is
reuptake into the neurons through the highly selective transporter SERT [97].

Serotonin is responsible for the modulation of many behavioural and
neuropsychological processes, such as mood, perception, nociception, reward,
anger, aggression, appetite, memory, sexuality and attention [98]. There
exists at least 15 receptors for serotonin, grouped into 7 families [103], and
all brain regions express multiple serotonin receptors [97]. Moreover, all the
behaviour cited above are regulated by multiple serotonin receptors.

Serotonin modulation in the lateral geniculate nucleus

Visual information is transmitted from the retina to the cortex by thalamic
relay neurons in the LGN, as can be seen in Figure 1.14 (see also Figure 1.6A
for the circuitry of thalamic relay neurons in the LGN). As was discussed
in Section 1.2.1, in the absence of neuromodulation, thalamic relay cells
seem to operate at an energetically efficient level with respect to information
transmission [68]. This means that those neurons maximize the ratio between
the information they convey and the energy they use doing so. Nonetheless,
neuromodulation also plays a big part in the functioning of those neurons.

Figure 1.14: Schematic representation of the visual pathway. The optic nerve
transmit visual information from retinal neurons to thalamic relay neurons in the
LGN. Relay neurons in the LGN then send their signals to neurons in the visual
cortex. Adapted from reference [104].

Postsynaptically, this visual information transiting at retinogeniculate
synapses (the synapses between retinal neurons ans LGN neurons) can be
modified by neurotransmitters released by intrinsic neurons or brainstem
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projections [105, 106] and affecting the membrane conductance of relay
neurons. This modification can either be a hyperpolarization of the cell and
a decrease of its activity, for example by activation of GABAB receptors on
the cell [107], or it can be a depolarization and an increase of activity, for
example from cholinergic, noradrenergic or serotonergic projections form the
brainstem [106, 108]. Presynaptic modulation can also occur at retinal axon
terminals, altering the strength and short-term plasticity of retonigeniculate
synapses [109, 110].

Projections from the dorsal raphe nucleus in the brainstem release sero-
tonin in the LGN [111–113]. Serotonin is implied in the modulation of
presynaptic and postsynaptic aspects of the retinogeniculate synapse [110,
114]. Postsynaptically, it results in depolarization of neurons and cancellation
of spontaneous firing. It is thus thought to contribute to the activation of
thamalocortical neurons when transitioning from slow-wave sleep to awake
states [115–117]. Presynaptically, it inhibits action potential-evoked calcium
influx into retinal axon terminals, which reduces neurotransmitters release
and short-term synaptic depression [110]. This inhibition has a greater ef-
fect for low frequency stimulation, which narrows the frequency range of
information transmitted [114].

When synapses are stimulated repeatedly in a short period of time, their
strength is reduced, i.e. the amplitude of each consecutive postsynaptic
current decreases [118]. This phenomenon is called synaptic depression.
Synaptic depression can have short-term and long-term effects [119], allowing
relative strengths of excitatory and inhibitory synapses to vary dynamically
as a function of the frequency and duration of presynaptic activity [120].

Figure 1.15 demonstrates how presynaptic application of serotonin on
LGN neurons affects synaptic depression. 5-carboxytryptamine (5-CT) is an
agonist for the serotonin receptor 5-HT1, which is the primary presynaptic
receptor for serotonergic modulation of the retinogeniculate synapses [114].
A bath of 5-CT thus acts as application of serotonin to that synapse. Fig-
ure 1.15A shows the comparison of synaptic depression on consecutive
excitatory postsynaptic currents (EPSCs) between control conditions and
the case with 5-CT (50 nM in the bath). The traces shown are superimposed
pairs of consecutive EPSCs separated by interspike intervals (ISIs) varying
between 10 and 200 ms. As it can be seen, 5-CT reduces the peak amplitude
of EPSCs. It also reduces synaptic depression, especially for short ISIs,
because amplitudes of consecutive EPSCs are more similar to each other
with 5-CT than in control condition. This can also be seen when looking at
the paired-pulse ratio. The paired-pulse ratio (ppr) is defined as the ratio
between the amplitude of the second EPSC (A2) and the amplitude of the
first one (A1), ppr = 100 · A2

A1 , and is shown in Figure 1.15B as a function
of the ISI. For example, for an ISI of 20 ms, the paired-pulse ratio for the
control case is around 20%, while it stands at around 83% for the 5-CT
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bath, showing again than amplitudes are more similar in the case with 5-CT
and thus that synaptic depression is lower. Moreover, it can also be seen
that 5-CT significantly changes the synaptic depression for pairs of stimuli
separated by up to 1 second, which means that serotonin can alter the
synaptic response over a wide range of presynaptic firing frequencies.

BA

Figure 1.15: Effect of the serotonin agonist 5-CT on the amplitude of consecutive
excitatory postsynaptic currents (EPSCs). A: Superimposed pairs of EPSCs separated
by varying inter spike intervals (ISIs) for control conditions (top) and in the presence
of 5-CT (bottom). B: Percentage paired-pulse ratio between the amplitude of the
second (A2) and the amplitude of the first (A1) EPSC as a function of the ISI
for control conditions (filled circles) and in the presence of 5-CT (open squares).
Both panels show that the serotonin agonist 5-CT reduces synaptic depression on
consecutive EPSCs. Adapted from reference [114].

When applied presynaptically, serotonin reduces the synaptic charge and
the synaptic depression. EPSCs elicited are thus smaller and more similar
in amplitude, which means that it will be more difficult to elicit an action
potential. In other words, serotonin can potentially change the energy needed
to convey information and the information conveyed itself. But what about
the energetic efficiency of that synapse? In order to study this effect, it is
necessary to be able to include synaptic depression in computational models.

Model for synaptic depression

A mathematical model for synaptic depression was developed by Tsodyks
and Markram in 1997 [121], based on measurements in rat layer 5 pyramidal
neurons. Their model assumes three possible states for synaptic resources
characterizing the synaptic connection (e.g. synaptic vesicles or receptors):
recovered, effective and inactive. Resources in the recovered state are available
to be activated by presynaptic action potentials. Once activated by an action
potential, they enter the effective state and then inactivate with a short time
constant (τinac ∼ few milliseconds). The inactivated resources then recover
their original state with a longer time constant (τrec ∼ seconds). This cycle
is depicted in Figure 1.16.
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Figure 1.16: Schematic representation of the states of synaptic resources in the
Tsodyks-Markram model. The resources cycle between three states: effective, inactive
and recovered. Resources in the recovered state can be activated by an action potential,
thus entering the effective state. Once in the effective state, they inactivate with a
short time constant (τinac ∼ ms). Inactivated resources recover with a longer time
constant (τrec ∼ s), going back to the recovered state.

From there, Tsodyks and Markram derived an iterative expression for
successive EPSCs produced by a train of presynaptic action potentials. The
current of the (n+ 1)th EPSC depends on the current of the nth EPSC as
follows [121]:

EPSCn+1 = EPSCn(1− USE)e−∆t/τrec +AseUSE(1− e−∆t/τrec), (1.11)

where ∆t is the time interval between the nth and the (n+ 1)th presynaptic
action potential and is assumed to be much larger than τinac, USE is the
fraction of synaptic resources in the recovered state that can be activated
when an action potential reaches the synapse (USE is determined by the
probability that an action potential evokes vesicular release; the larger USE is,
the faster synaptic resources are used, leading to more rapid depression), and
ASE is the maximum EPSC that can be evoked when all the resources are
used at once in the effective state. USE , τrec and ASE are kinetic parameters,
they determine the dynamic behaviour of the synaptic transmission and, in
particular, the rate of synaptic depression.

Figure 1.17 shows the results of the Tsodyks-Markram model on two dif-
ferent set of EPSCs: one set generated by regular spike trains (Figure 1.17A)
and the other set generated by irregular spike trains (Figure 1.17B). On
both panels, the bottom traces are the spike trains used as input (either
injected into the cell or injected in the model), the upper traces are the
experimentally measured EPSCs (averaged on 50 measures) and the middle
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traces are the EPSCs generated by the model. First of all, Figure 1.17 shows
that the model is efficient at reproducing the experimental traces. Secondly,
the EPSCs traces reproduced in this Figure exhibit a similar behaviour to
the EPSCs showed in Figure 1.15A, suggesting that this model is a good
choice for simulating neuromodulation by serotonin.

A B

Figure 1.17: Accuracy of the Tsodyks-Markram model. The bottom traces are the
spike trains used as inputs (regular spike train in A and irregular spike train in B), the
upper traces are the EPSCs measured experimentally (averaged on 50 measurements)
and the middle traces are the EPSCs generate with the model. There is only few
differences between the measured and modelled EPSCs (upper and middle traces),
showing the accuracy of the Tsodyks-Markram model. Adapted from reference [121].

1.3 Main research questions and hypotheses
As we have seen throughout this introduction, energetic efficiency of infor-
mation transfer is a key feature of, at least, some synapses in the brain. In
the LGN particularly, synapses do not maximize information transmission
but the ratio between information transmitted and concomitant energy
consumption.

The brain consumes a big fraction of the total amount of energy available
in the body and this has shaped the way the brain operates. Energetic
budgets of the brain have helped better understand how and by which
processes energy is used. In particular, signalling processes have been shown
to be the major consumers of energy in the brain. Transmitting all the
information received would cost too much energy for the neurons and this
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is why the vesicle release probability is rarely equal to 1. In particular, for
neurons in the LGN, with large synapses releasing many vesicles, release
probability is probably set, at least partially, by this energetic efficiency, or
economic, principle.

Of course, to better understand energetic efficiency, it is important
to be able to characterize the information that flows through synapses.
Information theory, even though it was developed for communication sciences,
offers a wide sets of mathematical approaches applicable in Neuroscience to
evaluate information-related quantities. Two example of such metrics are
mutual information and transfer entropy. Application of those metrics on
experimental data can be tricky, as they rely on a number of assumptions
and estimations.

Finally, energetic efficiency is not necessarily a permanent fixture of
synapses. For example, neuromodulators can change synaptic strength, thus
possibly affecting energy consumption and information transmission, which
could also change energetic efficiency. In particular, serotonin changes the
level of synaptic depression occurring in the LGN, which will have a direct
effect on the generation of action potentials, and thus on the transmission of
information and the energetic cost of this transmission.

This thesis aims to better understand and characterize energetic efficiency
of information transfer in the visual pathway. We created models based on
experimental data simulating neuronal inputs and outputs with the goal
to evaluate information transfer and energy usage, as well as to simulate
neuromodulation. Specifically, the papers presented in Chapter 2 address
the following points:

1) Information measurements:
The evaluation of energetic efficiency necessitates the correct evaluation
of information transfer. From a more general point of view, accurately
measuring information-related quantities is an essential task in Neuroscience.
In this thesis, we compared the relative performances of two information
theoretic metrics: the mutual information and the transfer entropy. This
comparison was done according to the size of the dataset (a critical point
when designing experiments) and the complexity of the data. Models with
different levels of biological likelihood were designed, mimicking thalamic
relay cells and layer 4 spiny stellate cells (Paper 2).

2) Energetic efficiency at LGN synapses
We aimed to reproduce experimental findings about energetic efficiency in
the visual pathway (Paper 1). We used the model as well as the metrics
studied in 1) with the goal to reproduce the finding that thalamic relay
cells maximize the ratio between information conveyed and energy used for
experimentally-observed physiological conductances (Paper 2).
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3) Neuromodulation by serotonin:
As neuromodulation changes the strength of synapses, it could as well
alter its energetic efficiency. In this work, we concentrated on the effect of
serotonin at LGN synapses. More concretely, we developed a model of paired-
pulse depression and neuromodulation of serotonin based on the formalism
introduced by Tsodyks and Markram and detailed in this introduction,
with the goal to asses if this type of neuromodulation affects information
processing and energetic efficiency, again using the information theory metrics
highlighted in 1) (Paper 3).





CHAPTER 2

Publications

This chapter presents the three publications that resulted from the research
performed for this thesis. Each paper is preceded by a short introductory sec-
tion summarizing the methods and results and highlighting my contributions.
The papers are listed in the order the studies were performed.

2.1 Paper 1
M Conrad, E. Engl, and R. B. Jolivet, "Energy use constrains brain
information processing", 2017 IEEE International Electron Devices Meeting
(IEDM) (Jan. 2018), pp.11.3.1-11.3.3. (7 citations on Google Scholar)

Summary
This paper is a review discussing evidence that energetic constraints influence
neural cells and network properties, as well as the information processing
capacity of neurons. The paper first focuses on energy expenditure by brains
and neural cells. The paper also explains what processes are responsible for
information transmission among neural networks, and how this information
can be evaluated. The role of glial cells in information processing and energy
consumption is also discussed.

The main point discussed in this paper is the fact that the majority of
the brain’s energy is used at synapses, even though synaptic information
transmission is generally unreliable (as discussed in Section 1.2.1 of Chap-
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ter 1). We show previous experimental and computational findings, and
also original results, suggesting that neurons maximize the ratio between
information transmission and concomitant energy consumption.

Contribution
I contributed to the writing of this manuscript.
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Abstract—The brain is an energetically expensive organ to 
build and operate, and a large body of literature links the 
evolutionary development of many of the human brain’s 
components to the need to save energy. We, and others, have 
shown experimentally and through computational modelling 
that synapses in the brain do not maximise information 
transfer, but instead transfer information in an energetically 
efficient manner. Strikingly, this optimum implies a high 
failure rate in the transmission of individual information-
carrying signals (action potentials or spikes). This design 
principle may be important when considering trade-offs 
between energy use and information transfer in man-made 
devices.  

I. INTRODUCTION 

The human brain is likely the most advanced biological 
computational device that evolved on Earth. While it lacks in 
raw power for arithmetic operations, it excels at processing 
analogue information from the natural world (sounds, images, 
chemical senses, pressure, temperature, etc.), seamlessly 
blending these stimuli into cohesive impressions, learning 
from them - sometimes with a single sample presentation -, 
storing those memories for decades, and inferring new 
knowledge from those memories. 

Amazingly, the human brain performs these tasks with a 
power consumption that rarely deviates from approximately 
20W in adults [1], while a desktop computer may use ~200W 
or more. While this may seem extraordinarily low, the brain 
nevertheless accounts for a disproportionate 20% of the 
overall body’s energy budget. Therefore, while those 20W 
seem small for the performance achieved, they represent a 
significant burden on the body. Evidence from anthropology 
and neuroscience suggests that energy constraints might have 
played an important role in how we, and our brains, have 
evolved [2], and energy constraints have shaped the evolution 
of brains across species [3]. 

Here, we introduce recent evidence that energetic 
constraints determine key properties of neural networks at the 
individual cell level and restrict individual neurons’ capacity 
for information processing. We highlight the notion that brains 
operate a trade-off between their raw information processing 
capacity and the concomitant energy consumption at the level 
of individual processing units. 

II. BASIC UNITS OF BRAIN CIRCUITS 

A. Energy consumption in brain circuits 
Our brains consist of electrically active cells called 

neurons. To an extent, neurons can be approximated by a 
resistor-capacitor circuit with multiple variable resistors 
arranged in parallel. The currents that flow through those 
resistors (or ion channels) are carried out by ions and driven 
by electrochemical gradients that arise across the membrane of 
the cell. In order to maintain those gradients, or to restore 
them after ion movements, cells need to actively pump ions 
across their membranes. This is where a cell spends most its 
energy currency in the form of adenosine triphosphate, which 
powers the cycles of these pumps. 

B. Computation and information in brain circuits 
Currents flowing though the membrane of neurons can 

give rise to a sharp (~100mV over ~2ms) depolarisation of the 
membrane called action potential or spike. Spikes quickly 
propagate along neuronal structures and form the basis of the 
binary-like long-range communication system among neural 
networks. Upon reaching the terminal structure of a neuron, 
spikes trigger the release of chemicals (neurotransmitters) at 
dedicated structures called synapses that physically connect 
neurons. Upon binding to the appropriate receptors, 
neurotransmitters give rise to trans-membrane currents in 
downstream neurons, which can in turn lead to the generation 
of spikes in those neurons. 

Integration of inputs from numerous upstream neurons and 
generation of output spikes form the basis of neuronal cellular 
computation and information processing. The amplitude of 
total currents generated at a synapse, the synaptic strength, can 
be altered, modulating the relative importance of that 
synapse’s contribution to the output. This synaptic plasticity is 
commonly accepted to be the mechanism through which 
memories are encoded. 

Because the shape of spikes is stereotypical, only the 
timing of action potentials within sequences carries 
information. Thus, sequences of input and output spikes can 
easily be binarized and lend themselves to analysis using 
Shannon’s information theory. 

C. Energy as a gateway to a holistic understanding of brain 
function 
As indicated above, the brain contains neurons, but these 

represent only ~20% of all cells in the human cortex. The 
other cells, collectively called glial cells (excluding the 
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vasculature and a few other cell types), are not electrically 
active in the same way neurons are, and for historical reasons, 
have been studied comparatively less. However, this is not to 
say that they are not active in other ways. Quite the contrary: 
recent evidence suggests that some of these cells play a role in 
information processing by intervening in the formation of 
synapses and in the modulation of synaptic strength. 
Additionally, these cells play a key role in linking energy 
consumption by neurons to energy supply from the blood 
flow. Thus, understanding energy constraints in brain circuits 
is a natural gate to a holistic understanding of brain function 
beyond mere neural networks [4]. 

III. ENERGETIC OPTIMALITY IN BRAIN CIRCUITS 

Applying detailed accounting to various energy-
demanding biochemical processes, it is possible to calculate 
an energy budget for the brain. Doing so reveals that most 
energy in the brain is spent at synapses [1, 5]. This however 
poses a conundrum, as experimental evidence suggests that 
synaptic transmission is typically rather unreliable from an 
information transmission perspective. Why would such a 
costly feature be so unreliable? 

For instance, chemical neurotransmission at synapses is a 
stochastic process: a spike generated and propagated in an 
upstream neuron gets transmitted to downstream neurons with 
a surprisingly low probability of as low as ~0.2 [6, 7]. 

Similarly, in the visual pathway, visual information is 
relayed to the cortex by a (essentially) one-to-one relay station 
connection between the retina and the visual cortex. While 
complete failures of signal transmission are rare in that 
system, the amplitude of the signal generated at that synapse is 
just not quite sufficient to trigger an action potential in the 
neuron relaying the signal to the visual cortex, rendering the 
transmission stochastic. 

In both cases, some of us with others [8, 9] have 
investigated experimentally and in computational models how 
information transmission and concomitant energy 
consumption relate to each other when manipulating the 
overall reliability of information transfer. 

In both cases, energy consumption can be modelled or 
experimentally measured to depend roughly linearly on the 
reliability of information transmission [8, 9]. Information 
transmission is monotonically dependent on the transmission 
reliability of the system and rests between 0% for a trivial 
system that never transmits and 100% of the input information 
for a perfect transmitter. Because of the presence of noise 
and/or of activation thresholds in neurons, the relation 
between information transmission and reliability is in fact best 
represented by a sigmoid. The consequence of these 
observations is that the relation between information 
transmission per concomitant energy consumption and 
transmission probability is a monophasic curve with a single 
optimum. Therefore there exists a single energetic optimum 
for information transmission in neural systems. 

For synapses with a realistic structure, Harris et al. have 
shown in computational models that this optimum sits at low 
probabilities for information transmission, consistent with 
experimental observations [6, 8] (Fig. 1). A simple model of 
energetic optimality of information transmission additionally 
explains the experimentally observed relation between the 
reliability of synapses and their structure [7] (Fig. 2). 

In the visual pathway, Harris et al. have shown that for 
almost all connections they recorded from, synapses do not 
maximise information transfer [9]. Indeed, it is possible to 
increase or decrease information transfer by manipulating 
those synapses experimentally (Fig. 3). However, when taking 
the concomitant energy consumption into account, Harris et 
al. have shown that almost every synapse in the pathway 
studied sits at the optimum for energetic optimality of 
information transmission (Fig. 4). 

Therefore, in both cases, one can conclude that neural 
networks are not designed for optimal performance in terms of 
pure information transmission, but instead are forced into a 
trade-off between information processing power and energy 
consumption. We now have preliminary evidence that this 
trade-off might be widespread in the cortex, and are 
investigating how it emerges in brain circuits. We would like 
to argue that understanding this trade-off would be an 
important source of inspiration for the design of algorithmic- 
and power-efficient neuromorphic devices. 
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Fig. 1. Theoretical calculations show that a low 
presynaptic release probability maximizes the energy 
efficiency of information transfer between neurons 
connected by N > 1 release sites (adapted from [8]). 

 
 

Fig. 2. Experimentally measured release probability is 
inversely related to the number of release sites (black 
symbols; adapted from [7]). Theoretical prediction of 
the energetically optimal release probability (red line; 
maxima from Fig. 1) provides an elegant explanation 

for this finding. 

 

 
 

Fig. 3. Experimentally modulating the gain of relay 
synapses in the visual pathway in adult rat brain slices 
shows that those synapses are not tuned to maximize 
information transfer (black symbols; the arrow points 

to the original physiological gain of the synapse 
(normalized synaptic gain = 1)). 

 
 

Fig. 4. Taking into account the energy consumption 
incurred by neurons in the visual pathway at different 
synaptic gains shows that those synapses maximize 

instead the energetic efficiency of information transfer 
(arrow as in Fig. 3; adapted from [9]). 
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2.2 Paper 2
M Conrad, and R. B. Jolivet, "Comparative performance of mutual
information and transfer entropy for analysing the balance of information
flow and energy consumption at synapses", in revision

Summary
In this paper, we compare the performance and trade-offs of mutual informa-
tion and transfer entropy when used to measure the information transmitted
between binarized input and output spike trains in the visual pathway. To do
that, the two metrics are tested on spike trains generated to correspond to
typical inputs and outputs of thalamic relay cells and layer 4 spiny stellate
cells, with three different levels of complexity and biological likeness. The
first level of complexity are inputs with a Poisson distribution and outputs
generated as simple copies of the inputs, with some deletions and additions to
model, respectively, failure of synaptic transmission and spontaneous firing.
The next step is to simulate more realistic inputs, based on the temporal
distribution of interspike intervals in in vivo recorded spike trains and with
outputs generated as in the first step. The last complexity level are outputs
simulated using an experimentally calibrated Hodgkin-Huxley-type model.
The mutual information is evaluated using the direct method developed by
Strong [91]. A method similar to the direct method is developed to evaluate
transfer entropy and uses the package developed by Ito et al. [122].

The paper shows that in the two simpler cases, transfer entropy performs
better at evaluating the information transmitted between the input and the
output spike trains than mutual information, especially for small datasets.
In the case with the Hodgkin-Huxley type model, even though the curves
have similar behaviour as for the simpler cases, mutual information and
transfer entropy do not converge to the same value. We show that this is the
result of systematic transmission delays between inputs and outputs (time
shifts), an issue to which mutual information is immune. Transfer entropy
is thus less biased when used on small datasets, but it is more sensitive to
temporal structures.

The paper also focuses on reproducing experimental findings of energetic
efficiency of information transfer in thalamic relay cells. We compute the
information (using mutual information and transfer entropy) as a function of
the postsynaptic gain of the cell. We also evaluate the energy used to convey
the information (also as a function of the gain of the cell) by calculating
the ATP cost of synaptic transmission. This allows us to calculate the ratio
between information transmitted form the input to the output spike trains
and concomitant energy consumption, and to show that there is indeed a
maximum in this function for the physiological gain of the cell, as showed
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I wrote most of the code necessary as well as runned all the simulations. I
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Abstract (187 words) 

 

Information theory has become an essential tool of modern neuroscience.  It can however be 

difficult to apply in experimental contexts when acquisition of very large datasets is prohibitive.  

Here, we compare the relative performance of two information theoretic measures, mutual 

information and transfer entropy, for the analysis of information flow and energetic consumption 

at synapses.  We show that transfer entropy outperforms mutual information in terms of reliability 

of estimates for small datasets.  However, we also show that a detailed understanding of the 

underlying neuronal biophysics is essential for properly interpreting the results obtained with 

transfer entropy.  We conclude that when time and experimental conditions permit, mutual 

information might provide an easier to interpret alternative.  Finally, we apply both measures to 

the study of energetic optimality of information flow at thalamic relay synapses in the visual 

pathway.  We show that both measures recapitulate the experimental finding that these synapses 

are tuned to optimally balance information flowing through them with the energetic consumption 

associated with that synaptic and neuronal activity.  Our results highlight the importance of 

conducting systematic computational studies prior to applying information theoretic tools to 

experimental data.  
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Author summary (265 words) 

 

Information theory has become an essential tool of modern neuroscience.  It is being routinely 

used to evaluate how much information flows from external stimuli to various brain regions or 

individual neurons.  It is also used to evaluate how information flows between brain regions, 

between neurons, across synapses, or in neural networks.  Information theory offers multiple 

measures to do that.  Two of the most popular are mutual information and transfer entropy.  While 

these measures are related to each other, they differ in one important aspect:  transfer entropy 

reports a directional flow of information, as mutual information does not.  Here, we proceed to a 

systematic evaluation of their respective performances and trade-offs from the perspective of an 

experimentalist looking to apply these measures to binarized spike trains.  We show that transfer 

entropy might be a better choice than mutual information when time for experimental data 

collection is limited, as it appears less affected by systematic biases induced by a relative lack of 

data.  Transmission delays and integration properties of the output neuron can however complicate 

this picture, and we provide an example of the effect this has on both measures.  We conclude that 

when time and experimental conditions permit, mutual information – especially when estimated 

using a method referred to as the ‘direct’ method – might provide an easier to interpret alternative.  

Finally, we apply both measures in the biophysical context of evaluating the energetic optimality 

of information flow at thalamic relay synapses in the visual pathway.  We show that both measures 

capture the original experimental finding that those synapses are tuned to optimally balance 

information flowing through them with the concomitant energetic consumption associated with 

that synaptic and neuronal activity.  
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Introduction (828 words) 

 

The brain is commonly thought of as an information transmission, processing and storage 

biological machine, calling for comparisons to man-made devices with similar functions such as 

computers (see [1] for a discussion of these issues).  As a consequence, tools and methods 

pertaining to such devices have been ported to the neurosciences for the study of neural networks.  

One such tool is information theory, designed in the late 1940s by Claude Shannon to formalize 

and find limits on signal processing and communication operations in machines [2]. 

Information theory has a long and successful history in neuroscience, where it has been 

applied to a variety of experimental data and theoretical contexts, and to address a variety of 

questions.  One area of particular interest is the application of information theoretic concepts to 

spike trains, as they easily lend themselves to a reduction to binary sequences, whereupon action 

potentials are converted to 1s and the rest of electrophysiological traces to 0s.  This reduction of 

spike trains to binary sequences has been used to measure information flow through synapses and 

neural networks, and propagation of information from the environment to the cortex through 

sensory pathways for instance [3-10].  The information theoretic quantity most often encountered 

in such contexts is the mutual information (I) [4].  The mutual information of two random variables 

– for instance two spike trains, or a sensory signal and a response spike train – is a measure of the 

mutual dependence between those two variables.  By construction, I is symmetrical and quantifies 

how much information can be obtained about one random variable by observing the other one. 

In 1998, Strong and colleagues published a procedure to measure I between a sensory input 

signal and the corresponding response of a neuron [11].  Through clever design, their so-called 

‘direct method’, allows calculating I by measuring only the activity of the neuron of interest in 
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response to a specifically designed input sequence containing repeating portions.  This method has 

been successfully applied in a number of contexts, for instance to quantify information flow from 

the retina to the primary visual cortex in primates [3], or to quantify the relation between 

information flow and energy consumption at synapses in the visual pathway [8].  One limitation 

of using I is the need to collect relatively large amounts of data to avoid systematic evaluation 

biases, and a number of methods have been devised to compensate those biases when data is 

limited or difficult to acquire [6].  This, however, can be tricky in an experimental context, as the 

time available for collecting data can be limited for a large number of various reasons. 

Mutual information does not however strictly quantify directional information flow as it is 

symmetrical by design.  To address this limitation, Schreiber has proposed a modified version of 

mutual information called transfer entropy (TE), which is explicitly built to measure how much 

information flows from one random variable to another one, and which is thus not symmetrical 

[12].  While TE is used widely outside of neuroscience and in systems neuroscience, it is not used 

very often as a replacement of I for analyzing spike trains specifically. 

We have recently published a series of experimental and computational works on the trade-

off between information flow and concomitant energy consumption in neurons and neural 

networks, in which we used either I [7-9] or TE [10].  This work is part of an emergent interest for 

energetic questions in neural information processing [13-16].  Here, we proceed to a systematic 

comparison of both those quantities in different biologically-relevant scenarios when comparing 

inputs to a synapse and the output spike train generated by the postsynaptic neuron in response, 

using spike train data generated from Poisson processes, or an experimentally-calibrated 

biophysical model of thalamic relay cells of the Hodgkin-Huxley-type [8].  We decided to focus 

on those two measures, and specifically on the so-called direct method to compute I, because of 
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their relative user-friendliness, which should make them popular methods among experimentalists.  

We report that while TE and I both allow accurate and consistent predictions of theoretical 

expectations in simple scenarios, TE is far less biased than I when little data is available and might 

thus offer more accurate measurements in experimental conditions where acquisition of large 

datasets is impossible or prohibitively costly.  When used to analyze more realistic synthetic data 

(generated by a biophysical model of the Hodgkin-Huxley-type) however, the measure of TE can 

be strongly affected by systematic time frame shifts between inputs and outputs, a problem I is 

immune to by construction when using the direct method.  Finally, we show how both measures 

perform when applied to assessing the energetic optimality of information transfer at 

biophysically-realistic synapses, and compare those results to results from the literature. 

Our results illustrate the importance of systematically testing information theoretic 

measures on synthetic test data prior to designing experiments in order to fully understand how 

much data needs to be collected, and understand the trade-offs involved in using different 

measures.  Our results also provide some guidance on what measure (I or TE) will perform best 

under different circumstances.  
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Results (3279 words) 

 

In order to compare the relative performances of mutual information (I) and transfer entropy (TE) 

on measuring information flow at synapses, i.e. when comparing the input to a synapse to the 

output generated by the postsynaptic neuron, we started by generating synthetic binary input and 

output spike trains.  To mimic the transmission of action potentials at thalamic relay cells, which 

we have studied and modelled before [8], we generated as input random binary Poisson spike trains 

at a fixed frequency matching what we had observed experimentally.  That input sequence was 

then copied to form the output sequence with deletions occurring with a certain probability (non-

transmitted spikes), and with additions (to mimic spontaneous firing of the output neuron).  

Numerical values derived from previous experiments for these simulations are given in Table 1 

below.  We have also previously studied transmission of information at the cortical synapse 

between thalamic relay cells and layer 4 spiny stellate cells [10].  We thus generated a second 

additional set of simulations using parameters matching the experimental observations for that 

second scenario.  Numerical values for those simulations are also given in Table 1.  Note that in 

both of these scenarios, information flows unidirectionally in a feed-forward manner (see [8] and 

[10] for further details). 

To compute the mutual information I between those input and output sequences, we used 

the so-called direct method.  The direct method requires repeating sequences (see Methods), while 

this isn’t necessary for computing the transfer entropy (TE).  We thus generated in each case two 

datasets, one with repetitions to use with the direct method to compute I (Figure 1A), and one 

without repetitions to compute TE (Figure 1B).  In each case, the two datasets had the same 

duration, with the duration of the repeating sequence multiplied by the number of repetitions used
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Table 1.  Parameters for generation of inputs and outputs of random spike trains. 

Scenario Input frequency (Hz) Transmission failure 

probability (per input 

spike) 

Spontaneous firing 

probability (per output 

time bin) 

Thalamic relay synapse 20 ¶ 0.8 ¶ 0.00084 ¶ 

Cortical layer 4 spiny 

stellate cell synapse 

4 § 0.9 § 0.0024 § 

¶ From ref. [8]. 

§ From ref. [10]. 

 

to compute I equating the total duration of the dataset generated to compute TE.  Unless mentioned 

otherwise, the time bin is always 3 ms in duration, approximately the temporal extension of an 

individual action potential. 

The mutual information (I) can be defined as the difference between the two entropies Htotal 

and Hnoise (I = Htotal - Hnoise; see Methods), and these entropies are typically calculated for ‘words’ 

of a certain length.  For instance, the binary sequence 000110100100100101 can be segmented in 

words of length 1 yielding the words 0|0|0|1|1|..., or segmented in words of any other length.  For 

words of length 3 for instance, it would yield 000|110|100|100|100|...  In neuroscience, using long 

words is important to accurately capture and account for the information carried by stereotypical 

temporal patterns of spikes, if any [3, 11].  However, using longer and longer words can lead to 

significant biases in estimating Htotal and Hnoise, and eventually I, when using a finite dataset to 

build estimates, which they are always.  This can be a serious limitation when trying to use I in an 
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experimental context where only limited data is available.  To compensate for this, the so-called 

direct method includes two corrections when calculating I.  The first correction factor is meant to 

extrapolate the true value of each individually computed entropies Htotal and Hnoise entering in the 

calculation of I to a dataset of infinite size, while the second correction is meant to extrapolate 

entropy estimates for both Htotal and Hnoise to infinitely long words.  We have previously reported 

that these corrections did not lead to large changes in evaluating I when using limited experimental 

datasets with statistics similar to the datasets we generated here [8].  Additionally, we have had 

difficulties in reliably using the first above-mentioned correction (in [8] and here).  As a 

consequence, here, we only implemented the second above-mentioned correction when using the 

direct method to compute I.  Figure 2 shows how this correction was implemented.  For I, Htotal 

and Hnoise were plotted as a function of the inverse of the word length and fitted with a linear 

function.  We then extrapolated the fits to 0 (i.e. to words of infinite length) and took the difference 

of those values to calculate the mutual information (I).  For transfer entropy, similar curves were 

computed, one for ‘raw transfer entropy’ and one for ‘noise transfer entropy’ (see Materials & 

Methods) [10, 17].  TE was then computed as the difference between those two curves, like for I.  

TE was then fitted with a linear relationship and extrapolated to infinite word lengths. 

In that relatively simple scenario of action potentials being transmitted at a single relay 

synapse with set probabilities, TE = I, and it is possible to calculate that value exactly (see 

Methods).  Figure 3 shows a comparison between that theoretical value, and I and TE calculated 

as described above for parameters corresponding to action potential transmission at thalamic relay 

cells (A) [8] or layer 4 spiny stellate cells (B) [10] (see Table 1 for details) for datasets of increasing 

sizes, plotted as the equivalent number of repetitions as used to calculate I using the direct method.  

The calculated theoretical value for the thalamic relay cell scenario (Figure 3A, first line in Table 
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1 [8]) was 15.47 bits/sec.  The calculated theoretical value for the layer 4 spiny stellate cell scenario 

(Figure 3B, second line in Table 1 [10]) was 1.54 bits/sec.  Both these values closely match the 

experimental and theoretical results we had previously published.  While it is apparent that both 

TE and I eventually converge to the expected theoretical value given a dataset of sufficient size, 

TE appears to perform vastly better for small datasets, converging faster (i.e. for smaller datasets) 

than I to the correct theoretical value.  Furthermore, like I, TE overestimates the expected value of 

transmitted information, but as illustrated in the insets in Figure 3A and B, does so to a much lesser 

extent than I, even for very short datasets. 

 Spike trains in situ, however, rarely display Poisson statistics.  In the visual pathway for 

instance, spike trains impinging from the retina onto thalamic relay cells are characterized by non-

Poissonian statistics with a high probability of spike doublets with short (~10 ms) interspike 

intervals.  In order to test if the results of Figure 3 depend on the temporal structure of the input 

spike train, we generated a second set of simulations as above, but replacing the Poisson input 

spike trains with spike trains generated using statistics matching in situ recordings.  To do so, we 

computed the interspike interval distribution of input spike trains from experimental data collected 

in [8] and [10] (Figure 4A and B insets).  We then used these to calculate the cumulative 

distribution function (CDF) of interspike intervals (Figure 4 insets).  Finally, we used the 

cumulative distribution function to generate spike trains as a series of interspike intervals with a 

temporal structure matching what had been observed in experiments.  Under these new 

circumstances, there is a priori no expectation that TE should be equal to I, and it is not possible 

to calculate the expected theoretical values simply.  Figure 4 shows, however, that this does not 

significantly change the behavior of TE and I with respect to the size of the dataset used to compute 

them, with both TE and I converging to values very similar to the values in Figure 3 given a large 
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enough dataset.  Like in Figure 3, TE appears to significantly outperform I for short datasets.  This 

prompts the question of why TE appears to systematically outperform I in the two relatively simple 

scenarios we tested here (Figures 3 and 4).  In the Discussion below, we attempt to provide an 

answer to this question based on the structure of both measures. 

 We then wanted to test these comparisons using a more realistic model to generate output 

spike trains, focusing on the first scenario tested above: information transmission at thalamic relay 

synapses.  To do so, we used an experimentally-calibrated biophysical single-compartment 

Hodgkin-Huxley-type model of thalamic relay cells (see [8] for details about the calibration of that 

model and Methods here for a detailed description of the model).  To generate input for that model, 

we used the same procedure as described above for Figure 4, generating input spike trains with a 

temporal structure matching what is observed in in vivo experiments.  We then convolved these 

spikes trains with unitary synaptic conductance extracted from experimental data in [8] (see 

Methods).  Figure 5A shows a sample input spike train generated in this way, the corresponding 

synaptic conductance injected into the Hodgkin-Huxley-type model, the output spike train 

generated by that model in response to that synaptic input, and finally, the binarized output 

corresponding to that output spike train.  We then applied TE and I on these binarized input and 

output spike trains in the same way as above.  Figure 5C shows a plot comparing TE and I for 

datasets of increasing sizes (similar to what we plotted above in Figures 3A and 4A).  It is 

immediately apparent that while the qualitative behavior of I and TE is not strikingly different than 

what we observed for spike trains generated using simple spiking and transmission probabilities 

as above, they do not appear to converge to similar values like they did previously (Figures 3A 

and 4A).  TE, in particular, appears to converge to a value far lower than what we had previously 
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observed (compare for instance Figure 5A to Figure 4A; the values reached by I in these two panels 

are more comparable). 

The MATLAB package we used (see Materials & Methods) offers the possibility to 

compute TE with various time frame shifts between the input and output sequences [17].  This is 

equivalent to simply shifting the frame of reference of the output binary sequence by a set number 

of bins.  Output spikes could be significantly delayed with respect to input spikes for instance in 

the case of long conduction delays.  Here, however, delays are more likely to be due to the specific 

integration properties of the postsynaptic neuron.  Figure 5B shows the evolution of TE when 

plotted versus this shift.  It shows that TE does not peak at shift 0, but rather raises from about 

2bits/s for no frame shift, to about 4.5bits/s at a frame shift of about 15 ms (5 time bins), before 

decaying again.  Note that this is different from what we have observed in a previous study at the 

cortical synapse between thalamic relay cells and layer 4 spiny stellate cells, where we observed 

instead that TE between the input and output sequences was maximal for no frame shift, and simply 

decaying for positive shifts [10] (Figure S2 therein).  While we have no a priori explanation for 

this finding, this is obviously due to a relatively systematic frame shift between the timing of 

incoming action potentials and the timing of outgoing action potentials.  The rise times of the 

synaptic conductances and of the membrane potential, i.e. the membrane time constant, might play 

a role in this observation.  By comparison, in the above-mentioned study ([10]), neurons were 

simulated, or experimentally-recorded, in high-conductance states, which would have shortened 

their membrane time constant [18].  Here, conductances are only briefly opened after an incoming 

input action potential.  However, this is unlikely to be the full explanation and we hypothesize that 

this systematic frame shift might also be partially related to the fact that a single action potential 

will often fail to elicit an output action potential (failed transmission).  Instead, it has been known 
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for a while that two incoming action potentials in short succession are usually necessary to trigger 

an output action potential at those synapses [19], and the input binary sequence we generated based 

on in vivo recordings have non-Poissonian statistics with a preferred interspike interval of ~10 ms 

[8] (Figure 4A inset).  This effect is apparent in Figure 5A, when two consecutive incoming action 

potentials separated by 18 ms fail to elicit an output action potential (marked by stars). Immediately 

after that, two consecutive incoming action potentials separated by 9 ms trigger an output action 

potential after the second of those has reached the synapse (marked by squares). 

In Figure 5C, we plotted the two most obvious measures that can be derived from the curve 

in Figure 5B, the peak value of TE and the integral value of TE (calculated over frame shifts from 

0 ms to 90 ms) [17].  Both display the same rapid convergence to a stable value, with respect to 

the size of the dataset, than TE in Figures 3 and 4, but they both converge to quite different values 

(4.4 bits/s and 41.4 bits/s respectively), both different than the value I converges to (23.1 bits/s). 

In order to test the hypothesis that the strong discrepancy we observed here between 

matching I and TE predictions in the simple scenarios graphed in Figures 3 and 4, where action 

potentials are transmitted from the input to the output sequence in the same corresponding time 

bin with no temporal frame shift (unless transmission fails), and mismatching I and TE predictions 

when using a Hodgkin-Huxley-type model with non-trivial transmission properties (Figure 5A-C), 

we reproduced the simulations of Figure 3A using simple transmission probabilities and 

Poissonian inputs.  However, this time, we implemented a random shift between every input and 

output action potentials.  This random (positive only) shift followed a Gaussian distribution with 

mean = 16 ms and standard deviation = 3.7 ms (see Materials & Methods).  In the case of I, that 

random shift was systematically reproduced for each pair of inputs and outputs action potentials 

in each repetition.  The inset in Figure 5B shows how the random shift broadens the distribution 
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of TE versus the frame shift.  Figure 5D shows that this was sufficient to reproduce the 

discrepancies described above (compare Figures 3A, 5C and 5D), suggesting that this is indeed 

the reason behind this observation.  Interestingly, by construction, when using the direct method, 

I is immune to that issue (again, compare Figures 3A, 5C and 5D). 

Thus, while TE offers great stability in its predictions even for relatively small datasets, 

which will be of interest to experimentalists who might not be able to collect very large datasets 

due to various technical constraints, the values obtained through that method might not be directly 

comparable to the mutual information in non-trivial scenarios, in which any kind of systematic 

frame shift can be expected. 

Finally, we wanted to compare the application of these two information theoretic measures 

to a biophysically relevant scenario.  We have recently demonstrated in computational models and 

experiments that a number of synaptic features can be explained as a trade-off between information 

flow and energy consumption: the low release probability of weak central synapses [7, 9], the 

postsynaptic conductance at strong thalamic relay synapses [8], and the postsynaptic conductance 

at weak cortical synapses [10].  All these studies demonstrate that synapses and neurons, appear 

to be designed to maximize information flow per energy units (bits/ATP) rather than per time units 

(bits/sec).  More recently, similar results have also been obtained at hippocampal synapses [13].  

These results suggest this as a widespread principle in the brain.  The existence of an information 

flow over energy optimum is not surprising.  It stems from the basic principle that energy 

consumption scales roughly linearly with the biophysical parameters we studied (release 

probability or postsynaptic conductance), while information flow scales sigmoidally with those 

parameters, because of the necessity to overcome noise [7, 9], or energetic barriers (the threshold 

for action potential generation) [8, 10].  Thus, information flow over energy, dividing a sigmoid 
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by a linear function, leads to a single well-defined optimum.  In particular, we have demonstrated 

that very mechanism for the postsynaptic conductance at strong thalamic relay synapses, using the 

same experimentally-calibrated biophysical Hodgkin-Huxley-type model we have used here [8].  

Note however that in that original study, we injected in the Hodgkin-Huxley-type model 

experimentally recorded conductances with a rather limited number of repetitions (N = 5), to 

estimate I with the direct method.  Here, using the approach highlighted above to generate in vivo-

like input spike trains and synaptic conductances (see Figure 5A), we can stimulate that model 

with any number of repetitions of any length. 

We thus proceeded to reproduce here the finding that thalamic relay synapses maximize 

information flow per energy units (bits/ATP) at experimentally-observed physiological 

conductances, quantifying information flow using both the mutual information and transfer 

entropy as above.  Specifically, we injected in vivo-like conductances generated as in Figure 5A 

in our experimentally-calibrated biophysical Hodgkin-Huxley-type model of thalamic relay cells.  

We then varied the postsynaptic conductance by applying a multiplying factor (gain) between 0 

and 10 to the injected conductance, like we have done in previous studies [8, 10], the 

experimentally-observed physiological conductance corresponding to gain = 1.  Figure 6A shows 

information flow across the thalamic relay synapse when modulating the synaptic conductance 

(gain), quantified as before with I (using the direct method) or TE.  In the latter case, both TE 

measured at its peak frame shift (TEpeak; see Figure 5C), or integrated over all frame shifts (TEsum) 

are reported.  As expected from Figure 5C, each measure (I, TEpeak and TEsum) yields different 

results, but all three grow sigmoidally with the gain.  We also additionally quantified the 

corresponding energy consumption by counting the ATP molecules necessary to fuel the Na,K-

ATPase electrogenic pump that restores the ion gradients disturbed by ions flowing through 
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postsynaptic receptors and ion channels (see Methods).  Figure 6B shows the energy consumption 

concomitant to neuronal activity, when accounting only for ionic flows at the modulated 

postsynaptic conductance, or when accounting for all ionic flows in the postsynaptic neuron (i.e. 

including also the ions flowing through the voltage-gated channels that underlie action potentials; 

total energy budget).  In both cases, we observed a roughly linear relationship between the 

modulated postsynaptic conductance and the energy consumption expressed in ATP molecules 

consumed per second.  Note however that in the case of the total energy budget, the relationship 

is piecewise linear, with a different, smaller slope, for low postsynaptic gains at which no output 

action potential is generated. 

We can then evaluate how information flow, quantified using either I or TE, relates to the 

concomitant energy consumption at different postsynaptic gains.  Figure 6C shows that this 

relationship (normalized to its peak) has a single well-defined peak close to the physiological gain 

of the synapse (gain = 1), when quantifying information flow using I or TEsum.  In both those cases, 

this ‘energetic efficiency of information flow’ curve peaks close to gain = 1 and closely resembles 

what has been reported earlier, either for experimental data or in computational models [7-10].  

When quantifying the value of information flow using TEpeak however, this relationship appears 

much broader with no clear discernable peak between gains ~1 and ~5.  Finally, Figure 6D shows 

the same results, but using the total energy budget to quantify the energy consumption of the 

neuron (higher traces in Figure 6B), rather than only the energy consumption imparted by the 

modulated postsynaptic conductance.  The results are however broadly similar to those displayed 

in Figure 6C.  Again, the curves corresponding to I and TEsum match each other and match what 

has been reported earlier, while the curve corresponding to TEpeak has a broad profile with no clear 

peak.  Therefore, it appears that even though I and TEsum yield different raw values (see Figures 
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5C and 6A), their predictions can be compared in the current scenario when normalized, unlike 

TEpeak.  TEsum might therefore be a better alternative than TEpeak for comparing to mutual 

information across studies, although this will have to be systematically verified on a case by case 

basis.  
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Discussion (1096 words) 

 

Here, we set out to evaluate systematically the performance and trade-offs of mutual information 

and transfer entropy, when applied to binary spike trains in the context of information flowing 

between individual neurons and across synapses.  While these information theoretic measures are 

popular among theoretical and computational neuroscientists, it can be argued that they have found 

only limited usage among experimentalists due to the relative complexity in applying them.  This 

is especially true in experimental contexts where acquisition of large datasets is prohibitive.  The 

systematic biases these measures suffer from when applied to limited datasets has led to the 

development of a number of corrective techniques [6], which, while they improve their 

performances, do not necessary help in making these techniques more widely accessible.  

However, it can be argued that more widespread use of information theory will be essential going 

forward in neuroscience, especially when considering the development of normative theories [20] 

linking information processing to the energetic capacity of the brain [7-10, 21]. 

 Here, we have used a MATLAB package readily available from online repositories [17] to 

calculate transfer entropy (TE) in simple scenarios.  We show in these scenarios that TE 

outperforms mutual information when little data is available (Figures 3 and 4) with little need to 

apply corrective measures.  Note that we did alternatively perform the simulations displayed in 

Figures 3 and 4, but without applying the correction to infinite word lengths (see Figure 2), and 

that did not change qualitatively the results (not shown).  This is however to be expected when 

using Poisson spike trains (Figure 3), where each input action potential is generated independently 

from preceding action potentials and no long-range correlations are present in the input sequence 

[3, 11]. 
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 The mutual information is defined as the difference between the two entropies Htotal and 

Hnoise.  For words of length N, Htotal calls for the evaluation of 2N independent probabilities from 

the dataset.  Hnoise on the other hand calls for the evaluation of 22N independent probabilities from 

the same dataset.  It is thus common that many of these independent probabilities appearing in the 

calculation of Hnoise will be evaluated to be null because no corresponding event will be observed 

in a limited dataset.  As a consequence, it is common to underevaluate Hnoise.  The same issue is 

also true for Htotal, but since far fewer probabilities need to be estimated to calculate Htotal, it is 

commonly less underestimated than Hnoise.  The common outcome is then that the mutual 

information is grossly overestimated for limited datasets.  This overestimate decreases in 

amplitude as the size of the dataset increases  (see Figures 3 and 4, and ref. [6] for an excellent 

discussion of these issues). 

 Transfer entropy, on the other hand, does not seem to suffer from that problem, at least not 

in a similar amplitude (Figures 3 and 4).  We do not have at this time a definitive explanation as 

to why that is.  Transfer entropy can also be written as the difference between the two entropies 

H(X-|Y-) and H(X-|Y+,Y-) (see Materials and Methods), but these are two conditional entropies, 

i.e. they both call for the evaluation of 22N independent probabilities for words of length N.  We 

prudently speculate that this contributes to balancing the systematic errors in evaluating each 

entropy, and that this leads to a better overall estimation of TE, even with limited data (see Figures 

3 and 4). 

These results suggest that TE might be a better choice for experimentalists over I due to its 

lower sensitivity to the size of the dataset, and due to its relative simplicity of use.  However, the 

situation gets more complex when considering a more realistic biophysical scenario.  Figure 5 

shows that when systematic frame shifts occur between input and output sequences, i.e. when the 
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input and output action potentials do not happen in matching time bins due to transmission delays 

or due to the integrative properties of the neuron under consideration, the use of TE requires a 

more careful examination of the detailed biophysics at play.  It also becomes difficult to directly 

compare results obtained with I and TE.  In Figure 5, using a Hodgkin-Huxley-type model for 

thalamic relay cells, we show that the specific integration properties of that modelled neuron lead 

to transfer entropy being ‘distributed’ over time shifts between the input and output sequences (see 

Figure 5B).  As noted above however, this is not always the case, as we have observed in a previous 

study (in a different setting) that TE between the input and output sequences was maximal for no 

frame shift, and simply decaying for positive shifts [10].  We additionally provide convincing 

evidence that this observation is due to a systematic shift by recapitulating the results of Figure 5C 

using systematically shifted Poisson spike trains.  By construction, the mutual information 

estimated using the ‘direct’ method is immune to that issue. 

 The fact that TE appears to be distributed over time thus poses the question of what feature 

of TE to actually use.  The two most obvious features of the curve in Figure 5B are its peak and its 

integral.  Both appear very stable with respect to the size of the dataset but none of them matches 

the value predicted by mutual information (Figure 5C), making systematic comparisons between 

these measures difficult.  In Figure 6 we apply both features of TE (peak and integral) and I to the 

evaluation of the energetic optimality of information transfer at thalamic relay synapses [8].  Our 

results recapitulate the original experimental and computational finding that those synapses appear 

to maximize not the information flow (bits/sec), but the ratio of information per concomitant 

energy use (bits/ATP; see Figure 6).  In that context, the integral of TE is the feature that matches 

best the curve obtained using I.  Both predict the energetically optimal gain of the synapse to be 
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close to 1, the physiological gain of the synapse.  The peak of TE on the contrary yields markedly 

different predictions. 

These results suggest that a detailed computational study of the system under investigation 

should be systematically performed prior to applying transfer entropy to experimental data, and 

that when experimental conditions permit, mutual information estimated using the ‘direct’ method 

might provide a more straightforward applied measure.  In particular, it is important to test for the 

presence of transmission delays or of integrative properties in the system under investigation that 

might lead to the kind of effects described here.  When it cannot be demonstrated, as we have done 

in [10], that output action potentials occur mostly in the same time bin than impinging action 

potentials, it might be best to use mutual information instead.  
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Materials & Methods (1945 words) 

 

We are interested in characterizing the properties and performance of two information theoretic 

measures, mutual information (I) and transfer entropy (TE), in the context of energy consumption 

and efficacy of information transfer at individual synapses.  In the following, we will apply both 

these measures to assess information flow from the binary input spike train of a synapse to the 

binary output spike train generated by the postsynaptic neuron.  Below, we start by describing how 

the test data for this characterization were generated. 

 

Synthetic spike trains 

The first dataset we tested transfer entropy and mutual information on are synthetic Poisson spike 

trains.  In this scenario, the input was a randomly generated Poisson spike train, and the output 

was created by copying that input spike train, applying for each transmitted spike a certain 

probability of transmission failure, and for each time bin a certain probability of spontaneous 

firing, even in the absence of an input spike in the matching input time bin.  Unless specified 

otherwise, all time bins in this manuscript are 3 ms.  This simple scenario matches the propagation 

of individual spikes in the visual pathway, and numerical values for the probabilities were derived 

from experiments measuring the propagation of spikes at thalamic relay cells in the lateral 

geniculate nucleus and between thalamic relay cells and layer 4 spiny stellate cells in the primary 

visual cortex (see numerical values in Table 1 in the Results section above).  Unless stated 

otherwise, each result is the average of 10 independent simulations. 
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Additionally, in Figure 5, we tested adding a random frame shift between input and output 

action potentials.  We added to the timing of output action potentials a random gaussian delay 

centered at +16 ms with a standard deviation of ±3.7 ms. 

 

Input based on biological recordings 

The first step towards a more realistic model was to generate inputs similar to those that can be 

observed impinging onto the cells of interest.  To do that, input spike trains were generated 

according to the distribution of input interspike intervals recorded in vivo.  The in vivo distribution 

of interspike intervals was used to generate the cumulative distribution function of the intervals, 

and this function was in turn used as the generative function for the input (see insets in Figure 3).  

The output was generated as before, with probabilities of failure of transmission and spontaneous 

firing.  10 simulations were performed, and the mean was taken.  Numerical values follow the 

values given in Table 1. 

 

Hodgkin-Huxley type model 

While using transmission and spontaneous firing probabilities as above is expedient, this can never 

fully capture the complexity of the biophysical processes that lead to spiking.  In order to remediate 

to that issue, we adapted the single-compartment Hodgkin-Huxley-type model of thalamic relay 

cells by Harris et al. [8].  Details about how that model was carefully calibrated onto experimental 

data can be found in [8].  Our adjustments are detailed below. 

Briefly, the Hodgkin-Huxley-type model of thalamic relay cells in the lateral geniculate 

nucleus was adapted from earlier models [22-24], and follows the formalism devised by Hodgkin 

and Huxley with: 
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 𝐶𝑚
𝑑𝑉

𝑑𝑡
= − ∑ 𝑖𝑗 − 𝑖𝐻𝑜𝑙𝑑 − 𝑖𝑆𝑦𝑛𝑗 , (1) 

where Cm = 1 µF/cm2 is the membrane capacitance, V is the membrane voltage (in mV), iHold is the 

injected current, iSyn is the synaptic current and ij are the intrinsic currents.  The cell surface area 

was 1.52⋅10-4 cm2.  All currents and conductances are subsequently reported per unit surface area 

(cm2).  Following Bazhenov and colleagues [22], the intrinsic currents included a leak current iL, 

a potassium leak current iKL, an A-type potassium current iA, a T-type low threshold calcium 

current iT, an h-current ih, a fast sodium current iNa and a fast potassium current iK.  All the intrinsic 

currents had the same general form: 

 𝑖 = 𝑔𝑚𝑀ℎ𝑁(𝑉 − 𝐸), (2) 

where for each current i, g is the maximal conductance, m(t) is the activation variable, h(t) is the 

inactivation variable, E is the reversal potential and M and N are the number of independent 

activation and inactivation gates. 

The ih current was given by: 

 𝑖ℎ = 𝑔max 𝑂 (𝑉 − 𝐸ℎ), (3) 

with Eh = –43 mV [25].  gmax = 0.0254 mS/cm2 was set to match experimental data (see [8] for 

further details).  The time dependence of the gating variable O was defined by: 

 
𝑑𝑂

𝑑𝑡
=

1

𝜏𝑂
(𝑂∞ − 𝑂), (4) 

with time constant  (in ms) and steady-state 

variable  [25]. 

The leak currents were given by: 
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 𝑖𝐿 = 𝑔L(𝑉 − 𝐸𝐿) (5) 

and: 

 𝑖𝐾𝐿 = 𝑔KL(𝑉 − 𝐸𝐾), (6) 

with EL = –70 mV [24].  EK was set to match the effective potassium reversal potential used in the 

experiments in [8]: EK = –105 mV, while gL = 0.025 mS/cm2 and gKL = 0.025 mS/cm2 were 

manually adjusted to match both the average input resistance at the resting membrane potential 

and the resting membrane potential as recorded in experiments. 

The A-type potassium current was given by: 

 𝑖𝐴 = 𝑔𝐴𝑚𝑀ℎ𝑁(𝑉 − 𝐸𝐾), (7) 

with M = 4 and N = 1.  The time dependence for m and h was defined as for O, with: 

 𝑚∞ = 1 [1 + 𝑒(−(𝑉+60) 8.5⁄ )]⁄ , (8) 

 𝜏𝑚 = 0.1 + 0.27 [𝑒((𝑉+35.8) 19.7⁄ ) + 𝑒(−(𝑉+79.7) 12.7⁄ )]⁄ , (9) 

 ℎ∞ = 1 [1 + 𝑒((𝑉+78) 6⁄ )]⁄  (10) 

and: 

 𝜏ℎ = 0.27 [𝑒((𝑉+46) 5⁄ ) + 𝑒(−(𝑉+238) 37.5⁄ )]⁄ , (11) 

if V < –63 mV, and  =5.1 ms otherwise [22, 23]. 

The T-type calcium current was given by: 

 𝑖𝑇 = 𝑔𝑇𝑚𝑀ℎ𝑁(𝑉 − 𝐸𝑇), (12) 

with M = 2 and N = 1.  The time dependence for m and h was defined as for O, with: 

 𝑚∞ = 1 [1 + 𝑒(−(𝑉+57) 6.2⁄ )]⁄ , (13) 

 𝜏𝑚 = 0.13 + 0.22 [𝑒(−(𝑉+132) 16.7⁄ ) + 𝑒((𝑉+16.8) 18.2⁄ )]⁄ , (14) 
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 ℎ∞ = 1 [1 + 𝑒((𝑉+83) 4⁄ )]⁄  (15) 

and: 

 𝜏ℎ = 8.2 + [56.6 + 0.27 ∙ 𝑒((𝑉+115.2) 5⁄ )] [1 + 𝑒((𝑉+86) 3.2⁄ )]⁄ . (16) 

ET is given by  with F = 96489 C/mol the Faraday 

constant, R = 8.314 J mol-1 K-1 the gas constant, T = 309oK the temperature and  = 2 mM the 

extracellular calcium concentration.  The intracellular calcium dynamics were defined by: 

 
𝑑Ca2+

𝑑𝑡
= −

1

𝜏Ca
(Ca2+ − Ca𝑖

2+) − 𝐴 𝑖𝑇, (17) 

with = 2.410-4 mM, the baseline intracellular calcium concentration, and A = 5.1810-5 mM 

cm2 ms-1 µA-1, a constant. 

The fast sodium current was defined by: 

 𝑖𝑁𝑎 = 𝑔𝑁𝑎𝑚3ℎ(𝑉 − 𝐸𝑁𝑎), (18) 

with ENa = +90 mV.  The maximal conductance gNa = 4.4 mS/cm2 was also set to match 

experimental data [8].  The time dependence for m and h was defined by: 

 
𝑑𝑥

𝑑𝑡
= 𝛼𝑥(1 − 𝑥) − 𝛽𝑥𝑥, (19) 

where x stands for either h or m and with [26]: 

 𝛼𝑚 = 0.32 [13.1 − 𝑉 + 𝑉shift
Na ] [𝑒((13.1−𝑉+𝑉shift

Na ) 4⁄ ) − 1]⁄ , (20) 

 𝛽𝑚 = 0.28 [𝑉 − 𝑉shift
Na − 40.1] [𝑒((𝑉−𝑉shift

Na −40.1) 5⁄ ) − 1]⁄ , (21) 

 𝛼ℎ = 0.128 𝑒((17−𝑉+𝑉shift
Na ) 18⁄ ) (22) 

and: 

 𝛽ℎ = 4 [1 + 𝑒((40−𝑉+𝑉shift
Na ) 5⁄ )]⁄ . (23) 

The fast potassium current was given by: 
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 𝑖𝐾 = 𝑔𝐾𝑛4(𝑉 − 𝐸𝐾). (24) 

The maximal conductance gK = 3.3 mS/cm2 was set to match experiments (again see [8] for further 

details).  The time dependence for n was defined as for the sodium gating variables m and h with: 

 𝛼𝑛 = 0.032 [15 − 𝑉 + 𝑉shift
K ] [𝑒((15−𝑉+𝑉shift

𝐾 ) 5⁄ ) − 1]⁄  (25) 

and: 

 𝛽𝑛 = 0.5 𝑒((10−𝑉+𝑉shift
K ) 40⁄ ). (26) 

= –60.1 mV and  = –62.5 mV were manually adjusted to allow the model to be 

depolarized to –55 mV without spontaneously spiking.  iHold = -2.05 µA/cm2 was set in subsequent 

simulations so as to hold the model at –55 mV.  For a cell surface area of 1.5210-4 cm2, this 

corresponds to an injected current of ~310 pA, similar to experimentally measured values of 30-

550 pA [8].  gA = 3 mS/cm2 and gT = 1.8 mS/cm2 were set so that the model achieved an output 

frequency, when stimulated with the synaptic conductance recorded in [5], similar to the average 

frequency observed in experiments. 

 

Synaptic currents 

Individual synaptic currents experimentally recorded in ref. [8] were fitted by sums of 

exponentials: 

 𝑔(𝑡) = 𝑤(𝑒−𝑡 𝜏1⁄ − 𝑒−𝑡 𝜏2⁄ ), (27) 

yielding the parameters given in Table 2.  The synaptic current is then given by: 

 𝑖𝑆𝑦𝑛 = −𝑔AMPA(𝑉 − 𝐸excitatory) − 𝑔NMDA  (
9.69

1+0.1688 𝑒−0.0717 𝑉) (𝑉 − 𝐸excitatory), (28) 

with Eexcitatory = 0 mV, and where gAMPA and gNMDA describe the time courses of individual AMPA 

and NMDA synaptic currents. 
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Table 2.  Parameters of individual AMPA and NMDA synaptic conductances. 

Conductance w 1 [ms] 2 [ms] 

AMPA 86.63 3.03 2.98 

NMDA 0.31 45.04  3.79 

 

Information theory 

For two coupled physical systems that produce realizations x and y of random variables X and Y, 

the mutual information I is defined by [27]: 

 𝐼(𝑋, 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌), (29) 

where 𝐻(𝑋) = ∑ 𝑝(𝑥)𝑥  is the Shannon entropy for the probability distribution p(x) = p(X=x) of 

the outcome x of the random variable X and 𝐻(𝑋|𝑌) = ∑ 𝑝(𝑦) ∑ 𝑝(𝑥|𝑦) log
2

(1 𝑝(𝑥|𝑦)⁄ )𝑥𝑦  is the 

conditional entropy.  The mutual information can then be written as: 

 𝐼(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦) log2
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)𝑦𝑥 . (30) 

Because H(X) is the total average information in the variable X and H(X|Y) is the average 

information that is unique to X, the mutual information represents the shared information between 

the two processes or, in other words, the deviation from independence of the two processes. 

Equations (29) and (30) are symmetric under the exchange of the two variables and thus do not 

contain any directional indication. 

The transfer entropy TE of the same random variables is defined as [27]: 

 𝑇𝐸(𝑋 → 𝑌) = 𝐼(𝑋−, 𝑌+|𝑌−) = 𝐻(𝑋−|𝑌−) − 𝐻(𝑋−|𝑌+, 𝑌−) (31) 
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 = ∑ ∑ ∑ 𝑝(𝑥−, 𝑦+, 𝑦−)

𝑥−𝑦+𝑦−

log
2

𝑝(𝑦−)𝑝(𝑥−,𝑦+,𝑦−)

𝑝(𝑥−,𝑦−)𝑝(𝑦+,𝑦−)
 (32) 

where X- and Y- denote the past state of the two processes with outcomes x- and y-, and Y+ is the 

future random variable of Y with outcome y-. 

The transfer entropy represents the amount of predictive information actually transferred 

from process X to process Y.  As can be seen in Equation (31), the transfer entropy is not usually 

symmetric under the exchange of X and Y. 

 

Equivalence between I and TE 

In a scenario where X- and Y+ are both independent of Y- (see Equation (31) above), which is for 

instance realized in the scenarios displayed in Figure 3, the transfer entropy TE can be written as: 

. 

In this simplified case, TE is equivalent to I.  In Figure 3, we have used this fact, together with the 

fact that with knowledge of all the probabilities entering in Equations (29)-(30), we can directly 

calculate – rather than estimate from the data – the theoretical value of TE = I. 

 

Estimation methods 
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Poisson spike trains are already binary.  The output spike trains generated with the Hodgkin-

Huxley-type model were binarized using a time bin of 3 ms using the function findpeaks in 

MATLAB (The Mathworks, Natick MA). 

 Mutual information was evaluated using the so-called ‘direct’ method devised by Strong 

and colleagues [11].  As noted in the Results section, we only applied the second of the two 

corrections from the original method, i.e. the extrapolation to infinite word lengths (see Figure 2, 

Results and ref. [8] for further details). 

 Transfer entropy was calculated using the MATLAB package by Ito and colleagues [17], 

following similar procedures as in [10].  In particular, a baseline value TEnoise was calculated by 

randomly shuffling words in the output and calculating the transfer entropy between the input and 

the shuffled output.  The transfer entropy values reported in the manuscript are TE = TEraw - TEnoise 

after extrapolation to words of infinite lengths similar to the correction applied for calculations of 

the mutual information. 

Repetitions of 128 s were used for calculations of the mutual information using the ‘direct’ 

method.  Each data point is the average of N = 10 independent simulations.  For direct comparison, 

we used datasets of the same length for calculations of the transfer entropy.  For instance, if we 

had 50 repetitions of 128 s for the ‘direct’ method (6400 s total), we used a single input spike train 

of 6400 s for calculation of the transfer entropy. 

 

Information and energy 

To calculate information transfer at the simulated synapse, output spike trains were processed as 

detailed above.  To calculate the metabolic cost incurred by the modelled cell, the Na+ component 

of iSyn was integrated and converted to the corresponding ATP consumption per unit time, while 
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the same procedure was followed for iNa, the Na+ component of ih and Ca2+ entry via iT, and this 

was added to the ATP used on iSyn.  For iSyn, the conductance was scaled by 7/13 (derived from the 

reversal potentials Eexcitatory = 0 mV, ENa = +90 mV and EK = -105 mV) and multiplied by V - ENa 

to calculate the contribution of sodium ions.  For ih, the conductance was scaled by 

(𝐸𝐾 − 𝐸ℎ) (𝐸𝐾 − 𝐸𝑁𝑎)⁄  and multiplied by V - ENa to isolate the contribution of sodium ions.  For 

iT, we assumed that each calcium ion is exchanged for 3 sodium ions [28].  For each gain in Figure 

6, N = 10 simulations were performed, and the mean was taken. 

 

Simulations 

Simulations were run using custom-written MATLAB scripts (The Mathworks, Natick MA).  

Differential equations were integrated using the built-in solver ode15s with an integration time 

step dt = 0.05 ms.  All results presented are the mean of N = 10 independent simulations. 
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Figures 

 

 

 

Figure 1.  Sample input and output sequences for computing I and TE. 

Examples of input and output data generated, with repetitions for mutual information calculations (I; to use with the 

direct method) (A), and without repetitions for transfer entropy calculations (TE) (B).  Here, outputs are generated 

using transmission statistics derived from experiments in the thalamic relay cell scenario (see Methods and Table 1).  

In each case, two length-matched datasets are generated to compare the relative performances of I and TE for 

recordings of a certain duration.  1 time bin = 3 ms. 
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Figure 2.  Extrapolation of mutual information and transfer entropy values to infinite word lengths. 

Example of extrapolation to infinite word lengths for mutual information (A) and transfer entropy calculations (B).  

Mutual information is calculated using the ‘direct’ method and the second correction of that method is applied to 

extrapolate both Htot and Hnoise to words of infinite lengths.  The mutual information I = Htot - Hnoise at the intercept 

for 1/wordlength = 0.  A similar method was used to evaluate the transfer entropy.  In both cases, curves were 

generated using spike trains simulated using the Hodgkin-Huxley-type model.   
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Figure 3.  Comparative performance of I and TE in evaluating information flow at synapses driven by 

Poisson synthetic spike trains. 

Comparison between mutual information (I; blue; calculated following [8, 11]) and transfer entropy (TE; red; 

calculated following [10, 17]) as a function of the size of the dataset for randomly generated spike trains based on 

thalamic relay cells characteristics (A) [8] or layer 4 spiny stellate cells characteristics (B) [10] (see also Table 1).  

In each case, the black line indicates the theoretical value (see Methods).  In both A and B, the inset zooms on TE 

for a low number of repetitions.  In each case, shaded areas indicate the standard error of the mean. 
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Figure 4.  Comparative performance of I and TE in evaluating information flow at synapses driven by 

synthetic spike trains with realistic biological temporal structures. 

Comparison between mutual information (I; blue; calculated following [8, 11]) and transfer entropy (TE; red; 

calculated following [10, 17]) as a function of the size of the dataset for randomly generated using the cumulative 

distribution function (CDF) of the interspike intervals (Insets) based on experimental data recorded impinging onto 

thalamic relay cells (A) [8] or layer 4 spiny stellate cells (B) [10].  In each case, the inset shows the CDF of the 

biological interspike interval used to generate input sequences.  In each case, shaded areas indicate the standard error 

of the mean. 
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Figure 5. Application to a biophysical Hodgkin-Huxley-type model. 

(A) Poisson spike trains and transmission probabilities are replaced by an experimentally-calibrated Hodgkin-

Huxley-type model for thalamic relay cells that recapitulates transmission properties at thalamic relay synapses.  1 

time bin = 3 ms.  (B) Synaptic and neuronal dynamics can lead to output action potentials being generated in 

different time bins than the incoming input (‘frame shift’).  This leads to transfer entropy being positive over 

multiple temporal frame shifts between the binarized input and output sequences.  Mutual information calculated 

following [11] is immune to that issue.  (C) Because of this, direct comparison between mutual information (I; blue) 

and transfer entropy (TE; calculated using [17]; red: peak value from B; green: integral over TE in B) can be 

difficult.  (D) This effect can be recapitulated in simple Poisson spike trains by adding gaussian temporal jitter to the 

timing at which an output spike is generated (see inset in B).  I is unaffected when the temporal jitter is preserved 

over repetitions (compare with Figure 2A), while the results obtained for TE recapitulate what is observed with the 

Hodgkin-Huxley-type model (compare with C).  In each case, shaded areas indicate the standard error of the mean. 
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Figure 6. Information flow vs. energy. 

(A) Information transfer at modelled thalamic relay synapses calculated using the Hodgkin-Huxley-type model as a 

function of the gain of the synapse (normalized synaptic conductance).  (B) Total energy consumption and EPSC 

energy consumption used to convey the information calculated in A.  (C) Normalized ratio between information (A) 

and EPSC energy (B) as a function of the normalized synaptic conductance.  (D) Normalized ratio between 

information (A) and total energy consumption (B) as a function of the normalized synaptic conductance. 
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2.3 Paper 3
M Conrad, and R. B. Jolivet, "Modelling neuromodulated information
flow and energetic consumption at thalamic relay synapses", Lectures Notes
in Computer Science (to appear, 2020)

Summary
This paper presents an improvement of the Hodgkin-Huxley-type model
developed in Paper 2 to take into account neuromodulation of transmission
properties by serotonin at thalamic relay synapses. At these synapses, sero-
tonin causes modulation of the release probability of glutamate-containing
vesicles and thus of the amplitude of the postsynaptic conductance. This
neuromodulation of the amplitude is simulated with a modified version of the
Tsodyks-Markram model [121]. We show that this neuromodulation changes
the voltage trajectory in the postsynaptic cell, and consequently the binary
output sequence in response to the same input. This indicates that serotonin
can change the encoding of visual information.

The paper also assesses the effect of neuromodulation by serotonin on
the energetic efficiency of information transfer. For this, we use mutual
information and calculate energy consumption like in Paper 2, as a function
of the postsynaptic gain of the cell. We show that neuromodulation by
serotonin reduces both the information conveyed and the energy consumed
by the synapse to convey this information. The neuromodulated ratio between
information and energy still has a maximum around the physiological gain,
but the peak is slightly broadened compared to the case without serotonin.
These results seems to indicate that energetic efficiency of information
transfer is a generic design principle in the brain.

Contribution
I wrote most of the code necessary as well as runned all the simulations. I
also analysed the data and was involved in writing the paper.
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Abstract. Recent experimental and theoretical work has shown that
synapses in the visual pathway balance information flow with their en-
ergetic needs, maximising not the information flow from the retina to
the primary visual cortex (bits per second), but instead maximising in-
formation flow per concomitant energy consumption (bits of information
transferred per number of adenosine triphosphate molecules necessary
to power the corresponding synaptic and neuronal activities) [10, 5, 11].
We have previously developed a biophysical Hodgkin-Huxley-type model
for thalamic relay cells, calibrated on experimental data, and that re-
capitulates those experimental findings [10]. Here, we introduce an im-
proved version of that model to include neuromodulation of thalamic
relay synapses’ transmission properties by serotonin. We show how sig-
nificantly neuromodulation affects the output of thalamic relay cells, and
discuss the implications of that mechanism in the context of energetically
optimal information transfer at those synapses.

Keywords: Brain energetics · Information theory · Energetic optimality
· Neuromodulation.

1 Introduction

The brain consumes an inordinate amount of energy with respect to its size.
It is responsible for about 20% of the whole body baseline energy metabolism
at rest, while representing usually only 2% of its mass [9]. Over the last couple
of years, attempts at theoretically or experimentally determining an energetic
budget for the brain have all pointed to synapses as the locus where most of
brain energy is being spent [7], with estimates putting their share of the brain’s
signalling energy budget at roughly 60% [1, 13, 9]. A better understanding of
brain energetics is essential because abnormal energy metabolism is an early

? This work was supported by grants from the Swiss National Science Foundation
(31003A 170079), the European Commission (H2020 862882 IN-FET), and the Aus-
tralian Research Council (DP180101494) to RBJ. MC is enrolled in the Lemanic
Neuroscience Doctoral School.
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hallmark of numerous pathologies of the central nervous system [9], and because
neuroenergetics offers a lens through which one can easily address the complex
heterocellular complexity of the brain [4, 12, 13].

Synapses are also the locus where electrophysiological ’information’ is trans-
mitted from neuron to neuron, and Shannon’s information theory [18] has been
used to great effectiveness in neuroscience, to measure information flow at syn-
apses, in neural networks, or between different brain areas [15, 16, 9].

Given that synapses are a key mechanism in interneuronal communication
and appear by all estimates to be responsible for a large fraction of the brain’s
energy consumption, it is natural to think that they would be reliable information
transmission devices. A large body of experimental evidence, however, shows that
synapses can be remarkably unreliable. For instance, the release probability for
presynaptic vesicles is often measured to be in the few tens of percents for cortical
neurons [8, 3]. Similarly, action potential transmission at thalamic relay synapses,
which relay information from sensory modalities to the primary sensory cortices,
can be astonishingly low (see references in ref. [10]).

Recently, we have shown that this apparent paradox can be resolved when
considering the energetic optimality of information transmission. In other words,
synapses and neurons maximise the energetic efficiency of information transfer,
measured in bits of information transferred through a synaptic connection, or
from the input to the output of a cell, per number of adenosine triphosphate
molecules necessary to power this synaptic or neuronal activity [5]. In particu-
lar, we have shown that this trade-off between information flow and concomitant
energetic consumption can explain low release probability at cortical synapses [9],
and action potential transmission characteristics in the visual pathway, at thala-
mic relay synapses between retinal ganglion cells and thalamic relay neurons [10],
as well as at the next synapse in that pathway, the synapse that thalamic relay
cells form on layer 4 spiny stellate cells in the primary visual cortex [11].

In parallel to experiments, we have developed biophysical Hodgkin-Huxley-
type models of these systems, all carefully calibrated on experimental data (see
refs. [10, 11] for further details). Here, we resume our study of these questions
at thalamic relay synapses to investigate neuromodulation of these synapses’
transmission properties by serotonin. The next section introduces the Hodgkin-
Huxley-type model and the newly experimentally-calibrated model of neuromod-
ulated synaptic input.

2 Mathematical model of information transmission and
concomitant energy consumption in thalamic relay cells

2.1 Hodgkin-Huxley formalism

We have previously published an experimentally calibrated biophysical single-
compartment model of the Hodgkin-Huxley-type for thalamic relay cells [10].
Briefly, the model is written as follows: The Hodgkin-Huxley formalism describes
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the dynamics of the membrane voltage V as:

Cm
dV

dt
= −

∑

j

ij − iHold − isyn, (1)

with Cm the membrane capacitance, ij the intrinsic currents, iHold an experi-
mentally injected holding current (see ref. [10] for further details) and isyn the
synaptic currents. Following Bazhenov and colleagues [2], the intrinsic currents
include a leak current iL, a potassium leak current iKL, an A-type potassium
current iA, a T-type low threshold calcium current iT , an h-current ih, a fast
sodium current iNa and a fast potassium current iK . All the intrinsic currents
have the same general form:

i = gmMhN (V − E), (2)

where for each current i, g is the maximal conductance, m(t) is the activation
variable, h(t) is the inactivation variable, E is the reversal potential, and M and
N are the number of independent activation and inactivation gates.

The intracellular calcium dynamics is defined by:

dCa2+i
dt

= − 1

τCa
(Ca2+i − Ca2+i,0 ) −A iT , (3)

with Ca2+i,0 = 2.4 10−4 mM, the baseline intracellular calcium concentration, and

A = 5.18 10−5 mM cm2 ms−1 µA−1, a constant. The time dependence for m and
h is defined by:

dx

dt
= αx(1 − x) − βxx, (4)

where x stands for either h or m.
We refer the interested reader to ref. [10] for all further details of the model,

and for a detailed description of experimental and calibration procedures.

2.2 Modelling synaptic input, synaptic depression and
neuromodulation

In order to model the strong paired-pulse depression and neuromodulation that
is known to happen at thalamic relay synapses, we use the formalism introduced
by Tsodyks and Markram [20].

First, a sequence of binarized input action potentials is generated with a tem-
poral resolution ∆t = 3 ms. In order to generate sequences with the same tempo-
ral statistics than recorded in vivo, we use sequences recorded in vivo (available
from ref. [10]) to calculate the non-Poissonian in vivo inter-spike interval distri-
bution. From this distribution, we calculate the cumulative distribution function
of inter-spike intervals, and in turn, use that cumulative distribution function to
generate synthetic binary sequences.
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Each input is then used to trigger an AMPA and a NMDA conductance with
the generic form:

g(δt) = A (exp(−δt/τrise) − exp(−δt/τdecay)) , (5)

with τrise and τdecay some time constants, δt the time elapsed since the input
action potential and A an amplitude. Consecutive contributions are summed up.

In each case, the effective amplitude A of the triggered conductance is mod-
ulated by synaptic depression. To model this, we use a slight adaptation of the
Tsodyks-Markram model [20], whereby the amplitude of the conductance is
given by:

An+1 = An (1 − U) exp(−∆t/τrec) +AU (1 − exp(−∆t/τrec)), (6)

with U and τrec some parameters. Fitting that model on experimental data from
ref. [10] yields U = 0.7 and τrec = 620 ms (to be described in details some-
where else). These parameters predict a paired-pulse depression of ∼ 0.4 for
consecutive pulses at 100 ms interval, in excellent agreement with what was ob-
served in electrophysiological recordings [10]. Additionally, that procedure yields
τrise = 0.75 ms and τdecay = 2 ms for the AMPA conductance, and τrise = 9 ms
and τdecay = 22 ms for the NMDA conductance, and a ratio between the peak
amplitudes of the NMDA and AMPA conductances of 0.1.

Thus, isyn (see Eq. 1) is given by:

isyn = −gAMPA(V − Eexcitatory)

− gNMDA

(
9.69

1 + 0.1688 e−0.0717V

)
(V − Eexcitatory), (7)

with Eexcitatory = 0 mV, the reversal potential of AMPA and NMDA recep-
tors. The additional term in the description of the NMDA conductance is added
to describe the nonlinear I-V relation of NMDA receptors due to the Mg2+

block [10]. In each case, gAMPA and gNMDA are determined by the procedure
mentioned above combining Equations [5] and [6]. An example of what that
procedure yields can be observed in the top two panels of Fig. 1 below.

Activation of serotonin receptors at thalamic relay synapses modulates the
release probability of presynaptic vesicles. Specifically, the release probability is
reduced and while this tends to lead to smaller postsynaptic potentials (PSPs),
it makes consecutive PSPs more similar to each other in amplitude. The liter-
ature and preliminary experimental data (courtesy of D. Attwell, E. Engl and
J.J. Harris) show that the presence of serotonin receptor agonists experimentally
lead to reduced paired-pulse depression with the ratio of consecutive PSPs at
100 ms interval to be about ∼ 0.8 (instead of ∼ 0.4 in control conditions). This
can be easily achieved in the model presented here by changing the value of
the parameter U to 0.2, yielding an elegant and simple framework to study the
effect of neuromodulation at thalamic relay synapses. An example of what that
procedure yields can be observed in Fig. 2 below and can be directly compared
with the results in Fig. 1.
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Fig. 1. Model dynamics in absence of neuromodulation (U = 0.7). Top row: Bina-
rized input sequence at time resolution ∆t = 3 ms. Input action potentials are gener-
ated at approximately 20 Hz and their temporal dynamics follows experimental data
recorded in vivo in rodents, i.e. their inter-spike interval distribution matches the inter-
spike interval distribution observed in vivo. Second row: The dynamics of the AMPA
and NMDA conductances with parameter values for amplitudes, time constants and
synaptic depression derived from experimental recordings and following the Tsodyks-
Markram model [20]. With U = 0.7, synaptic conductances display significant depres-
sion. A paired-pulse depression of ∼ 0.4 is predicted in these circumstances (consecutive
pulses at 100 ms interval), matching what was observed in electrophysiological record-
ings [10]. Third row: Dynamics of the membrane voltage of the thalamic relay cell
predicted in response to the input sequence. Bottom row: Binarized output sequence
at time resolution ∆t = 3 ms. The thalamic relay cell model only produces 4 output
action potentials in response to the top input sequence (the average output frequency
is ∼ 4 Hz). In general, those are synchronous with the first input following a relatively
long silent period.
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Fig. 2. Model dynamics with strong neuromodulation by serotonin (U = 0.2). Top
row: Binarized input sequence at time resolution ∆t = 3 ms. Input action potentials
are generated at approximately 20 Hz and their temporal dynamics follows experimen-
tal data recorded in vivo in rodents. This is the same sequence as in Fig. 1. Second
row: The dynamics of the AMPA and NMDA conductances with parameter values for
amplitudes, time constants and synaptic depression derived from experimental record-
ings and following the Tsodyks-Markram model [20]. With U = 0.2, synaptic conduc-
tances display much less depression than in Fig. 1. A paired-pulse depression of ∼ 0.8
is predicted in these circumstances (consecutive pulses at 100 ms interval), matching
what was observed in preliminary electrophysiological recordings. Third row: Dynam-
ics of the membrane voltage of the thalamic relay cell predicted in response to the input
sequence. Bottom row: Binarized output sequence at time resolution ∆t = 3 ms. The
thalamic relay cell model now produces 6 output action potentials in response to the
top input sequence. That output sequence is significantly different than the one at the
bottom of Fig. 1.
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2.3 Information flow and neuroenergetics

In order to assess information flow at the modelled feed-forward synapse, we
collect the binarized input and output sequences with a temporal resolution of
∆t = 3 ms (see Fig. 1 top and bottom panels). We then apply the so-called direct
method by Strong et al. [19] to compute the mutual information between those
input and output sequences, similar to what has been done in [16] and [10]. A
detailed description of how to use this method and others for the analysis of
spike trains can be found in ref. [15]. Note also that it is possible to use the
so-called transfer entropy to measure information flow between neurons [17],
instead of the mutual information as we do here. We refer the reader to refs. [11,
6] for a comparative discussion of these measures in a context similar to the one
discussed here.

The energy consumption in thalamic relay cells in this scenario arises from
presynaptic activity and from the generation of output action potentials. Trans-
port of ions across membranes during neural activity leads to the activation of
the Na,K-ATPase electrogenic pump, which consumes adenosine triphosphate
(ATP) molecules to maintain and reestablish normal ionic gradients [9, 1, 13].
It is thus possible to compute the energetic cost of neuronal activity (number
of ATP molecules consumed in response to that activity) using biophysics as
described in [1, 10, 11].

3 Modulation of transmission properties by the
neuromodulator serotonin

Figure 1 shows typical data generated by the model in the scenario correspond-
ing to the control experimental situation described in ref. [10], i.e. with strong
paired-pulse depression (U = 0.7). Strong depression is apparent in the second
panel from the top, where each input action potential following the first action
potential after a long period of silence only evokes a much reduced conductance.
As a result, the model, like the cells it is based on, tends to generate outputs only
when two input action potentials come in close succession to each other (this
is not always the case, however, as a single input action potential can be seen
to trigger an output spike at time bin 7000). While the model receives input
action potentials at a frequency of ∼ 20 Hz, it generates output action potentials
at only ∼ 4 Hz.

Figure 2 shows typical data generated by the model in the scenario cor-
responding to application of serotonin, i.e. with weak paired-pulse depression
(U = 0.2). The binary input sequence is the same as the one used in Fig. 1.
Weak depression is apparent in the second panel from the top, where each input
action potential triggers in average smaller conductances, but with amplitudes
more evenly distributed over time. A comparison between Figs. 1 and 2 reveals
that even though the model is driven in both cases by the same binary input se-
quence, the voltage trajectory of the cell is very significantly affected by changing
the value of U , and the binary output sequence of the cell is now largely different.
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These results suggest that neuromodulation at these synapses could have a sig-
nificant effect on the quantity and type of information that reaches the primary
visual cortex.
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Fig. 3. Energetic optimality of information transfer at thalamic relay synapses. Mutual
information (bits/sec) divided by concomitant energetic costs (ATP/sec), factoring the
cost of reverting ionic flows across the cellular membrane resulting from the activation
of postsynaptic receptors (top curves), or resulting from the activation of postsynaptic
receptors and from the generation of action potentials (bottom curves). The parameter
U is chosen to be either U = 0.7 to match control experimental conditions or U = 0.2 to
model the application of serotonin receptor agonists. An overall gain factor is applied
to the synapse with gain = 1 matching the experimental physiological gain in control
conditions. The curves reveal the presence of an optimum at, or slightly above, gain
= 1 [10]. Shifting from U = 0.7 to U = 0.2 appears to shift the peak of each curve
slightly to the right, and to slightly broaden the peak.

We then tested whether this type of neuromodulation affects the energetic
optimality of information transmission at these synapses. To this end, we ran
simulations varying the overall gain of the thalamic relay synapse and mea-
sured the mutual information between the input and output sequences [10, 11]
using the direct method [19]. We additionally computed the equivalent energetic
budget using standard biophysical methods developed in ref. [1]. We observed
that, while changing the value of U does affect absolute values, the energetic
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consumption (measured in ATP/sec) associated with the generation of postsy-
naptic potentials, or with the generation of postsynaptic potentials and action
potentials, scales more or less linearly with the gain of those synapses, whatever
the value of U (not shown). This matches what has been observed elsewhere [9–
11]. We also observed that, while changing the value of U does affect absolute
values, information flow across the relay synapse (measured in bits/sec) scales
sigmoidally with the gain of those synapses (not shown). Again, this matches
what has been observed elsewhere [9–11].

We then computed in each scenario the ratio of information flowing through
the synapse to the concomitant energy consumption necessary to power the
synaptic and neuronal activity of the thalamic relay neuron. Preliminary results
displayed in Figure 3 show that this results in curves with a relatively well-
defined energetic optimum for information transmission, whether U = 0.7 or
0.2, and whether the energy budget includes the cost of postsynaptic potentials
alone (top curves), or also includes the cost of postsynaptic potentials and action
potentials (bottom curves). In all cases, the energetic optimum stood at, or close
to, gain = 1, the physiological gain of the synapse in control conditions. This is
in excellent accordance with experimental findings and a previous version of this
model (driven by experimentally-recorded conductances). Despite its significant
effect on the actual output sequences generated by the thalamic relay neuron,
neuromodulation (shifting from U = 0.7 to U = 0.2) only appears to shift the
peak of each curve slightly to the right, and to slightly broaden said peak.

4 Discussion

Here, we have introduced a carefully-calibrated mechanistic [14] model of synap-
tic depression and neuromodulation by serotonin at thalamic relay synapses. We
have described how to build and calibrate such a model using experimental data,
and together with the work in ref. [10], we have established that it qualitatively,
and to some extent quantitatively, captures the behaviour of biological thalamic
relay neurons, in particular here, with respect to modelling in vivo-like synaptic
inputs, including their modulation by serotonin.

The results presented here suggest that neuromodulation by serotonin does
not very significantly affect the energetic optimality of information transmission
at thalamic relay synapses. The fact that neuromodulation does not very strongly
affect the position of the peak in the information over energy curves, and the
fact that this peak sits at the experimentally observed physiological gain for
those synapses (gain = 1), reinforces the notion that this principle might be a
relatively generic design principle in the brain. This model thus also contains
normative (energetic) aspects [14]. It is our contention that synaptic activity
has evolved under, and is to an extent shaped by, energetic constraints [9–11, 5].

Neuromodulation does, however, very significantly affect what output se-
quences are sent out to the primary visual cortex in response to a given input
sequence. In other words, it appears to change the encoding of visual informa-
tion. Our model thus opens now the possibility to systematically investigate what

2.3. PAPER 3 91



10 M. Conrad and R. B. Jolivet

kind of input sequences will maximise under different circumstances information
flowing from the retina to the primary visual cortex.
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CHAPTER 3

Discussion

The brain is a very sophisticated structure, as well as a very powerful
computational device. And like every computational device, the brain needs
energy to be able to function correctly. This quite small organ is one of the
main consumers of energy in the human body, as it consumes by itself around
20% of the total amount of energy needed by the body. But, the energy the
body can allocate to the brain is not infinite and this has probably shaped
the development of brain function. Studies focused on energetic budgets in
the brain have shown that the majority of the brain’s energy is consumed
by synapses, the connections between neurons. Strikingly, even when energy
supplies are normal, synapses are mostly unreliable connections. For example,
in the CNS, the probability that an action potential leads to the release of a
vesicle of neurotransmitters is estimated to be around 25 to 50 %. Action
potentials are the most important signals neurons exchange, they are the
vectors of information transiting along those neurons. Such a low probability
of transmission means that neurons do not maximize the information they
could convey or transmit. A number of recent studies suggest that instead,
they maximize the ratio between information and energy used to convey this
information: the energetic efficiency of information transfer.

This PhD thesis includes 3 papers focused on better understanding
energetic efficiency of information transfer at synapses from a computational
point of view. The papers themselves as well as a short summary of each
can be found in Chapter 2. Paper 1 reviews existing findings about energetic
efficiency. In order to study energetic efficiency of information transfer, it
is important to be able to correctly evaluate the information flow between
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circuit components. Paper 2 focuses on the comparison of two metrics of
information theory, mutual information and transfer entropy. Those two
metrics are then used to try to reproduce previous experimental findings
of energetic efficiency in the visual pathway. Information flow and energy
consumption are not stable quantities through time, as many factors can
influence the state of neurons. Paper 3 thus concentrates on the modelling of
synaptic depression and, specifically, on the effect of serotonin on energetic
efficiency of information transfer at LGN synapses.

The following sections of this Chapter focus on the three research ques-
tions highlighted in Chapter 1: how to estimate the information at the
synaptic level? Can we reproduce experimental findings about energetic
efficiency in the LGN computationally? And what is the effect of neuromod-
ulation by serotonin on energetic efficiency of information transfer?

3.1 Information measurements
Information theory is a useful tool when studying how information is managed
by neurons and neuronal networks. But, using information theory is not
necessarily straightforward, especially in a Neuroscience context. Here, the
performances of two metrics of information theory (mutual information I
and transfer entropy TE) were compared on binary spike trains when used
to measure the information flow between neurons. In most experimental
settings, the length of the data that can be collected is an issue, as animals
might have limited focus during an experiment, or cells die after a few hours
in vitro. In Paper 2, we chose to compare I and TE as a function of the
length of the dataset to see exactly how the amount of information available
influences those two metrics. In both cases, we used a correction method.

We generated input-output pairs in three different scenarios, progressively
adding complexity:

1. At first, we generated inputs as spike trains with a Poisson statistic
and generated the outputs by copying each bin from the corresponding
input with some probability of making an error (failure of transmission)
and some probability of spontaneous firing. These two probabilities
were chosen to reproduce probabilities found in thalamic relay cells
and layer 4 spiny stellate cells.

2. Obviously, the input thalamic relay cells and layer 4 spiny stellate cells
receive do not have a Poisson statistic. So, in order to be more realis-
tic, we generated inputs with statistics based on biological interspike
intervals. The output was generated as in scenario 1.

3. Finally, we studied a more complex scenario by using a Hodgkin-
Huxley-type model calibrated on thalamic relay cells to generate the
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output. The input was generated as in scenario 2.

3.1.1 Bias and correction methods
Both I and TE are calculated as the subtraction of two entropies (see
Equations 1.6 and 1.10). As explained in Chapter 1, the evaluation of
those entropies can lead to biases, especially with limited datasets. In this
thesis, we chose to use the direct method [91] in the evaluation of the
mutual information. The direct method includes two correction, one that
extrapolates the value of the entropies for a dataset of infinite size, and one
that extrapolates the value of the entropies for infinite word lengths (see
Section 1.2.2).

As stated in Paper 2, we were not able to obtain convincing results for
the first correction. Instead of a monotonically increasing curve like the
one plotted in the original paper by Strong and colleagues (Figure 2 of
reference [91], or Figure 1.9 of Chapter 1), ours was essentially flat, for both
the total entropy (see Equation 1.1) and the conditional (or noise) entropy
(see Equation 1.3). Figure 3.1 shows an example for the total entropy Htot in
scenario 1, with words of length 7. Interestingly, we can observe in the work
of Strong that this correction only influences the third digit after the decimal
point of the estimate of the total entropy, suggesting that this correction
does not have a lot of impact. It is nonetheless important to note that these
results are for a specific visual system in the fly, and for several hours of
recording.

On the other hand, we obtained convincing results with the second
correction method. Thus, in order to be consistent, we chose to apply a
similar method for the correction of the bias due to long words to the
transfer entropy. There is no explicit "noise entropy" in the definition of the
transfer entropy, like there is for the mutual information. Nonetheless, it is
important to verify that random correlations in the dataset are not affecting
the results. This can be an issue especially when considering long words. We
thus evaluated a noise for the transfer entropy TEnoise by randomly shuffling
words in the output and calculating the transfer entropy between the input
and the shuffled output. Randomly shuffling the words allows to create a
spike train with the same frequency but with no other temporal structure,
allowing to calculate the intrinsic noise and thus the contribution of random
correlations. The estimate for the transfer entropy TE is then calculated as
the raw transfer entropy TEraw (the transfer entropy of the dataset) minus
the noise transfer entropy: TE = TEraw − TEnoise. The value obtained for
the estimate of the transfer entropy TE is then extrapolated to words of
an infinite length, in a similar fashion as the correction used in the direct
method (see Figure 2B of Paper 2). For computational purposes, we chose to
first subtract the noise before extrapolating the result to words of an infinite
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Figure 3.1: Application of the first correction of the direct method of Strong [91],
for words of length of 7 bits with input and output generated as in scenario 1 (Poisson
statistics). Total entropy is evaluated over different fractions of the whole dataset. To
extrapolate the values of the entropy for infinite data, the entropy is fitted with a
function of the form Htot = H0 + H1

size
+ H2
size2 , with size denoting the inverse data

fraction. The intercept H0 is thus the value for an infinite dataset.

length, but extrapolating first TEraw and TEnoise and then subtracting
would yield the exact same outcome.

It is nonetheless important to note the differences between the method we
developed for the transfer entropy and the direct method applied to mutual
information, even though both aim to correct the same bias. Mainly, the
direct method is applied to the individual total and conditional entropies,
while our method is applied directly on the transfer entropy. This choice
was made for the sake of simplicity. However, investigating a correction
method for the transfer entropy directly based on the entropies would be an
interesting study.

Correctly locating the length of the longest word before the sampling
disaster is determinant to correctly use those two correction methods. The
examples shown in Chapter 1 [92], as well as in the original paper from
Strong et al. [91], show a behaviour essentially linear before the sampling
disaster, which makes it relatively easy to determine an inflection point by
visual inspection of the data. This was not always the case in our work,
especially for the transfer entropy (see Figure 2B of Paper 2). In this case,
the choice of the part of the curve considered to be part of the sampling
disaster had to be made with caution, as it can obviously have an effect
on the results. This is something to take into account when designing an
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experiment using this correction method as well, as this could depend on
the behaviour of the neurons studied.

3.1.2 Mutual information and transfer entropy compar-
ison

Scenarios 1 and 2 show that transfer entropy might be a better choice to
evaluate information flow than mutual information, especially for small
datasets, as it converges to its asymptotic value faster. In scenario 1, all
the probabilities of the system are known and can be used in Equations 1.6
and 1.10 to calculate the theoretical values that the estimation method should
reach. Moreover, in this scenario we have shown that the theoretical value
is the same for both metrics, a useful property to compare their efficiency.
Both metrics overestimate the theoretical value for a very small dataset
before converging to the theoretical value as the size of the dataset increases.
Interestingly, TE overestimate the theoretical value far less than I, even for
short recordings (as can be seen in the insets of Figure 3 of Paper 2). Even
though we cannot compute an exact theoretical value, we observe the same
behaviour in scenario 2.

Even though we do not have a definitive answer as to why TE is less
biased than I in this scenario, we advance a tentative explanation. When
applying the corrections discussed above, we estimate the probabilities with
words of length L. In the case of the mutual information, as explained
in Chapter 1, the evaluation of H(X) necessitates the estimation of 2L
probabilities and the evaluation of H(X|Y) necessitates the estimation of
22L probabilities. We use here bold notation for the variables X and Y to
denote that they represent words of length L.

In the case of TE, it is important to note that Y + (see Equation 1.10)
represents one bin, and not a word of length L. Otherwise, it would break
causality, meaning that we are receiving information from the future. In
this case, the evaluation of H(X−|Y−) necessitates 22L probabilities to be
estimated, and H(X−|Y +,Y) necessitates 22L+1 probabilities (and not 23L!).
We thus suspect that the explanation as to why TE converges faster is that
the downward biases made when estimating H(X−|Y−) and H(X−|Y +,Y)
are more similar in amplitude than the ones made when evaluating H(X)
and H(X|Y). Because TE is calculated as H(X−|Y−) − H(X−|Y +,Y),
biases similar in amplitude would thus give a result closer to the asymptotic
value, reducing the overall upward bias for TE.

In both scenarios 1 and 2, TE and I converge to the same value. This
is not a surprise, as in both scenarios, X− and Y + are independent of Y−.
Those two first scenarios were based on quite simple input statistics, not
necessarily representative of realistic neuronal input statistics. Scenario 3
was helpful to show the limitations of this scenario.
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In this scenario, the typical behaviour of the curve information vs. size
of the dataset is still the same for both I and TE. TE converges faster to
an asymptotic value with respect to the size of the dataset used for the
evaluation and the amplitude of the overestimation is lower that what is
observed for I. However, the two metrics do not converge to the same value.
I still converges to a value close to the ones obtained in scenarios 1 and 2,
but not TE.

Paper 2 showed that the Hodgkin-Huxley-type model transmission prop-
erties affect the evaluation of transfer entropy. In scenarios 1 and 2, spikes are
transmitted from the input to the output in the matching time bin, with no
transmission delay. This leads to the information carried by one given spike
to be transmitted in one bin as well. In scenario 3, our Hodgkin-Huxley-type
model adds systematic frame shifts between input and output. We show that
this is due to integration of synaptic currents by the postsynaptic neuronal
membrane. Intracellular dynamics and the time course of integration of
presynaptic inputs can lead output action potential to be generated with a
significant delay after an input action potential has impinged on the synapse.
This means that the information carried by one spike can, in this scenario, be
distributed over several consecutive time bins. This impacts the evaluation
of the transfer entropy, because it also distributes it over several consecutive
time bins (as shown in Figure 5 of Paper 2). Figure 3.2 shows an example (not
included in Paper 2) of the transfer entropy evaluated in scenario 1. It can
be seen that all the information is transmitted in the time bin corresponding
to the timing of the spike in the input (frame shift = 0).

Figure 3.2: Transfer entropy plotted as a function of the frame shift between input
and output (i.e. when shifting the input and the output sequences by a set number of
time bins, 0 indicating that the bin considered in the output is in the same position
as the spike in the input) for scenario 1 (Poisson statistics) for words of length 5 bins.
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It is important to note here that using the direct method to calculate
the mutual information makes it immune to the issue posed by frame shifts.
H(X) is only calculated on the output and thus cannot be impacted by the
frame shift.H(X|Y ) is evaluated by comparing repetitions. If the frame shifts
are the same across repetitions, then H(X|Y ) will not be affected either. We
could thus expect mutual information (evaluated using the direct method)
to be a better evaluation of the information conveyed by the neuron than
transfer entropy in this scenario. But this is the case essentially because we
used the direct method. Other methods to evaluate the mutual information
exists, and they would not necessarily be immune to temporal frame shifts
(an example being the method described in [123]).

The fact the the information is evaluated on multiple repetitions is one
of the reasons why the direct method is so powerful. As shown by Mainen
and Sejnowski [124], presenting the same strongly fluctuating input to a
neuron several times will produce outputs that are very similar (as shown
in Figure 3.3A). This can also be observed in the paper from Strong and
colleagues about the direct method [91] (Figure 3.3B). We can see in panels
A and B of Figure 3.3 that in both those studies, most spikes are present in
the output spike train at the same timings, with only a few discrepancies
across repetitions. This is also what we observe with our model, as can be
observed in Figure 3.3C, where the few differences across repetitions are
highlighted in green. This model, like a neuron, can add a delay between
input and output action potentials. This delay is mostly the same across
repetitions, thus not being an issue when using the direct method.

Paper 2 introduces two measures of the transfer entropy, called TEpeak
and TEsum. The value these two estimates of transfer entropy and the
estimate of mutual information converge to are not the same in this last
scenario. Apart from the issue caused by delayed transmission discussed
above, it is also important to note that the approximation that X− and
Y + are independent of Y− does not necessarily hold anymore, because this
Hodgkin-Huxley-type model generates excitatory postsynaptic potential that
can last more than the duration of one time bins (3 ms). This means that the
integration of the presynaptic signal has a time constant that can be greater
than 3 ms, thus affecting more than just one bin in the output. This implies
that transfer entropy and mutual information do not estimate the same
theoretical quantity anymore. Actually, this case of dependency between
X−, Y + and Y− also means that transfer entropy should be greater than in
the independent case (more information is contained in a dependent state).
This is what we observe with TEsum. This is also a very important point as,
in neurons, this assumption of independence is usually not correct. In this
sense, TEsum seems to be a better estimation than TEpeak, because it is a
sum of all the information.
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Figure 3.3: Examples of the reliability of neurons. In each cases, the response
of the neurons over several trials are very similar to each other. A: A fluctuating
current (middle) presented during 900 ms evokes trains of action potentials in a
regular-firing layer-5 neuron. The top panel shows 10 superimposed responses. The
bottom panel shows a raster plot of response spike times of 25 consecutive trials.
Adapted from reference [124]. B: The input is a pattern moving across a fly’s visual
field. The top panel shows the angular velocity of that pattern. The bottom panel
shows the repetition of responses spikes recorded in the visual cortex (H1). Adapted
from reference [91]. C: The same input (upper row, red) is injected 5 times in our
Hodgkin-Huxley-type model to generate the outputs in blue. The few spikes that are
different across repetitions are highlighted in green.

When naively looking at the results displayed in Figures 3 and 4 of
Paper 2, one could think that using transfer entropy is better than using
mutual information, as it needs less data to converge to its asymptotic
value. Nonetheless, we showed in Figure 5 of Paper 2 that in more complex
(an biologically accurate) scenarios, where frame shifts could be expected,
transfer entropy becomes more difficult to use accurately. Again, this does
not mean that transfer entropy is wrong, but rather that mutual information
and transfer entropy do not measure exactly the same quantities. A choice of
metric should thus be made with care according to the experimental system
investigated. However the method showed in Figures 3 and 4 of Paper 2



3.2. ENERGETIC EFFICIENCY AT LGN SYNAPSES 103

could be used to estimate the error made with mutual information when
working with a small dataset, or to estimate the amount of data that need
to be collected to have an acceptable estimation.

The Hodgkin-Huxley-type model we have used here was designed to
mimic the integration properties of thalamic relay cells. Of course, a large
variety of neurons exists, and with that also a variety of ways to integrate
signals. The results presented in this thesis should thus be considered with
these limitations in mind.

3.2 Energetic efficiency of information trans-
fer at LGN synapses

Synapses are the major locus of energy consumption in the brain. Moreover,
the brain has limited energy supply and reliable information transmission
has a high energetic cost for the brain. These energetic constraints probably
have shaped the information processing capability of neurons and this could
explain why some neurons have a probability of synaptic transmission as
low as 20%. A low probability of transmission means that neurons do not
maximize the information they could convey. They seem to instead maximize
the ratio between the information they do convey and the energy necessary
to convey this information. This is referred to as energetic efficiency of
information transfer. The efficacy of transmission can be linked to presynaptic
properties, like the vesicle release probability, or postsynaptic properties,
like the synaptic gain (for instance the number of glutamate receptors in the
postsynaptic membrane, which relates directly to the amplitude of EPSCs).

As explained in Paper 1, information transmission is sigmoidally depen-
dent on the transmission probability of neurons while the energy used to
convey this information depends essentially linearly on this probability. The
ratio between information and energy as a function of the probability of
information transmission is thus a monophasic curve with a single optimum.
This maximum represents the energetic optimum for information transfer
and usually sits at a low probability of transmission. This was shown com-
putationally at generic synapses [17] and experimentally at thalamic relay
synapses [68].

In Paper 2, we wanted to investigate if we could use the model we
developed to reproduce those previous findings of energetic efficiency in
thalamic relay cells, using the metrics we studied to quantify the information.
We injected varying in vivo-like conductances in our Hodgkin-Huxley-type
model, represented by a varying postsynaptic gain, gain = 1 being the
experimentally-observed physiological conductance. This model is powerful
in this case because it can be used to generate in vivo-like spike trains with
any numbers of repetitions and length.
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3.2.1 Energetic efficiency with our model
As shown in Paper 2, the information conveyed by the neuron calculated
with I, TEpeak and TEsum varies sigmoidally with the postsynaptic gain
and the energy consumed varies linearly with the gain. This gives a curve
for the energetic efficiency (information divided by energy) with a single
well-defined peak close to the physiological synaptic gain for the information
calculated with I and TEsum. These results are in agreement with what was
published earlier about energetic efficiency in thalamic relay cells [17, 68].

On the other hand, when TEpeak is used, the peak is much broader with
no discernable maximum for postsynaptic gains between ∼ 1 - 5. As discussed
in Section 3.1.2, it is likely that TEsum is a better approximation of the
information than TEpeak. This result also seems to point to this conclusion.

In Paper 2, we calculated the energetic efficiency of information transfer
when taking into account the energy consumption of EPSCs only, and also
when taking into account the total energy consumption at the synapse
(this means essentially to also take into account the energy used by output
action potentials). EPSCs are the major consumers of energy at synapses,
but as shown in Figure 6B of Paper 2, the total energy budget makes
a significant difference on the energy used versus the postsynaptic gain.
However, Figure 6C and D show that the curves obtained when calculating
the ratio between the information flow (either calculated with MI, TEpeak
or TEsum) and either the energy used by the EPSCs or the total energy are
qualitatively equivalent.

The synapse studied here (the retinogeniculate synapse) is a particular
synapse in the brain. As shown by Budisantoso and colleagues [125], the
synapse at thalamic relay cells is formed by a synaptic appendage with several
tens of release sites. This is very different from synapses formed in the cortex
for example, which are usually composed of a few distinct release sites [56].
In this thesis, we focused on energetic efficiency of information transfer in
LGN neurons, but more recent studies have also demonstrated energetic
efficiency in other neurons, with very different synapses. It was for example
shown with respect to postsynaptic gain at cortical synapses [126] and with
respect to presynaptic release probability at hippocampal synapses [127].

Energetic efficiency of information transfer could thus be widespread in
the cortex, even maybe a generic principle in the brain. Although our model
aims to correctly reproduce neuronal behaviour in terms of information
transmission, it is based on only one type of cells and of course is made
with approximations. Nonetheless, our approach combined with models
appropriate for other types of neuron or circuits could be used to better
understand and study energetic efficiency of information transmission across
the brain. For example, this approach is the one used to study energetic
efficiency in layer 4 spiny stellate cells in [126].
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Interestingly, most of the studies focusing on energetic efficiency of
information transfer focus either on the presynaptic properties (mainly the
release probability) or the postsynaptic properties (mainly the synaptic gain
and the size of EPSCs). Is is nonetheless possible that energetic efficiency of
information transfer at synapses is a mixture of both pre- and postsynaptic
properties. Indeed, releasing more neurotransmitters would not have an
effect if receptors are not present in sufficient numbers on the postsynaptic
membrane, and, inversely, adding receptors in the membrane would not
change anything if there was not sufficient neurotransmitters released to
bind to them all. As we will discuss in Section 3.3.2, Paper 3 was our first
attempt at linking pre- and postsynaptic sides.

3.3 Neuromodulation by serotonin
When neuromodulation and synaptic depression occur, they can change
the release probability and the amplitudes of EPSCs, thus possibly altering
information transmission and energy consumption. What is then the effect on
energetic efficiency of information transfer? Paper 3 focused on studying the
effect of the neuromodulator serotonin at LGN synapses by adding synaptic
depression in the Hodgkin-Huxley-type model developed in Paper 2.

Paired-pulse depression and neuromodulation at thalamic relay synapse
were added in our Hodgkin-Huxley-type model with an adaptation of the
model of synaptic depression developed by Tsodyks and Markram [121], where
the amplitudes of the conductances are modulated by synaptic depression.
The model, fitted on experimental data, showed very good agreement with
electrophysiological recordings and allowed us to run simulations of any
length and with any synaptic gains. The model thus offers a simple yet
efficient framework to study the effect of serotonin on thalamic relay cells
by varying one unique parameter (see Paper 3).

3.3.1 Modelling of neurmodulation by serotonin
Paper 3 showed that, with the exact same input injected in the model,
outputs generated with or without serotonin are largely different. There is
generally fewer spikes in the case without serotonin, and the timing of output
spikes can be affected. This happens because the activation of serotonin
receptors at thalamic relay synapses modulates the release probability of
vesicles, resulting in smaller EPSCs, but with more similar amplitudes over
time.

This means that when the same stimuli is detected by the retina, the signal
reaching the primary visual cortex can be significantly different depending
on the level of serotonin in the LGN, affecting the quantity and type of
information reaching the cortex. In other words, the information processing
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capacity of the LGN is affected by serotonin. In the next Section, we will
discuss exactly how the information transferred changes, but this result
already shows that information transmission is affected by neuromodulation,
as expected. This also means that different input sequences will maximize
the information transmission between retina and primary visual cortex
in different circumstances. This thesis focuses on energetic efficiency of
information transfer, and this is what will be discussed in the next Section,
but this is a widely interesting subject and our model will be the basis for
further studies on the question.

3.3.2 Effect of serotonin on energetic efficiency
Release of serotonin at LGN synapses changes the values of information and
energy when plotted against the gain, but the shape of the curves are still
very similar to the case without serotonin. Those results were not published
in Paper 3 and can be found here instead. In the preliminary results we
show here and in Paper 3, we use the mutual information to evaluate the
information. We chose to start with mutual information because it is immune
to frame shifts, as shown in Paper 2. Simulations using transfer entropy to
evaluate the information are being performed at the time this thesis is written.
As can be seen in Figure 3.4, information and energy are slightly reduced with
serotonin compared to the case without serotonin. It is not surprising that
the presence of serotonin reduces energy consumption, as serotonin reduces
the vesicular release probability. The reduction of information transmitted is
maybe less intuitive, because, as it can be seen in Paper 3, serotonin actually
increases the number of spikes in the output response. But, because inputs
are generated in the same way in the cases with and without serotonin, more
output spikes are not necessarily more informative.

Like in Paper 2, results obtained here also show that the curves of
energetic efficiency of information transfer are qualitatively equivalent when
considering only the energy consumption of EPSCs, or when considering the
total energy consumption (see Figure 3 of Paper 3).

As shown in Figure 3 of Paper 3, the curve of the ratio between infor-
mation transmitted and energy consumed is very similar in the cases with
and without serotonin. In the case with serotonin, the maximum is slightly
shifted to the right and the overall peak is slightly broadened. However, the
maximum of the ratio between information and energy is still located at a
postsynaptic gain close to the physiological gain. This means that the release
of serotonin at this synapse does not alter the energetic efficiency principle.

This could also be an explanation of why less information is transmitted
in the case with serotonin. As discussed above, energy consumption is
reduced because fewer vesicles are released. If the synapse wants to stay at
an energetic efficiency level, it thus has to reduce its information transmission
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Figure 3.4: Comparison between the cases without serotonin (U = 0.7; see Paper 3
for a definition of U) and with serotonin (U = 0.2) for the information conveyed at
the synapse (calculated with the mutual information; A) and the energy consumed (B)
as functions of the postsynaptic gain of the cell. B shows the energy when accounting
only for currents modulating the postsynaptic conductance (EEPSC), and the total
energy when accounting for all currents in the postsynaptic cell (i.e. including currents
that underlie action potentials; Etot).

as well, and this is achieved through synaptic depression. As explained in
Chapter 1, synaptic depression is a consequence of a decrease of the number
of vesicle released. This could indicate that synaptic depression and synaptic
activity more generally were designed through evolution of the brain to
respect the principle of energetic efficiency of information transfer.

As stated above, in this study, we are considering the pre- and post-
synaptic properties of the synapse together. Indeed, neuromodulation by
serotonin changes the presynaptic release probability, and we study the
energetic efficiency of information transfer with respect to the postsynaptic
gain. This study is thus a first step towards a more general understanding
of energetic efficiency of information transfer with a more holistic approach
of synaptic properties.

3.4 Limitations of the model
Designing a model made to reproduce biophysics is a very complex question.
Moreover, calibrating a model from experimental biological data can be
very difficult. As an example, Figure 3.5 shows how the AMPA (α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid; Figure 3.5A) and NMDA (N-
methyl-D-aspartate; Figure 3.5B) conductances used in the Hodgkin-Huxley-
type model of Paper 2 were determined from experimental measurements.
Both conductances were recorded separately, and every black lines in both
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panels of Figure 3.5 is a synaptic conductance triggered by an individual
input spike. Figure 3.5 illustrates the level of noise one deals with in such
circumstances.

The AMPA and NMDA conductances used in our Hodgkin-Huxley-type
model are the fit (in red) of the mean (in blue) of every individual synaptic
conductances (in black), as shown in Figure 3.5. Even though the mean
curves are similar to typical AMPA and NMDA conductances, it is important
to remember that they are indeed the mean over a broad range of recorded
conductances. Moreover, Figure 3.5 also shows that the fits obtained are
not perfect, especially the one for the AMPA conductance. We suspect that
the AMPA and NMDA conductances were not perfectly decorrelated during
measurements, and that the bump appearing around 0.01 s for the AMPA
conductance is a contribution of the NMDA conductance.

A B

Figure 3.5: Experimentally recorded AMPA (A) and NMDA (B) conductances used
to determine the conductances to be used in our Hodgkin-Huxley-type model. Each
black line represents an individual experimental postsynaptic conductance. The blue
line is the mean of all the black lines and the red line is the fit of the blue line. Both
fits are of the form g(t) = w(e−t/τ1 − e−t/τ2 ). Data are from reference [68].

Nonetheless, these conductances and our Hodgkin-Huxley-type model
were helpful to study energetic efficiency. It is important to remember that
biological data are noisy, and to keep that in mind when building a model.
The model we built helped better understand the neuronal processes we
studied, but it is far from perfect.



CHAPTER 4

Conclusion and Perspectives

The energy the body can allocate to the brain is limited, and this has probably
shaped how neurons process information. Information is transmitted from a
neuron to another when an action potential reaches the synapse, triggering
the release of vesicles containing neurotransmitters. Surprisingly, in the CNS,
the probability that vesicles are released when an action potential reaches
the synapse is quite low. Studies suggest that this low release probability
is, among other possible explanations, a consequence of the limited amount
of energy available and that, instead of maximizing the information they
convey, neurons maximize the ratio between the information they convey
and the concomitant energy usage. This principle is referred to as energetic
efficiency of information transfer. In this PhD thesis, we set out to better
understand this energetic efficiency from a computational point of view,
focusing on neurons in the visual pathway. The circuit studied in this thesis
is a feed-forward circuit, with the retina transmitting information to thalamic
relay cells in the LGN, with a one-to-one connection between those cells.
Thalamic relay cells then convey information to the visual cortex.

We first studied the relative performance of two metrics of information
theory (mutual information and transfer entropy) on datasets of different
sizes. Data collection can be limited in Neuroscience experiments and those
metrics can suffer form biases when applied to small datasets. We showed
that, in simple cases of input-output generation (that are not necessarily
biologically realistic), transfer entropy is more accurate to approximate
the information than mutual information, especially for small dataset. But,
when moving to a more complex (and biologically realistic) scenario, via a
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Hodgkin-Huxley-type model, we showed that the transmission properties
of the system can be an issue when working with transfer entropy and
we discussed two different ways of estimating the transfer entropy. On the
other hand, the correction method used for the mutual information (the
direct method [91]) makes it immune to this kind of issues. Thus, mutual
information seems to be a more robust choice, but an estimation of the error
in the case of a small dataset would be needed.

We then used those metrics and our model to reproduce experimental
findings about energetic efficiency of information transfer in thalamic relay
cells. Our simulations showed, as expected, that the energy used to convey
information varies linearly with the postsynaptic gain of the cell and that the
information conveyed by the cell varies sigmoidally with this gain. This led to
the ratio of information over energy to be a monophasic curve with a single
optimum, in accordance to what was observed in experimental studies [68].
Moreover, the maximum of this function sat at a synaptic gain very close
to the physiological gain of the cell, showing that the neuron we modelled
respect the principle of energetic efficiency of information transfer.

Finally, we assessed what happens to energetic efficiency when neuro-
modulation occurs, by simulating serotonin induced paired-pulse depression
at our thalamic relay synapses, using a variation of the Tsodyks-Markram
model [121]. We showed that information and energy have a behaviour very
similar to the case without serotonin, but that they are both reduced when
serotonin is injected. Interestingly, this leads to almost no changes when
looking at the ratio between information and energy, with the maximum still
sitting close to the physiological gain. Those results indicate that energetic
efficiency of information transfer could be a generic design in the brain
and that energetic constraints have probably shaped brain function during
evolution. The results we show in this thesis have been computed using the
mutual information to evaluate the information flow, but the same study
using transfer entropy is in progress.

More studies will be necessary to determine if energetic efficiency of
information transfer at synapses is truly a generic design in the brain and
how it is achieved in neural circuits. For this purpose, the approach used
in this thesis could be generalized to other types of cells, with appropriate
models. Better understanding energetic efficiency of information transfer
could indeed be easier if studied computationally rather than experimentally,
as it is very difficult to evaluate experimentally energy consumption at the
cellular level. All the ideas studied in this thesis will thus be needed to be
tested on other scenarios, like for example what was done in layer 4 spiny
stellate cells with a multi-compartment neuron model [126].

Our approach could also be used to better understand why some neurons
do not work at an energetically efficient level with regard to information
transfer. In some pathways, it is possible that reliable information trans-
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mission is more important than energy savings. The calyx of Held and the
neuromuscular junction are known to be highly reliable in terms of infor-
mation transmission. Nonetheless, researches on the calyx of Held suggest
that the release probability and the number of postsynaptic receptors are
kept at a low level by other processes, thus limiting energy consumption [68,
128, 129]. It is also possible that some cells alternate between energetically
efficient states and states with a highly reliable information transmission
and thus more demanding in energy (like reference [130] suggests), to adapt,
for example, to different kind of stimuli or brain activity states.

Moreover, one natural question that arises in regard with energetic
efficiency is how does it emerges in neural networks? Information transfer at
newly formed synapses is not necessarily immediately energetically efficient.
Synaptic plasticity could be a way for the neurons to learn to operate at
an energetically efficient state. Are there other synaptic features that need
to be taken into account? Can all types of neurons and synapses apply the
principle of energetic efficiency of information transfer? Our model could
be used to study these questions, as it could be extended to transmission
between more than two cells. Moreover, better understanding how energetic
efficiency emerges in networks could be a very useful tool to help design
neuromorphic devices (and maybe also machine learning algorithms) that
would be efficient in regards to computation and power consumption.

Our simulations with neuromodulation by serotonin showed that, when
release probability is changed, information flux and energy consumption are
modified in a way that allows the information transfer to still be energetically
efficient in regards to information transmission. Other phenomenons can
change synaptic properties during the life of a neuron, for example short- and
long-term plasticity. Our model could also be used to asses what happens
to energetic efficiency in those cases. This approach could also be used to
study other neuromodulators than serotonin.
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