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Abstract

In this thesis, a new family of high-level jet flavour tagging algorithms called DL1 [1,

2] is presented. It is now established within the ATLAS collaboration [3] at the

Large Hadron Collider at CERN to be applied to Run 2 pp collision data at
√
s =

13 TeV. DL1 represents the first use of Deep Learning for ATLAS physics object

reconstruction as well as the first major application of advanced deep neural net-

works within the collaboration. The determination of jets originating from heavy

flavour quarks is used to probe the particle identity of particles created in the pp

collisions. These heavy flavour quarks play a major role in searches for new physics

and precision measurements.

The potential of Deep Learning in flavour tagging using inputs from lower-level

algorithms has been investigated. A systematic grid search over architectures and

the training hyperparameter space is presented. In this neural network approach,

the training is performed using multiple output nodes, which is a naturally suited

method for the task of jet flavour tagging. This also provides highly flexible tagging

algorithms. The DL1 studies presented show that the obtained b- and c-jet tagging

algorithms provide good discrimination against jets of other flavours considered

in flavour tagging. Their performance for arbitrary background mixtures can be ad-

justed after the training according to the needs of the physics analysis. The resulting

development and structure of DL1 as well as the architectures of the neural networks

used in the tagging algorithms are described and a detailed set of performance plots

is presented, obtained from simulated tt̄ events at
√
s = 13 TeV and corresponding

to the data taking conditions during Run 2 where these tagging algorithms will be

applied. Performance comparison plots between predictions from simulation and

collision data as well as the final b-jet tagging scale factors of the calibration for

physics analyses usage are provided and show excellent agreement.

The algorithms are not only well optimised but also generalise the learned jet

topologies well to other event topologies. A fully fledged family of robust b- and

c-jet tagging algorithms with a reduced amount of required person power is estab-

lished and recommended within the ATLAS collaboration. Now that DL1 has been

vii



0. Abstract

established, it is expected to improve a wide range of physics analyses throughout

the collaboration.
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Résumé

Dans cette thèse, une nouvelle famille d’algorithmes d’étiquetage de la saveur des

jets de haut niveau appelée DL1 [1, 2] est présentée. Il est maintenant établi dans le

cadre de la collaboration ATLAS [3] au Grand collisionneur de hadrons au CERN

pour être appliqué aux données de collision Run 2 pp à
√
s = 13 TeV. DL1 représente

la première utilisation de Deep Learning pour la reconstruction d’objets physiques

dans ATLAS ainsi que la première application majeure de réseaux neuronaux pro-

fonds avancés dans le cadre de la collaboration. La détermination des jets provenant

de quarks lourds est utilisée pour sonder l’identité des particules créées dans les

collisions pp. Ces quarks à saveur forte jouent un rôle majeur dans la recherche de

nouvelles propriétés physiques et de mesures de précision.

Le potentiel de l’apprentissage en profondeur dans l’étiquetage des saveurs à

l’aide d’entrées provenant d’algorithmes de bas niveau a été étudié. Une grille de

recherche systématique sur les architectures et l’espace hyperparamétrique d’en-

traînement est présentée. Dans cette approche de réseau neuronal, l’apprentissage

est effectué à l’aide de nœuds de sortie multiples, ce qui est une méthode naturelle-

ment adaptée à la tâche d’étiquetage des saveurs des jets. Cela permet également

d’obtenir des algorithmes de étiquetage très flexibles. Les études DL1 présentées

montrent que les algorithmes de d’étiquetage de jet b et c obtenus permettent une

bonne discrimination par rapport aux jets d’autres saveurs. Leur performance pour

des mélanges de bruit de fond arbitraires peut être ajustée après l’entrainement en

fonction des besoins de l’analyse physique. Le développement et la structure de

DL1 ainsi que les architectures des réseaux neuronaux utilisés dans les algorithmes

de étiquetage sont décrits et un ensemble détaillé de diagrammes de performance

est présenté, obtenu à partir d’événements simulés tt̄ à
√
s = 13 TeV et correspon-

dant aux conditions de prise de données pendant le Run 2 où ces algorithmes seront

appliqués. Des graphiques de comparaison des performances entre les prédictions

issues de la simulation et les données de collision sont fournis, ainsi que les fac-

teurs d’échelle de l’étalonnage de d’étiquetage des jets b pour l’utilisation dans les

analyses physiques. Tous montrent un excellent accord.

ix



0. Résumé

Les algorithmes sont non seulement bien optimisés, mais ils permettent aussi de

bien généraliser les topologies de jets apprises à d’autres topologies d’événements.

Une famille complète d’algorithmes robustes de d’étiquetage des jets b- et c-jet

avec une intervention humaine réduite est établie et recommandée dans le cadre de

la collaboration ATLAS. Maintenant que DL1 a été établi, on s’attend à ce qu’il

améliore un large éventail d’analyses physiques tout au long de la collaboration. 1

1Traduit avec Ref. [4].
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Preface

The author sought to incorporate many of the newer developments in the field of

machine learning into High Energy Physics. As a result of this, the author single

handedly developed DL1 and introduced the application of deep neural networks

for use on collision data within ATLAS. This includes everything from the struc-

ture involving the preprocessing of the inputs, the software package configuration

involving well maintained and developed open source software, its offline frame-

work, which includes the streamlining of grid searches. The author’s contribution

also includes the technical implementation of DL1 within the ATLAS collabora-

tion framework ATHENA, for which the author co-designed and co-developed the

python package LWTNN [5], which is now widely used. The implementation within

ATHENA performed by the author includes the validation of this implementation.

Furthermore, the author performed the initial test studies on defining good de-

sign approaches and performed the grid searches and optimisations as well as per-

formance tunings for the final discriminants for all mentioned DL1 versions. This

includes work presented at EPS in 2017 [1] and in Ref. [2], where dedicated DL1

variants are compared to the MV2 high-level tagging algorithm baselines. The au-

thor wrote this PUB note with the intent of providing public DL1 documentation

and promoted it up until the first iterations with the first reader before having to

step down in order to start working on a physics analysis. In addition, the author

promoted DL1 and provided detailed technical documentation for use within the

ATLAS collaboration.

In addition to this, the author provided knowledge transfer to other members of

the collaboration like in the jet-Emiss
T performance group and in the Geneva group,

with the infrastructure built for DL1 used as foundations for further work employed

in the ATLAS collaboration. Furthermore, this knowledge transfer was propagated

to other experiments within the DPNC at Geneva, and the knowledge has been suc-

cessfully adapted to a variety of different applications within particle physics.

The author of this thesis contributed to selected aspects of the content of this

thesis with the full picture given for completeness. Chapter 5 provides the reader

xiii



0. Preface

with context regarding the supervised classification methods relevant to the main

topic of this thesis from a Data Science perspective. Here, the author designed and

created the schematic overviews of boosted decision trees as well as neural network

related principal components, architectures and items of interest. Chapters 7 and

8 present the authors work on designing and optimising the presented DL1 fam-

ily members, which represent the first use of Deep Learning within ATLAS object

reconstruction. The data-MC comparisons and calibrations, with which the author

was not involved, are presented to demonstrate the overall validity of the DL1 tag-

ging performance for use in physics analyses on pp collision data recorded by the

ATLAS experiment.

Finally, the author also worked on tuning the DL1 c-jet tagging algorithms for

the V H → cc̄ search using the same data handling approach as for the construction

of DL1. However, due to the timeline of the analysis these studies could not be

drawn to a conclusion on time to be included in this thesis. Nonetheless, meaningful

contributions regarding the tuning of DL1 were provided by the author.
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1. Introduction

Searches for new physics in high-energy physics rely on our ability to know exactly

what was created in collisions and how these elementary particles interact with each

other. A large number of rare and interesting processes result in the production

of heavy flavour quarks, namely b- and c-quarks. Top quarks, the heaviest known

quarks decay before being able to form a bound state and therefore are probed

through the presence of b-quarks. In addition, the Higgs boson primarily decays

into a bb̄ pair.

The ATLAS detector was designed as a general-purpose detector, which is re-

quired to allow many different precision measurements and searches to be per-

formed to measure known processes and to cover a large spectrum of potential

new physics. Due to realistic limitations mainly due to real physics constraints

like increased material density close to the collisions resulting in more scattering

and worse resolution in the calorimeter measurements as well as the material costs

needed for detection and support structure for a large coverage of measurements,

compromises had to be made when designing the ATLAS detector. The ATLAS

detector is not designed to provide particle identification for these heavy flavour

quarks similar to the way LHCb is designed to, which has dedicated particle identi-

fication systems and extremely high tracking resolution due to the VELO [6]. Due

to this people within the ATLAS collaboration have to be creative about alternative

ways to probe interesting high-energy events at the Large Hadron Collider.

One way to probe for the interesting events is by considering jets. Jets are re-

constructed objects, which high energy particles form due to underlying physics

principles and interaction with the detector material. By being able to determine

the origin of a jet, one can probe the events containing heavy flavour quarks and

by doing so identify collisions of interest in searches for new physics, which will

help to broaden the general understanding of fundamental particle physics. This

means that all top analyses heavily rely on the identification of jets originating from

a b-quark. The ATLAS observation of H → bb̄ decays in 2018 [7] relied essentially

on the tools to identify the origin of a jet, in particular if the originating particle

1



1. Introduction

is a b-quark. This underlies the extreme importance of the ATLAS collaboration to

provide its physics analyses with the best possible tools to identify the originating

particle of a jet.

Naturally, the classification of the jet origin is a multi-class problem, as jets

form from many different particles, mostly light-flavour, c- and b-quarks. Neural

Networks are known to work exceptionally well for images on predicting the classi-

fication of a visualised object based on pixel information by adapting a multi-class

output. Classifying the origin of jets is not that different from a conceptual point of

view. Therefore, a Neural Network provides a perfect solution to the task of jet ori-

gin classification. The main topic of this thesis is the introduction and establishment

of a new family of multi-class jet origin identification algorithms called DL1 [1, 2].

A DL1 algorithm provides a single trained Neural Network to identify the origin

of jets as a tool to assist in probing collisions at the Large Hadron Collider for

new physics and precision measurements. DL1 is to be used on pp collisions data

collected during Run 2 recorded by the ATLAS collaboration at the Large Hadron

Collider from 2015 to 2018 and beyond. It is constructed on simulated pp collision

data using the official full ATLAS simulation chain using supervised learning and

calibrated using recorded collision data.

This thesis is structured as follows. In Chapter 2 the particle physics theory is

explained. This is followed by an overview of the experimental set-up of the Large

Hadron Collider and the ATLAS detector in Chapter 3. From the recorded data from

the detector measurements physics objects are reconstructed, which is described in

Chapter 4. The principles for supervised learning which are relevant in the context

of this thesis are outlined in Chapter 5. The context for jet flavour identification

in the ATLAS collaboration is presented in Chapter 6, where the low- and high-

level jet flavour tagging algorithms are introduced. In Chapter 7 the design of a

new family of jet flavour identification algorithms is described in detail and it is de-

scribed how the current variants of DL1 flavour tagging algorithms are optimised.

The performance of the currently adapted variants to be used for physics analyses

is discussed in Chapter 8. Finally, the conclusions from this body of work are pre-

sented in Chapter 9 and an outlook on ideas for possible future developments for

the DL1 flavour tagging algorithm family is presented.
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2. The Framework of Particle Physics

Contents

2.1 The Standard Model . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Symmetries in the Standard Model . . . . . . . . . . . . 6

2.1.2 Electroweak Interactions . . . . . . . . . . . . . . . . . 7

2.1.3 Quantum Chromodynamics . . . . . . . . . . . . . . . 9

2.1.4 The Hadronic Model . . . . . . . . . . . . . . . . . . . 11

2.1.5 Mass Generation and the Brout-Englert-Higgs Mechanism 12

2.1.6 Successes of the Standard Model . . . . . . . . . . . . . 13

2.1.7 Shortcomings of the Standard Model . . . . . . . . . . 13

2.2 Beyond the Standard Model . . . . . . . . . . . . . . . . 14

2.3 Simulation of Interactions . . . . . . . . . . . . . . . . . 16

Particle physics aims to provide a mathematical description of nature. This in-

cludes constructing this description on the understanding of fundamental laws of

nature and explaining phenomena in the universe from the largest to the smallest

scales. Theoretical models are constructed to describe nature with the highest pos-

sible precision in order to describe and predict the behaviour of the smallest particles

in our universe and their interactions among themselves. Particle physics is so far

best described by the Standard Model (SM), a theoretical model which comprises

the elementary particles observed in nature and their interactions in three of the four

fundamental forces of nature. The scope of this chapter is to provide the foundation

of particle physics theory for this thesis. First, the SM is described with particular

emphasis on the decays of heavy elementary particles. The classification of the pri-

mary elementary particle of these decays and the resulting resulting decay cascades

is the subject of this thesis. Alongside the introduction of the elementary particles

and their properties, the generation of their mass is discussed in this chapter. A more

detailed introduction can be found in Ref. [8, 9].
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2. The Framework of Particle Physics 2.1. The Standard Model

However, the full picture of physics phenomena is still incomplete when con-

sidering only the SM, motivating searches for physics beyond the SM. In order to

test the predictions of the SM or look for deviations in comparisons to data, simu-

lated predictions are required. For these simulations the Monte Carlo (MC) method

is used to simulate elementary particle interactions. An overview of the technique

used for these simulations is also provided. The simulations provide predictions

on processes using the same physics objects as expected in reconstructed collision

events and is as close as possible to the recorded data of known processes.

Natural units are used throughout this thesis, setting the reduced Planck constant

(~) and the speed of light in a vacuum (c) to unity, defining ~ = c = 1, unless

stated otherwise.

2.1 The Standard Model

The SM is a renormalisable, Lorentz invariant, non-abelian gauge theory. It pos-

tulates the existence of few a elementary particles as its building blocks. These

particles are considered point-like without internal substructure or excited states.

An overview of all elementary particles in the SM is shown in Figure 2.1 with

particles classified by their intrinsic properties, called quantum numbers. These

quantum numbers also specify their properties and their potential interactions with

other elementary particles. These quantum numbers and properties are the spin, the

electrical charge, the colour charge, the rest mass and the weak isospin (I3), the

hypercharge (Y). In addition to the particles shown in Figure 2.1, for each of the

elementary particles described above there exists an antiparticle which has equal

values for its quantum numbers except for the electrical charge, which is of oppo-

site sign.

Individual elementary particles are classified by their spin into two major groups.

Elementary particles with 1/2-integer spin are the main constituents of matter and

classified as (matter) fermions. Fermions are gauge eigenstates of Yukawa fields.

The fermions of the SM are divided further into quarks and leptons based on their

electrical charge. Leptons carry integer electrical charge (Q = 0, ±1), while quarks

carry a fractional value (Q = ±1/3, ±2/3). There are three generations of each quarks

and leptons. The first generation consists of the lightest quarks, the up (u) and down

(d) quarks, the second of the charm (c) and strange (s) quark and the third genera-

tion comprises the top (t) and bottom (b) quarks. Electrons, muons and taus together

with their neutrino counterparts make up the leptons. The remaining elementary

particles, which have integer spin, are classified as bosons, with those which act as

4



2.1. The Standard Model 2. The Framework of Particle Physics

Figure 2.1: A schematic overview over the elementary particles of the SM. The par-

ticles are categorised into bosons and fermions according to their intrinsic spin. The

fermions are further separated into quarks and leptons depending on their integer

or non-integer charge. The lightest of either up- or down-type quarks and leptons

are referred to as first generation and with increasing mass as second and then third

generation. The overview has been adapted from Ref. [10].

5



2. The Framework of Particle Physics 2.1. The Standard Model

mediators in particle interactions classed to as gauge bosons. Bosons are the gauge

eigenstates of Dirac fields. The bosons of the SM are the gluons, the W± and Z0, the

photon (γ) and the Higgs boson (H). From them, the gluons, the W± and Z0 and the

photon (γ) are all gauge bosons and mediate one of three of the fundamental forces.

All of them are of spin-1 which makes them vector bosons. However, in contrast to

the other bosons, the Higgs boson carries spin-0 and is neither a gauge boson nor a

vector boson. It is instead classified as a scalar boson.

From a Quantum Field Theory (QFT) perspective they are the gauge eigen-

states of quantum fields. The theory unifies the strong, weak and electromagnetic

forces. Interactions are associated with the exchange of elementary particles and

the conservation of quantum numbers at interaction vertices. Gravity, the remaining

fundamental force, is not included in this model.

Processes in particle physics are most precisely described using the respective

Matrix Element which describes the state. Visualisations via Feynman diagrams

represent the essential information content in elementary particle processes and aid

faster perception for which they are widely used in particle physics. Each type of el-

ementary particle is represented by a different line with arrows indicating the parti-

cle flow direction in time. Following common conventions, time progresses forward

from left to right in the Feynman diagrams throughout this thesis. Fermions are rep-

resented by solid lines, scalars by dashed lines, abelian gauge bosons by wavy lines

and non-abelian gauge bosons by curly lines. Dots indicate the interaction vertex of

elementary particles where the electrical charge as well as energy and momentum

of ingoing and outgoing particles are conserved.

2.1.1 Symmetries in the Standard Model

The SM of particle physics is an empirically driven theory which relies on the ex-

perimental determination of many of its particles properties. Still it remains based

upon mathematical concepts assuming fundamental symmetries are the theoretical

foundation of nature. The quantum numbers and properties of the elementary par-

ticles result from these underlying symmetries. Each of the interactions described

encompassed in the SM is described using a fundamental symmetry group rep-

resented by Lie algebra terms and based on the underlying assumption of gauge

invariance. Using Lie algebra, the SM is represented by the gauge symmetry group

SU(3)C ⊗ SU(2)L ⊗ U(1)Y [11, 12]. The subscripts for each individual symmetry

group indicate the conserved quantum numbers in the process described by this Lie

group. According to the Emmy Noether theorem [13], each symmetry results in a

conserved quantity in interactions. This too is also valid for these gauge symmetry

6



2.1. The Standard Model 2. The Framework of Particle Physics

groups, with the nature of the symmetry related to the physical quantity.

2.1.2 Electroweak Interactions

The Electroweak (EW) force is one unified force at an energy of a unification of

the weak and electromagnetic forces at high momentum transfers but manifests

itself as two separate instances at lower momentum transfers. Therefore, before

discussing the unification, both instances the electromagnetic and weak forces are

described first before tying them together in the scheme of the Glashow-Weinberg-

Salam (GWS) theory [14] which first proposed this unification.

Electromagnetic interactions are described by Quantumelectrodynamics (QED),

a gauge field theory of phase transformations. These transformations correspond to

the symmetry group U(1)Q. Due to this symmetry, the total electrical charge of

incoming and outgoing particles is conserved in electromagnetic interactions. In

order for particles to interact via the electromagnetic force, the particles have to

carry a non-zero quantum number electric charge (Q), which results in Q being a

conserved quantum number in all interactions. This includes all quarks, charged

leptons as well as the W± gauge bosons.

The mediator of the electromagnetic interaction is the photon (γ), which is

massless. The photon itself does not carry electrical charge which prevents self-

couplings. Since the photon has zero mass, it has infinite range. However, the strength

of the interaction decreases with 1/r2, where r is the distance between the interact-

ing particles. The interaction vertex of QED is shown by the Feynman diagrams in

Figure 2.2. Note, however that this is not a physical process, as in this instance the

total momentum is not conserved since the photon is massless.

q

q

γ

`∓

`±

γ

Figure 2.2: Feynman diagram for a leading order electromagnetic interaction.

Fermion annihilation via incoming fermion and its anti-particle in the interaction

vertex leads to the creation of a photon.

The weak interaction is a rotation in isospin space, represented by the chiral

symmetry group SU(2)L. The chirality of a particle is an intrinsic property of a

particle and defined by the behaviour of the particle under Poincaré transforma-

tions. A particle can either have left- or right handed chirality. It is observed that the

7



2. The Framework of Particle Physics 2.1. The Standard Model

weak interaction only acts on particles of left-handed chirality or antiparticles of

right-handed chirality, resulting in the representation of the interaction by a chiral

symmetry group. The intermediate vector bosons W± and Z0 are predicted by the

gauge theory description of the weak interaction, where they are the forces medi-

ators with a conserved quantity of I3. The basic interaction vertices are detailed in

Figure 2.3 and the self-couplings of the mediators are shown in Figure 2.4.

f

f

Z0

(a) Neutral Current

f

f
′

W±

(b) Charged Current

Figure 2.3: Feynman diagram for a weak interaction vertex. Here, fermion annihi-

lation leads to the emission of a vector boson from the interaction vertex. Since the

Z0 boson does not carry charge, this is referred to as neutral weak interaction or

weak neutral current (NC). An example is given in Figure 2.3a. The W± however

carries positive/negative charge and therefore is referred to as weak charged (pos-

itive/negative) interaction or weak charged (positive/negative) current as shown in

Figure 2.3b.

W∓

W±

Z0

Z0

Z0

Z0

W±

W∓ W∓

W± Z0

Z0 Z0

Z0

Figure 2.4: Feynman diagrams of self-couplings of vector bosons W± and Z0.

The weak interaction only couples to left-handed particles and is divided into

neutral current interaction or charged current interactions. The separation, which

is shown by Figures 2.3a and 2.3b, is due to the force carriers charge with the Z0

8



2.1. The Standard Model 2. The Framework of Particle Physics

being charge neutral and the W± being electrically charged. The phrasing refers to

the propagation of electrical charge in the gauge boson propagation.

Quark generation changing weak decays suggest the conversion of quark flavour.

At least three generations are required for the theory to explain the observations of

quark flavour changing currents in charged current interactions. A differentiation

is required between observed quarks, referred to as weak eigenstates in weak in-

teractions, and the physical quarks d, s and b, which are generally referred to as

mass eigenstates. It has been experimentally proven that in weak interactions we

observe the mixing of mass eigenstates via linear combinations. The linear mix-

ing is described in Equation 2.1. The transition magnitudes |Vfi|, where i denotes

the up-type quark flavour and f the final down-type quark flavour, are determined

experimentally and make up the elements of the Cabibbo-Kobayashi-Maskawa ma-

trix (VCKM ) [15] as shown in Equation 2.1. It is only due to the short range of

the weak force, that the quantum number is generally assumed to be approximately

conserved.


d′

s′

b′

 ≡ VCKM


d

s

b

 ≡


|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|



d

s

b

 (2.1)

The GWS model proposes the unification of the electromagnetic and the weak

forces by postulating that their gauge bosons are different manifestations of the

same force, named the EW force. The weakness of the weak coupling in comparison

to the electromagnetic coupling is attributed to the large masses of the mediating

vector bosons.In the unified EW group the conserved quantity for U(1)Y is Y, which

relates linearly to the weak isospin and the electrical charge as shown in

Q = I3 +
Y

2
. (2.2)

Due to this relation, the symmetry condenses down to SU(2)L ⊗ U(1)Y in the

scheme of the EW unification, with U(1) operating on the weak hypercharge (Y)

and SU(2) on the third component of the weak isospin (I3).

2.1.3 Quantum Chromodynamics

In QFT, the strong interaction is described by Quantum Chromodynamics (QCD).

It is represented by the non-Abelian colour symmetry group SU(3)C , which reflects

the symmetry of the quantum number colour (C). This quantum number is not re-

ferred to as a number but rather a property, expressed as being red (r), green (g) or

9
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blue (b). The colour naming convention is based on optics arguments. Similar to

optics where the mixing of specific colours leads to white, it is also the case regard-

ing the quantum number colour that specific colour combinations lead to colourless

particles. Analogous to the electric charge, the total colour is globally conserved in

all elementary particle interactions. QCD is invariant under rotations in the isospin

space, an internal symmetry, which is only concerned with the relation between

elementary particles. It follows therefore that the conserved quantity in QCD inter-

actions is the quantum number colour.

The associated interacting vector bosons which act as force mediator are the glu-

ons. Gluons themselves carry colour, namely one unit of colour (r/g/b) and one an-

ticolour (̄r/ḡ/b̄), and couple to any elementary particle which carries colour, quarks

as well as other gluons. Since quarks and gluons are the constituents of protons,

together they are referred to as partons. When interacting with colour carrying el-

ementary particles, these interactions induce a colour change in the particles they

interact with and can be visualised as a flow of colour in Feynman diagrams. The

colour change depends on the colour state of the gluon. From the SU(3)C group it

can be derived that there is a colour octet and one colour singlet state of which there

exist eight linearly independent colour states. Each of these linearly independent

colour states of a gluon can be expressed via the Gell-Mann matrices. Similar to the

gauge bosons of the weak force, the gluons also exhibit self interactions. The QCD

interaction vertices are shown by the Feynman diagrams in Figure 2.5.

q

q

g

g

g

g

g

g g

g

Figure 2.5: Feynman diagrams for the strong interaction (QCD).

Naturally occurring free particles are colourless. This principle is known as

QCD confinement and as a logical consequence it follows that quarks are not ob-

served in free states. It can be concluded from this that composite particles, called

hadrons, consisting of bound states of multiple quarks, carry colours which in total

are colour neutral. The most common examples of hadrons are mesons or baryons

which are composed of two or three quarks respectively When separating the con-

stituents of such a particle which is composed of quarks, an qq̄ pair is created from

the vacuum which create bound states with the original constituents. Those bound

states each remain colourless.
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The exhibition of self interaction introduces gluon loops. Due to this, the cou-

pling strength of QCD vertices is not only influenced by positive contributions from

quark polarisation but also negative contributions from gluon polarisation which de-

crease the coupling strength. In the determination of the coupling strength of QCD

the parameter a weights both contributions against each other and provides a sign

to the coupling strength, determining whether the force increases or decreases over

short distances. The determination of this parameter is given by

a = 2f − 11n,

where the contributions from both quark polarisation and gluon polarisation are

related to the number of available respective particles of interest. The value of f

refers to the number of quark flavours which is relevant for contribution from quark

polarisation. The contribution for gluon polarisation is accounted for by the value of

n, which refers to the number of colours. With six quark flavours and three colours,

the value of a is -21 and therefore the effective QCD couplings therefore increase

over short distances and therefore for interactions of higher momentum transfer.

This would meant that an infinite amount of energy is required to pull a quark out

of a composite particle. However, this is in disagreement with observation, from

which is clear that this task is achievable requiring finite energy, namely only about

the energy to create the qq̄ pair.

Various screening and anti-screening effects compete depending on distances.

Anti-screening effects of higher order couplings involving gluons cause the cou-

pling strength of the strong interaction to be dependent on the distance between the

interacting particles. This behaviour is known as asymptotic freedom. As a result,

the interaction coupling constant is better described to be a running coupling con-

stant regarding distance and energy transfer scales. As a consequence of asymptotic

freedom, gluons couple weakly at high energies and short distances but stronger

at lower energies and larger distances. It is therefore possible to describe and treat

coloured particles independently at high energies and small distances. Doing so

makes it possible to use perturbation theory to describe interactions of individ-

ual quarks. This in turn simplifies the calculation of a quantitative cross section

in hadronic interactions.

2.1.4 The Hadronic Model

Particles carrying the quantum number colour are not observed in their free state but

only composite bound states after undergoing the process of hadronisation. Hadro-

nisation occurs at all energies and effectively includes the creation of qq̄ pairs from

11
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the vacuum which then bound to the original unbound quarks to form colourless

bound states. The quarks are then held together by the strong force in bound states

as hadrons. In high energy particle collisions, hadronisation and radiation transform

out of the original single quark a cone-shaped cascade of particles.

However, there is one quark that does not undergo hadronisation. Due to its high

mass, the lifetime of the top quark is shorter than the time required for hadronisation

to take place. This results in its decay before it can form a free isolated bound

state. The decay probability of the top quark, which is referred to as its branching

t

W±

b

Figure 2.6: The Feynman diagram of the dominant decay mode of the top quark.

ratio (BR), to the b-quark is close to unity with the other BR being negligible and

it can be assumed that in most cases, the top quark decays into a b-quark and W±

vector boson as shown in Figure 2.6. The W± particle then subsequently decays

either hadronically or leptonically resulting in different final states.

While top quarks decay before hadronisation can occur, this is not the case for

the b-quarks. Although b-quarks are approximately 41 times lighter compared to the

top quark, they are still relatively heavy compared to the other quarks - three times

heavier then the next heaviest quark (c-quark) and about 43 times heavier than the

next-to-next heaviest quark (s quark). This leads to a few very unique consequences

which are used in the classification of the signatures originating from hadrons con-

taining b-quarks. Compared to hadrons formed from the other quarks, b-hadrons

have a relatively long lifetime (τ ' 455 µm [15]) as well as harder fragmentation,

which leads to a higher number of decay products and a substantial leptonic BR.

Therefore, the identification of hadrons containing b-quarks plus the W± allows

experimental physicists to spot top quarks and thus provide a window into the prop-

erties of a bare top quark.

2.1.5 Mass Generation and the Brout-Englert-Higgs Mechanism

The above description of the SM only allows for mediators for gauge invariance.

Incorporating mass terms would break essential aspects of the theory. For the above

theory to preserve gauge invariance, all gauge bosons should be massless.

12
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However, the W± and Z0 bosons are observed to be massive in nature, which

would break gauge invariance, which is one of the underlying principles of the SM.

Therefore, in order to preserve gauge invariance, the overall symmetry needs to be

broken in the EW sector.

This means that the symmetry is not apparent in the ground state, i.e. the vac-

uum. Instead it can be chosen from a degenerate set of ground states. This ability

to choose the physical vacuum breaks the symmetry. The gauge boson thereby ac-

quires an an additional longitudinal polarisation, extending its previous two degrees

to three, which allows it to be massive as only massive particles can have longitudi-

nal polarisation.

2.1.6 Successes of the Standard Model

Over the past decades it has been found that the predictions by the SM match ob-

servations in data astonishingly well [15]. One example is given by the anomalous

magnetic dipole moment of the muon, which is measured up to a precision of parts

per million. The Muon g-2 experiment [16] at Fermilab is testing the precision of

this value further to a precision of 0.14 part per million.

One of the major successes of the SM was the prediction of the third generation

quarks before the discovery of the b-quark.Studies on meson mixing, the observa-

tion of suppressed KL decays into either two neutral or opposite charged pions,

lead to the conclusion that interactions are not symmetric under CP transformation,

which is known as CP symmetry, and therefore that the VCKM /∈ <. It can therefore

be concluded that the SM involves at least three generations of quarks. The b-quark

was discovered via the discovery of the Upsilon (Υ) meson, a bb bound state. This

hinted at the existence of the top quark, but its experimentally determined mass was

much higher than anticipated, making its observation difficult. Perturbation theory

and higher order corrections together with precise measurements of SM quantities

allow theorists to predict the top quark mass precisely using the massive gauge

bosons of the weak interaction. It was subsequently observed about twenty years

after its postulation [17] at the Tevatron. Also the Higgs boson was fundamentally

required in the SM and observed only in 2012 [18] at CERN.

2.1.7 Shortcomings of the Standard Model

Despite its successes there are however aspects in particle physics which the SM

fails to address. For example, the SM does not provide a valid candidate to account

for Dark Matter (DM) or dark energy and therefore misses to account for essential

13



2. The Framework of Particle Physics 2.2. Beyond the Standard Model

aspects of nature, which are observed in cosmological observations of the cosmic

microwave background and galaxy evolution.

One of the major failings of the SM is the fact that it is not able to incorporate

gravity in the model. It can be considered a coherent theory of the forces up to a

certain strength when dealing with elementary particles as gravity can be neglected

at subatomic distances. However, this incompleteness does not fit with the image

of nature following a coherent theory in the description of all elementary particle

interactions.

Furthermore, it would be mathematically desirable to have an extension to the

EW unification which unifies all three forces of the SM into one single force and one

single common underlying symmetry. However, even when expanding the interac-

tion energy further to higher energy scales, current predictions show that the cou-

pling strengths do not converge towards the same value. There is, however, no nec-

essary reason to assume that nature has to behave like this.Similarly, the observed

mass of the SM Higgs boson is much smaller than expected. Only very careful fine-

tuning of the parameters in the SM would lead to the loop corrections necessary to

account for the observed mass. Including these complicated loop corrections is not

straightforward. This issue is called the naturalness problem, and seeks to describe

nature in a concise way without the need for complicated loop corrections. Again,

this aspect is only motivated by the desire for a beautified theory.

In addition, similar to the observed mixing of flavours in the quark sector, neu-

trinos are also observed to oscillate between different flavours. This is currently not

described by the SM, where they are often assumed massless. In order to accommo-

date this mixing, neutrinos are required to have mass.

2.2 Beyond the Standard Model

The failings of the SM suggest that there is more physics Beyond the Standard

Model (BSM) theory required to describe nature. One of the theories is that the SM

is just a low-energy manifestation of an underlying Grand Unified Theory (GUT),

for which all coupling constants converge towards a common value at high enough

energy. A common prediction for these GUT is that the proton may be unstable.

However, so far there is no experimental evidence to support such theories.

Supersymmetry (SUSY) models build upon the underlying symmetries in the

SM. In SUSY, additional underlying symmetries between bosons and fermions are

assumed, which result in the prediction of one or more supersymmetric partners for

each elementary particle of the SM. These are, for example, called squarks (q̃ ) in the
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case of the supersymmetric partner group of the quarks. In this schema the sbottom

particle (b̃) is the supersymmetric elementary particle partner of the b in a minimal

supersymmetric standard model theory. These theories are referred to as minimal

because they only predict one supersymmetric partner per elementary particle. A

large spectrum of SUSY models are possible. Individual SUSY theories vary in

the number of predicted additional elementary particles, as well as their proper-

ties and parameters. Different SUSY models provide potential solutions to various

shortcomings of the SM. For example, the naturalness problem could solved by in-

troducing Feynman diagram loop corrections from the supersymmetric particles to

the SM Higgs boson mass which would be reduced to a much lower scale than its

true value. A much higher true value of the Higgs mass would then make the whole

theory renormalisable. In addition, many of the SUSY models predict elementary

particles which would be DM candidates. SUSY is also an important component of

the fundamental assumptions of many string theory models, which attempt to unify

gravity into particle physics.

Other exotic BSM theories predict additional versions of the SM particles with

the same quantum numbers as their SM counterpart but larger masses. One example

would be the possible existence of the Z ′ and W′ heavy gauge bosons. Their decays

would result in charge asymmetries which can be detected via determination of the

lepton charge at high-pT.

However, so far there has been little evidence from either direct or indirect

searches for any of the fundamental particle physics theories beyond the SM. Simi-

larly, there are also no observations for particles which are not predicted by the SM.

It can therefore be concluded that no extension of the SM provides better predictions

than the SM on its own.
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2.3 Simulation of Interactions

In a pp collision event the partons interact with each other. If two partons interact

and it involves a high pT transfer, it is known as a hard scatter. The hard scatter is

the kind of interaction where interesting physics happens. While it is more likely

for two partons of the proton constituents to interact, it can happen that more than

two partons interact as the protons collide, which is referred to as Multi-Parton

Interactions (MPI). The partonic final states of pp collisions use Matrix Element

(ME) for the calculation of the hard scatter in the MC method. Proton Synchrotron

(PS) modelling is used for the simulation of the ingoing and outgoing partons of the

hard scatter. The interactions of the partons from the beam particles is accompanied

by the emission of low-momentum gluons, referred to as soft radiation, in the initial

and final state of the hard scatter, known as Initial-State (QCD) Radiation (ISR) and

Final-State (QCD) Radiation (FSR). This radiation and the presence of MPI lead to

additional activity in the event, which is referred to as the Underlying Event (UE).

The outgoing partons of the hard scatter create a Parton Shower (PS). The outgoing

partons as well as the PS constituents both hadronise to build colourless bound

states due to colour confinement. Of primary interest are the initial hard scatter and

the associated PS.

Simulated high-energy pp events are generated to allow the comparison of the

collision data with physics knowledge and theories. The simulation is done using

general-purpose MC event generators [20] in the QCD factorisation model. The

factorisation model divides the simulation into steps with energy levels of the mo-

mentum transfer of the particle interaction interaction separating them at the fac-

torisation scale µF . Individual steps in the event simulation using the factorisation

model are either based on first principles and can be calculated exactly or are based

on models whose parameters are empirically determined. The components in the

simulation of an event are shown in Figure 2.7, where the different steps involving

particle interactions using the particle notation convention from Feynman diagrams

are each represented by different colours. In addition, for a realistic representation

of known physics knowledge, the simulation is also interfaced with detector specific

simulation software. This is done to include the interactions with the detector mate-

rial and signal digitisation as accurately as possible and how the physics objects are

recorded. This is necessary for the recorded signals to be as close as possible to the

recorded collision data.

The processes of interest are the high-momentum interactions like the initial

parton interaction in an collision event, where the highest energy scales of the event
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Figure 2.7: Schematic overview of the processes involved in simulating a pp scat-

tering event at high energy [19]. The hard scatter is shown in red and multi-parton

interactions are shown in purple. Initial- and final-state radiation as well as PS sim-

ulation processes are shown in blue. Hadronisation processes are shown in green.

Gluon radiation is shown in yellow.
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are involved, is referred to as the hard scatter. The process is calculated up to a fixed

order in QCD and QED, which requires the ME, Parton Density Function (PDF)

and the phase space of the interaction. Higher order QCD calculations of the ME of

the process increase the precision but also result in higher computational costs.

Of less interest but an important aspect to consider as a source of noise are

additional partons, which are not produces in the hard scatter and lead to additional

activity in the event. They originate from scattered, annihilated and created partons

in the collision event which didn’t partake in the hard scatter of interest, the MPI,

ISR, FSR as well as any soft radiation along the decay and propagation chains of

the partons. They are known as the UE and can lead to a higher jet multiplicity in

the event.

Parton Distribution Functions

As protons are composite particles of individual parton constituents, only individual

partons interact with each other in collisions, an experimentally determined model

is required to describe the probability for any given parton to carry a certain fraction

of the total momentum of the proton. A model, which provides these probabilities,

is called a PDF. These models are independent of the colliding particles and are

determined through Deep Inelastic (lepton) Scattering (DIS). As well as being used

to determine the energy distributions of the incoming partons in the hard scatter, the

PDF is used in the PS as well as for the simulation of the MPI.

An essential choice for the representation of physics objects in the simulated

data is the choice of flavour scheme for the PDF, which can either be a three

flavour (3F), four flavour (4F) or five flavour (5F) scheme. The 5F scheme takes

b-quarks into account as partons which can be found in the initial high-energetic

protons. However, they are treated as being massless and therefore mass effects are

not included. This aspect is included in the 4F scheme but there b-quarks are not

treated as constituents which can be found in the high-energetic protons and there-

fore will not participate in the initial hard scatter. When using the PDF with the

4F scheme for the proton, b-quarks can only occur from decays or gluon splitting,

but they can have mass. The 3F scheme also excludes c-quarks as constituents and

particles involved in the hard scatter.

Parton Shower and Hadronisation

The partons from the hard scatter evolve in a succession of emissions of ingoing

and outgoing partons. The momentum is conserved in this evolution and transferred

from the initial momentum of partons after the hard scatter to final-state particles
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with energies of about 1 GeV, which matches confinement of the partons. The final

states of the PS consist of a bunch of colinear partons, which are naturally arranged

in a cone-like shape, and as such are referred to as jets. The final states of the PS

can overlap with the same final states from the ME from the hard scatter if the

calculation is done at Next-to-Leading Order (NLO). In order to achieve the best

simulation for multi-parton states, this overlap needs to be taken into account when

interfacing PS and ME calculations. This is done either via the overlap removal,

where simulated events are removed, or overlap subtraction, where MC weights are

assigned to the simulated events which can result in negative MC event weights.

A dipole approach is used by simulation generators like the general-purpose

generator Pythia 8 [21], where the PS is modelled using the emission of colour

dipoles, which automatically preserves colour flow. QED radiation is simulated us-

ing the same approach as for QCD radiation as both can occur in pp collisions.

However, in comparison to QCD radiation, where colour flow is crucial in the evo-

lution, charge conservation determines the basic dynamics of QED radiation. Only

Leading Order (LO) calculations are considered due to the strength of the coupling

constant, which is much smaller than the strong coupling constant.

The simulation of the hadronisation process transforms the final state coloured

partons into colour neutral hadrons. Hadronisation requires modelling from experi-

mental data as it cannot be calculated from first principles. The two methods avail-

able to model hadronisation are string fragmentation, of which a variant is applied in

Pythia 8 simulations, and cluster fragmentation. String fragmentation is built on the

QCD concept of linear confinement at large distances. Its theory predicts breaks in

the colour flux tube between a qq̄ pair, which defines a string, at large enough invari-

ant masses. The cluster fragmentation method is based on a pre-confinement prop-

erty of PS and results in a uniform mass distribution at low energy scales. This leads

to limited pT spectra and, among other effects, to a suppression of hadrons including

heavy flavour quarks. Using data from the Particle Data Group (PDG) database [22]

in these models is not enough to simulate hadronisation as there are a lot of free

choices required in the modelling or tunable parameters. Therefore, dedicated sim-

ulation software are used, which specialises in different aspects of the simulation

of physics processes. EVTGEN [23] is a software packages, which specialises in

the simulation of hadronic decays, notably for decays of the b and c-mesons. Other

hadronisation simulation generators like Herwig++ [24] or SHERPA [25] are more

suited to model τ-decays as they include a more suited description of spin effects

involved in the decay of the τ lepton. The spin of the t quark is modelled with

MADSPIN to preserve the its spin information in the decays.
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Consistency with experimental observations is essential for the validity and ac-

ceptance of physics theories like the Standard Model or Beyond the Standard Model

Theories. The Large Hadron Collider, located at European Organisation for Nuclear

Research (CERN) near Geneva, is the largest and most powerful human engineered

particle collider. It is therefore a powerful tool to test the Standard Model and the-

ories which go beyond it. Large general-purpose detectors which are designed to

operate in the environment around the particle collisions of the Large Hadron Col-

lider are of special importance to these tests. With the ATLAS detector being the

largest general-purpose detector at the Large Hadron Collider (LHC), its design

and performance is of special interest. As is the Compact Muon Solenoid (CMS)

detector, the second largest general-purpose detector at the LHC with a different

construction set-up but the same scientific aims.

In the following sections of this chapter, a broad overview of both the accelerator

and storage systems of the LHC are presented. This includes the CERN accelerator

systems which produce beams of high energy particles. These beams are injected

into the LHC which then subsequently accelerates the beam particles even further.
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After the quick overview over the supplying beam facilities, the main focus of this

chapter is the design of the ATLAS detector and its subsystems relevant to work

presented in this thesis.

3.1 The Large Hadron Collider

The LHC [26] is a circular hadron accelerator with a 27 km circumference. Its main

task is to accelerate pre-accelerated particles even further to nearly the speed of

light in vacuum and subsequently systematically collide those beams. For this the

accelerator relies on a series of other accelerating units, referred to as the injector

chain. Each subsequent accelerator in this injector chain is dedicated to accelerating

particles to a certain energy. The beam of particles is then injected into the LHC. A

schematic overview of connected facilities is shown in Figure 3.1.

Figure 3.1: The LHC and its surrounding accelerator and storage units as well as

detector systems [27].

The injector chain [26] consists of a number of subsequent accelerator systems

and storage rings. For protons, it includes a linear accelerator (Linac 2), the Proton

Synchrotron Booster (PSB), the PS and the Super Proton Synchrotron (SPS). The

delivery of ultra high energy protons starts with a bottle of hydrogen gas. Upon re-

lease of the hydrogen gas its electrons are removed using an electric field to retrieve

pure protons. These protons are then accelerated using a linear accelerator. There,

electric fields of alternately charged conductors accelerate the protons to energies

of 50 MeV. The next acceleration steps happens in the PSB, where four synchrotron

rings which are stacked upon each other increase the energies of the protons fur-
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ther to 1.4 GeV. The beams are then passed on into the PS using a two-batch filling

scheme. The beam batches referred to as bunches from there on. The bunch struc-

ture is then further changed by the subsequent associated accelerator systems. Like

the PSB, the PS is also a synchrotron but it increases the energy of the proton beams

to 25 GeV. After this, the proton beams are further accelerated in the SPS, another

synchrotron, up to energies of 450 GeV. The beams then progress in bunches via

two injection points into the LHC.

Ion beams are accelerated similarly but in a different accelerators up until injec-

tion into the PS where they replace the protons in case of dedicated runs. The heavy

ions (A) are first accelerated by a dedicated heavy ion linear accelerator (Linac 3).

The heavy ion beam energy which can be delivered is referred to as energy per

nucleon (u), as the element chosen for heavy ion runs might vary. At the Linac 3

the heavy ions are accelerated to 4.2 MeV/u before being further accelerated in the

Low Energy Ion Ring (LEIR) facilities to 14.8 MeV/u. From here they are injected

into the PS, which accelerates them further to 4.25 GeV/u and then into the SPS

which subsequently accelerates them to 177 GeV/u before injection into the LHC.

Heavy ions like Lead, used in p− Pb or Pb− Pb collisions, or Xenon, selected for

Xe−Xe collisions, are accelerated in the LHC to energies resulting in a centre of

mass of 5.02 TeV/u during Run 2 data taking, exceeding a centre of mass energy of

1 PeV.

In the LHC, the beams of particles are then further accelerated, travelling next

to each other in opposite directions around the ring in two separate beam pipes. In

addition, they are also arranged into bunches of particles to provide cleaner times-

tamps and have better control over the collision parameters. While circulating the

beams in the LHC, superconducting dipole electromagnets provide strong magnetic

fields to bend the beams to keep them within the beam pipes and re-circulating

the beams within the LHC storage ring to bring the beams into the desired final

form and up to the desired collision energy. As this takes time and slight variations

in particle velocity directions within the beam might cause the beam to fizzle out,

quadrupole magnets are used to focus the beams to prevent losses along the travel

and increase the particle density within the beams. Along the LHC exist four beam

crossing points for collisions of the beams to take place. These four points coincide

with the nominal interaction points for the four major LHC experiements. Next to

ATLAS and CMS this includes LHCb and A Large Ion Experiment (ALICE). The

Run 2 beam centre of mass energy of pp collisions is 13 TeV.
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3.1.1 Luminosity Measurement at the Large Hadron Collider

Alongside the beam energy, another important design parameter of the LHC is the

instantaneous luminosity (L), given by

R = L× σint. (3.1)

It represents the proportionality factor between the event rate R and the interac-

tion cross section σint of the beam particles. The higher the instantaneous lumi-

nosity, the higher the number of collisions per time interval and the denser the

environment around the beam collision point. This results most importantly in an

increase in a higher number of interesting physics events but also in the downside

of a higher radiation for the entire detector environment. The design luminosity

of the LHC is L = 1034 cm−2s−1 with a peak luminosity during Run 2 of about

2.14 × 1034 cm−2s−1. However, since the beams are delivered in bunches by the

LHC, the luminosity per bunch crossings, the bunch luminosity (Lb) [28], is de-

fined as

Lb =
µfr
σinel

. (3.2)

Lb is used to provide a measure of the intensity of the beams per bunch and is

calculated using direct measurements of the beam parameters [29, 30]. The pile-up

parameter µ represents the average number of inelastic interactions per bunch cross-

ing, fr is the bunch revolution frequency and σinel is the inelastic cross section of

the colliding beam particles. The uncertainty on Lb contributes a major systematic

uncertainty in the cross section measurement of SM precision measurements and it

also influences background levels in BSM searches. The quantity Lb therefore is a

measure to quantify the number of expected inelastic interactions.

However, since data taking over pp physics runs with Run 2 conditions involves

bunch separations of 25 ns, the total luminosity is of more practical value. The

calculation of the total luminosity via integration of L over time, taking into account

multiple bunch crossings, is given by

L =

∫
L dt = Σnb

i=1Lbi
= nb〈Lb〉 = nb

〈µ〉fr
σinel

. (3.3)

Due to statistical variations in the distribution of particles in bunches, the pile-

up parameter µ is measured across multiple bunch crossings to get the total number

of collisions. Over the entire LHC Run 2, an integrated luminosity of 158 fb−1 [31]

was delivered.
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3.2 The ATLAS Detector

The ATLAS detector [32] is the a forward-backward symmetrical general purpose

particle detector for measuring pp, pA and AA collisions and probe the contained

physics. With a weight of 7 tonnes, it weighs about as much as the Eiffel tower. It is

located at Interaction Point 1, one of the LHC collision points which for ATLAS de-

fines the nominal interaction point (IP) where collisions are expected to take place.

To provide the largest possible coverage and efficiency for recording the kine-

matics and trajectory of particles created in collisions, the detector, which is cen-

tred around the IP, consists of seven different subdetectors which are layered con-

centrically around the detectors center. These seven subdetectors are the Pixel, the

SemiConductor Tracker (SCT), Transition Radiation Tracker (TRT), Magnet Sys-

tem, electromagnetic calorimeter (ECAL), hadronic calorimeter (HCAL) and the

Muon Spectrometer (MS). Their layering is closely related to their detection tech-

nique to target the measurement of different physics objects and particles produced

in the collisions. After introducing the coordinate system used by the ATLAS Col-

laboration, the main performance goals and the overall structure of ATLAS will be

discussed. After this the focus of this section will be on discussing the individual

layers from the IP outwards.

ATLAS Coordinate System

The IP is the origin of the right-handed coordinate system used by ATLAS. Its

individual axes are defined with the z-axis pointing along the beam line with the

x-y plane transverse to it. The x-axis points towards the centre of the LHC ring and

the y-axis points upwards. For convenience spherical coordinates (r,θ,φ) are used

superimposed on the right-handed cartesian coordinate system along the z-axis in

the transverse plane. In this superimposed coordinate system r is the radial distance

from the IP and φ is the azimuthal angle around the beam pipe.

The polar angle θ, the inclination with origin in the IP as calculated from the

positive z-axis, is expressed in terms of the pseudorapidity η , an approximation of

the rapidity y, which is defined via the energy E of the particle and its longitudinal

momentum component pz along the positive beam axis as

y =
1

2
ln

(
E + pz
E − pz

)
,

for which particle production is constant per unit. Unfortunately, the rapidity is not

necessarily Lorentz invariant under longitudinal boosts for all particle masses or
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speeds. The pseudorapidity on the other hand is an approximation in the relativistic

limit in a frame where objects only have a velocity perpendicular to the beam axis.

It is given by

η = − ln

[
tan

(
θ

2

)]
,

which is Lorentz invariant under longitudinal boosts along the beam direction. There-

fore, the pseudorapidity η is chosen and preferred compared to the rapidity y.

Performance Goals and Detector Overview

To perform high precision measurements of SM processes and searches for BSM

physics, it is essential to be able to measure collimated cascades of particles from

hadronic or electromagnetic processes (jets) and leptons as well as determine miss-

ing transverse energy (Emiss
T ). Measurements of the kinematic properties of particles

over a wide range of energies, from the GeV scale to a few TeV, are fundamen-

tal for physics analyses and need to be combined with high granularity for good

pattern recognition capability. Specially as new physics might be accessible via

high-pT jet measurements where the jets originate from a b-hadron, which creates

challenges especially for trajectory pattern recognition in densely populated envi-

ronments. Therefore, the detector which provides the data for any of the following

steps of object reconstruction, is required to have good particle triggering in place

and record data with very high precision and granularity, especially around the IP.

The detector especially needs to provide very good particle identification and pre-

cise momentum measurement capabilities. The same holds true for the containment

and precise measurement of particle cascades created by hadronic or electromag-

netic particles from collisions. The detector components are required to be highly

resistant to radiation in order to operate in the harsh environment surrounding the

beam collisions. Support structure, cables and different operating temperatures of

subdetector systems also need to be taken into account.

To match its performance goals, ATLAS utilises multiple different subdetectors.

Moving from the interaction point outwards, ATLAS consists of a tracking detector

system for interaction origin and particle travel path determination, surrounded by a

strong solenoidal magnet to bend charged particles. Moving outwards radially, this

is followed by both an electromagnetic and a hadronic calorimetry system for parti-

cle cascade generation and measurement. The final outermost subsystem is the MS

which is used to detect muons, resolve multiple trajectories ambiguities. Addition-

ally, the MS is encompassed by a toroidal magnetic field. A schematic overview of
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Figure 3.2: Schematic cut-away overview of the ATLAS detector with its individual

subdetectors [33].

the detector with its individual subsystems is shown in Figure 3.2. The individual

subsystems of the detector are described in the following sections of this chapter.

3.2.1 Magnet System

Magnetic fields bend the trajectories of charged particles due to the electromagnetic

interaction. This provides an easy tool for some subdetector parts to distinguish

charged from neutral particles and measure the momenta of charged particles more

precisely. In combination with momentum measurements this makes it possible to

quantify the charge of the particles. However, in other subdetectors a deflection in

the travel direction for charged particles might be undesired and distort the measure-

ments of the energy deposits. The magnet system of ATLAS consists of a hybrid so-

lution with two different magnet arrangements. Each magnet arrangement provides

a uniform field for certain subdetector systems, whilst not introducing undesired

effects in the other detector subsystems.

The magnet closest to the IP consists of a thin superconducting solenoid magnet

which surrounds the Inner Detector cavity. It provides an axial magnetic field of 2 T

to enable trajectory signatures from charged particles to be distinguished from those

from neutral particles and momentum measurement.

The second magnet arrangement consists of several large superconducting air-
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core toroidal magnets encompassing the hadronic calorimeters. The air-core con-

struction was chosen to minimise material density. Here, multiple toroids are ar-

ranged symmetrically around the interaction point in the central (barrel) and for-

ward (end-cap) regions. A central barrel toroid, which produces a magnetic field of

strength 0.5 T, covers the range |η| < 1.4. End-cap toroids, one on either side of the

barrel, cover 1.6 < |η| < 2.7 and produce a magnetic field of the strength of 1.0 T

in the end-cap region. In the transition region between these two toroidal magnet ar-

rangements 1.4 < |η| < 1.6 the overlapping fields of the barrel and end-cap toroidal

magnets are used to provide the magnetic field. These toroidal magnets provide a

weaker magnetic field in comparison to the solenoid but over a much larger volume

to bend the muons as they are traversing through the muon spectrometer.

This hybrid solution provides suitable magnetic fields for the individual subde-

tector systems while not interfering with the particle cascades in the calorimeters,

where deflected particle trajectories would degrade the performance.

3.2.2 Inner Detector

The Inner Detector (ID) is the closest subdetector to the IP, operating in an environ-

ment with very high concentration of highly energetic particles where high radiation

resistance of the detector is essential. The system consists of three independent but

complementary systems, operating within an axial magnetic field, provided by the

ATLAS solenoid, to bend the trajectories of charged particles produced in collisions.

Each of these systems is composed of a barrel structure, with the detector elements

arranged in concentric cylinders around the beam axis and two end-caps, one on

each side of the barrel. In the end-caps the detector elements are either arranged

in disks or wheels, positioned perpendicular to the beam axis. Its design is a trade-

off between high performance and material density. More sensors would increase

the number of measurements but also increase the multiple scattering pollution via

the increasing interaction cross section with the detector material. This results in

an increased deflection in the particles travel direction due to multiple Coulomb or

hadronic interactions with the nuclei they pass through. This influences the paths

taken by the particles as they travel through the detector.

Following the flight path of scattered particles from the interaction point, layers

of semiconductor technology, first pixel detectors then silicon microstrip SCT, cover

measurements in the region |η| < 2.5. This is then followed by the straw-tube TRT

which covers the region η ≤ 2.0. The layout of the ID is illustrated in Figure 3.3,

where the different subsystems are pointed out.

The semiconductor sensors which are both used in the Pixel and SCT systems
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Figure 3.3: Schematic cut-away overview of the ATLAS ID and with its systems

labelled accordingly [34].

operate based on electron-hole creation, which creates a current which is then prop-

agated to readout electronics. Scattered particles deposit energy in these pixel detec-

tors from which particle trajectories, interaction origins and momentum measure-

ments can be reconstructed.

Pixel Detector

The pixel detector subsystem is closest to the IP. It consists of four layers of sili-

con wafer readout pixel detectors which are organised in a matrix arrangement. The

layers are arranged in concentric cylinders in the barrel region and as disks in the

end-caps. These pixel sensors make use of semiconductor sensors. Therefore, when

a charged particle is incident on a pixel, these detector layers provide discrete two-

dimensional space-point measurements. Their positioning provides the dimensional

expansion to a three-dimensional hit measurement with high granularity for good

pattern recognition performance. This is of special importance for the detection of

trajectories associated to b-hadron decays and being able to distinguish their signa-

tures from other decays in data as a b-hadron is exhibiting a secondary interaction

point upon its decay, which is displaced only by a few mm from the IP, depend-

ing on its energy. The innermost layer of Pixel is the Inner Barrel Layer (IBL) [35,

36], an upgrade for Run 2 of the LHC which increased the number of Pixel layers
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from three to four with the IBL layer even closer to the IP. This additional layer is

increasing tracking resolution near the IP and increases the resolution for particle

interaction points, which helps in the detection of b-hadron decays.

SemiConductor Tracker

The SCT system works similar to the Pixel detector described above with the change

to stereo strip detectors while maintaining high granularity. It consists of four coax-

ial cylindrical layers in the barrel region and nine disk layers at each end-cap side.

Here two strips measure back-to-back nearly simultaneously per layer of SCT with

one strip in each layer placed parallel to the beam direction and the other placed

back-to-back at angle of 40 mrad. This provides a measure for both θ and φ, which

allows a reconstruction of particle trajectories in three dimensions instead of only a

two dimensional plane.

Transition Radiation Tracker

The TRT is the outermost component of the ID. It consists of polyamide drift (straw)

tube technology segmented into a barrel component and 192 disks on each end-cap

side of the barrel. The straw tubes are filled with a Ar/CO2/O2 gas mixture and

contain a gold plated tungsten anode wire which collects the photon radiation of

transition radiation, which is generated with varying signatures by different charged

particles. This property enables the TRT with particle identification capability as it

is able to distinguish charged particles like electrons, pions, muons or kaons from

each other based on their energy deposition into transition radiation. This prop-

erty is largely used for electron identification against other signatures. The tubes

are stacked into many layers and are interleaved with dielectric transition radiation

generating material (polyethylene). By measuring the drift time, the tube segmen-

tation together with their measurements provide a three-dimensional hit measure-

ment. These tubes provide many hits, which contribute to the determination of the

pT resolution in the reconstruction of particle trajectories. The technology is well

suited for the high radiation environments expected in Phase 1 of the LHC.

3.2.3 Calorimetry System

The ATLAS calorimetry system has a fully φ-symmetric design and aims to mea-

sure the energy, position and momentum of electromagnetic as well as hadronic par-

ticles. The system comprises multiple calorimetry technologies organised in barrel

and end-cap structures, as shown in Figure 3.4, with coverage up to |η| < 5. The
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Figure 3.4: Schematic cut-away overview of the ATLAS calorimetry systems with

its individual systems labelled accordingly [37].

ECAL, together with the ID, is enclosed within a vacuum chamber. It focusses on

the detection and absorption of electrons and photons created in collisions and their

associated particle cascades. However, only a fraction of the energy of hadronic

particles is measured by this detector subsystem. Therefore, a complimentary outer

layer of calorimeters, the HCAL, surrounds the ECAL. The HCAL absorbs and

measures hadrons as well as particles of the resulting interactions with the detector

material.

Both the electromagnetic and hadronic calorimeter make use of an absorber and

active material. The absorber is a dense material, which increases the interaction

probability with the incoming particles from the IP, creating collimated cascades of

particles. The active material produces the signal for the measurement of the cas-

cade constituents. Each calorimeter module comprises three complimentary layers.

For the ECAL, the first layer provides a high precision position measurement with

a fine segmentation in η, whereas the segemtation in the first layer of the HCAL

is much coarser. The middle layer comprises more material to absorb most of the

energy of the cascade. The outer layer serves the purpose to estimate the amount of

energy escaping the module and has a coarser segmentation in η.

The ECAL measures the energy and location of electrons and photons via en-

ergy clusters and is built to contain the electromagnetic cascades of such particles
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within the ECAL volume. Lead plates are used as the absorber material. The elec-

tromagnetic cascades originating from electrons or photons are initiated and propa-

gated via bremsstrahlung and e+e− production. This chain of particle production in

the cascade continues until the energy is below the thresholds for these processes to

take place due to preceded energy depositions in the material. The ECAL collects

the signals from the electrons and photons. Liquid argon (LAr) constitutes the ac-

tive material between the absorber plates. A high voltage is applied across the LAr

to collect the ionisation electrons and amplify the signal. In the region which is cov-

ered by the ID, the ECAL has a higher granularity for more precise measurements

which also helps to match electron clusters to tracks in the ID.

The HCAL is a collection of sampling calorimeters which focus on measuring

the energy deposited by hadron-gernerated cascades of particles. These cascades

have a different lateral development compared to pure electromagnetic cascades as

the hadrons interact mainly via inelastic interactions with the absorber nuclei, pro-

ducing non-electromagnetic energy along further interactions. During the cascade

development, large amounts of pions are produced via inelastic interactions. Of

these pions, the charged pions decay leptonically into mostly a µ and νµ pair. How-

ever, the π0 mainly decays into two photons, resulting into an subcascade of electro-

magnetic particles. Within the hadronic cascades neutron capture leads to fission, a

release of binding energy, which escapes detection. The subdetector system is sur-

rounding the ECAL and has various components arranged in the barrel and end-cap

regions. These are the tile calorimeter, the LAr hadronic end-cap calorimeter (HEC)

and the LAr forward calorimeter (FCal). The tile calorimeter, which uses scintillat-

ing tiles as the active material, is split into a central barrel covering |η| < 1.0 and

two extended barrel partitions covering 0.8 < |η| < 1.7. The tiles are producing

the signal which is then propagated to photomultipler tubes using wavelength shift-

ing fibers. This technology provides the best cost-performance ratio as it provides

maximum radial depth at comparable low cost. Given the technologies sensitivity

to radiation when compared to other technologies, the system is protected against

radiation damage by the LAr electromagnetic calorimeter, which exposes it to much

lower radiation levels compared to other HCAL systems. The HEC consists of in-

dependent calorimeter wheels which use copper as absorber material and LAr as

active material. It is located behind the ECAL end-cap wheels extending over the

range 1.5 < |η| < 3.2. The FCal covers the highest pesudorapidity range of the

HCAL as it covers 3.1 < |η| < 4.9. Similar to the HCAL, the FCal also uses LAr as

active material but in addition to copper also uses tungsten absorber plates. While

the segmentation for the HCAL is coarser than for the ECAL, it can still precisely
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measure clusters and energy deposits.

3.2.4 Muon Spectrometer

The ATLAS MS detects charged particles and measures their momentum within

|η| < 2.7. As the name suggests, the focus is mainly on muons from collisions but

the system can also provide information to detect punch-through when a cascade

is not fully contained by the hadronic calorimeter. Muons might only leave a small

amount of energy deposit in the other subdetectors but the majority of their energy

would escape undetected. To prevent this and reduce material density in front of the

other subsystems, the MS is the outermost measurement system. It defines together

with its associated toroidal magnet system the detectors overall dimensions. As an

independent system, the MS is able to detect muons with momenta ranging from

∼ 3 GeV to about 3 TeV with the limiting factor arising from the bending force of

the magnet.

Figure 3.5: Schematic cut-away overview of the ATLAS MS with its individual

systems labelled accordingly, including the assisting air-core toroidal magnets [38].

As shown in Figure 3.5, the MS comprises complimentary tracking as well

as triggering chambers: Monitored Drift Tubes (MDTs), Cathode Strip Chambers
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(CSCs), Thin Gap Chambers (TGCs) and Resistive Plate Chambers (RPCs). The

magnetic fields enable momentum measurement for tracks with at least three hits in

the tracking chambers, the MDTs and the CSCs. Ionisation charge drift times within

the tracking chambers of up to 700 ns are possible. Therefore, the time stamp of an

incident charged particle is determined by the trigger chambers, the TGCs or RPCs,

and can then be compared with the collision time for possible matching. The trigger

chambers also provide information to systems which make quick decisions based

on predefined criteria on whether information is relevant enough to be kept or not.

These decision making systems are referred to as triggers.

The MDTs are pressurised drift tubes, which are monitored optically on their

positions and internal deformations. Within these tubes the pressurised gas gets

ionised by charged particles passing through. The ionisation current is travelling

via an applied electric field towards a wire in the middle of the tube where this

signal is collected. These drift tubes are arranged in chambers of three to eight

layers, which are stacked upon each other in parallel, and perform the precision

momentum measurement of charged particles. Each tube provides an independent

measurement in the bending direction η. The sizes of these chambers vary increase

the further away from the IP they are located. Their coverage is |η| < 2.7 with

the exception of |η| < 2.0 for the innermost end-cap layer. The CSCs measure both

track coordinates, one in the bending plane η and the other in the non-bending plane

φ, simultaneously are used in the innermost layer in the forward region. The system

encompasses the range 2.0 < |η| < 2.7, where the safe operation counting rates

for the application of MDTs are exceeded. For both systems the radial coordinate is

given by the modules location. Its resolution is of less importance given the distance

to the IP and the requirement for muons from collisions to leave matching hits in

the subdetectors which are closer to the IP. In comparison to the MDTs, CSCs have

a higher granularity as well as higher readout capability as well as a higher time

resolution and response. This makes them better suited for the region encompassing

2.0 < |η| < 2.7 where the particle flux and thus the muon track density is highest

and the background conditions more challenging. They also help to resolve multi-

trajectory ambiguities, where due to high densities the wrong trajectory might be

reconstructed because of wrongly associated hits.

The trigger chambers, TGCs and RPCs, are used to allow to make nearly in-

stantaneous decisions on the presence of muons and their basic properties. They

measure and allow to trigger on muons over the region |η| < 2.4 and measure two

coordinates of the charged particle trajectory hits. One is measured in η and the

other one in φ. In combination with MDTs these systems are providing the φ co-
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ordinate to the MDTs measurements. The precision-tracking RPCs cover the barrel

region of |η| < 1.05. This technology provides good spatial and time resolution

and its signals are therefore more suited for precise trigger operation. The TGCs,

which are multi-wire proportional chambers, are used in the end-caps, encompass-

ing 1.05 < |η| < 2.4. They provide high rate capability, good time resolution and

granularity to allow the calculation of an estimate of the momentum of a triggered

muon for triggering given these triggers are hardware triggers which fully rely on

the input by hardware which allows to make a faster decision using an algorithm.

3.2.5 ATLAS Luminosity Measurements

Since the luminosity delivered by the LHC is divided between different experi-

ments, it is of high importance for ATLAS to be able to measure luminosity. This is

necessary as trigger related decisions depend on the instantaneous luminosity. Long

term, this is important to keep track of the measured luminosity of the recorded data

in order not to over- or underestimate the measured processes with MC simulated

data in physics analyses and to measure the absolute cross sections of processes

more precisely.

Two independent detector systems LUminosity measurement using Cherenkov

Integrating Detecor (LUCID) and Absolute Luminosity For ATLAS (ALFA) oper-

ate in the ATLAS forward region outside the vacuum enclosure at different distances

from the IP and monitor the luminosity for ATLAS. They concentrate on measuring

Lb via the following relation

Lb =
µvisfr
σvis

. (3.4)

This calculation is derived from Equation 3.2 and uses the visible interaction rate

per bunch crossing µvis as well as the visible cross-section σvis. Both of these quan-

tities are measured using independent detector systems [28, 39] as well as different

algorithms and take detector specific efficiencies into account. Those efficiencies

are calibrated using beam-separation scans, relating them to the beam parameters

and coordinates.

3.2.6 Trigger and Data Acquisition

With an average of 36 events per bunch crossing in 2018 and approximately 40 mil-

lion bunch crossings per second, ATLAS saw about 1.44 billion events per second.

Peak number of events per bunch crossings of 90 were recorded, bringing this num-

ber up to 3.6 billion events every second. Since each event requires approximately
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1.5 MB of disk space, this means that ATLAS would be required required to store

2.2 TB/s on average, with peaks up to 5.4 TB/s. In addition, each event requires han-

dling of ≈ 1600 point-to-point readout links. The Trigger/Data Acquisition (TDAQ)

system provides ATLAS with highly efficient data-taking and event-selection capa-

bilities in order to reduce the event rate in a feasible and manageable way. A quick

overview of it is given in this section.

At design luminosity of 10 nb/s, the data rate of pp collisions is about 40 MHz

whereas event data processing and storage requires a reduction by about seven or-

ders of magnitude to be manageable. Fortunately, the majority of pp collisions are

not of interest in the searches for new physics or SM precision measurements and

can be dropped at various stages of the TDAQ chain. If an event passes this first

filtering, the subsequent Level 1 (L1) hardware trigger system which uses a subset

of the total detector information from the calorimetry and muon systems is used to

make a rejection decision on the event. This reduces the data rate down to 100 kHz.

Then, before being stored, the event is required to pass the last high-level trigger

system, which has access to the full event information including the data from the

front-end readout electronics systems as well as regions of interest selected by the

L1 hardware trigger. During this stage, trajectories are reconstructed from hits in the

ID and further physics objects are reconstructed as well. An event is only stored if it

passes both on these L1 and HLT trigger requirements. The data rate at this point is

reduced to about 1.5 kHz. Each event requires approximately 1.5 MB of disk space.

Therefore, only about 2.3 GB are required to be stored every second.

36



4. Object Reconstruction

Contents

4.1 Tracks and Vertices . . . . . . . . . . . . . . . . . . . . . 38
4.2 Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Leptons and Photons . . . . . . . . . . . . . . . . . . . . 44

4.3.1 Electrons and Photons . . . . . . . . . . . . . . . . . . 44

4.3.2 Muons . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.3 Taus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Missing Transverse Energy . . . . . . . . . . . . . . . . . 48

The detector measurements only record the interactions of particles with the

active measuring elements of the various detector subsystems. Therefore, in order

to relate these signatures to physics objects, both online and offline algorithms are

used to reconstruct the particles. The reconstruction algorithms rely largely on al-

gorithms which range from simple cuts to expensive pattern recognition techniques.

Therefore, some reconstruction algorithms are applied offline as they may be very

computationally intensive. Dedicated Combined Performance groups provide rec-

ommendations for the reconstruction of physics objects. These recommendations

might change over time, which supports applying these algorithms which include

these recommendations offline. The precision of reconstruction algorithms and sys-

tematic uncertainties originating from them are crucial to all physics analyses.

In this chapter, an overview is given of the reconstruction methods for the most

commonly used physics objects employed in physics analyses using data recorded

by the ATLAS detector. These objects comprise leptons, photons, collimated parti-

cle showers and the traverse energy which escapes detection. The collimated par-

ticle showers originate from one quark or gluon produced in collisions, which un-

dergoes hadronisation, parton scattering and decays, and are known as jets. The

transverse energy which escapes detection is referred to as missing transverse en-
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ergy. Reconstructed trajectories of particles, known as tracks, and particle interac-

tion points, referred to as vertices, as well as energy deposits in the calorimeters are

the basic building blocks of these physics objects.

4.1 Tracks and Vertices

As charged particles pass through the ID they record hits upon traversing the active

measuring elements. From these hits, the trajectories of charged particles and their

origin can be reconstructed as tracks and vertices. As they are dependent on the ID

hits, their reconstruction is limited to the ID coverage of |η| < 2.5. The hits are

used to reconstruct the particle’s tracks, which are subsequently used to determine

the interaction vertices. The accurate determination of the association of tracks with

the correct vertex and the precise location of the vertex is crucial for correct physics

object reconstruction. Ambiguities in track and vertex reconstruction can mislead

further pattern recognition if the association to the physics object is incorrect and

even lead to misinterpreting the underlying physics.

Primary vertices are the first interaction points in the collisions of the beam par-

ticles. They can be slightly displaced from the IP due to the nature of the bunch

crossings, though it is intended for the primary interaction to take place at the IP.

Therefore, due to the bunches being three-dimensional objects, the beam spot is de-

fined as the area where the majority of primary interactions during a single bunch

crossing occur. It is determined using the global maximum of the z-coordinate dis-

tribution of all tracks and is not expected to be exactly at the IP at the xyz-coordinate

(0, 0, 0). Since this area is indicating the highest track density, the highest popula-

tion of primary vertices coinciding with the beam spot is expected in the same area.

Track Reconstruction

The preferred charged particle track reconstruction technique is the inside-out track

reconstruction [40, 41]. This technique represents a sequence of reconstruction

steps, which involve global as well as consecutive local pattern recognition within

the ID. The reconstruction starts with three-dimensional hits recorded in the pixel

detector and SCT. They are processed to identify possible candidates for starting

points of tracks from which their trajectories are reconstructed, known as track

seeds. Track seed finding is performed without requiring the position along the

z-axis to be close to the beam spot. It is followed by matching other hits to the track

seeds to form a track, proposing likely trajectories as track candidates. A Kalman

filter method is used to predict the natural progression of the trajectory of the initial
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charged particle by fitting the trajectory and including matching hits in the track

candidate fit. This formalism also detects outliers, whose hits have larger distances

to the calculated fit trajectory, and neglects them in the subsequent track finding pro-

cess. Due to the high combinatorics for hits to be associated to a track candidates,

which increases with denser environments as well as higher pile-up conditions, it is

possible that track seeds can be associated to multiple track candidates. In order to

resolve ambiguities, track candidates are ranked and the hit is assigned to the high-

est ranking candidate. They are ranked by the likelihood according to which they

reflect the original trajectories of the charged particles. The score of a track also de-

pends on multiple factors and attempts to incorporate physics knowledge by use of

structural parameters and importance weighting of hits to an otherwise pure pattern

recognition task. If multiple track candidates share the same hit, a multi-layer per-

ceptron algorithm [42] is used to resolve these ambiguities. Preferential treatment

of hits close to the IP is included using weights. This gives more importance to

the pixel layers closest to the beam spot as they provide a measurements of higher

precision for vertex location compared to those with larger distance to the beam

spot. Information from the TRT is also used for ambiguity solving if including TRT

hits results in an overall improvement in the reconstruction of the track candidate.

This includes testing whether the hits in the TRT follow the natural progression of

the track reconstructed using only the pixel detector and SCT, referred to as silicon

tracks.

track

d0

x

y

beam spot

IP

vertex

Figure 4.1: Schematic representation of the definition of the displacement parameter

d0 in the transverse plane.

A reconstructed track is described by its direction in φ and θ, its charge-to-

momentum ratio q/p as well as by its closest approaches to the beam spot in the

transverse and longitudinal direction. these distances of closest approach in differ-

39



4. Object Reconstruction 4.1. Tracks and Vertices

ent planes are known as transverse impact parameter d0 and longitudinal impact

parameter (z0). The parameter d0 is illustrated in Figure 4.1, which shows the pro-

jection of the track in the transverse plane. The longitudinal impact parameter z0
represents the closest approach in radial distance to the beam spot along the beam

axis. The uncertainties on the impact parameters given the reconstructed track fit

are known as the d0 uncertainty (σ(d0)) and z0 uncertainty (σ(z0)).

Depending on their use, different quality requirements are applied to the tracks.

These quality requirements typically include constraints on pT, the minimum num-

ber of silicon hits or the maximum number of holes allowed per track. A hole refers

to a missing signal hit in an active silicon module along the fit of the reconstructed

track. Upper limits on d0, z0, σ(d0) and σ(z0) may also be applied.

Vertex reconstruction

The identification of interaction points as reconstructed vertices [43, 44] relies heav-

ily on the precise reconstruction of charged particle tracks. Vertices are recon-

structed using two algorithms, the primary iterative vertex finding algorithm and

the adaptive vertex fitting algorithm [43], where the finding algorithm uses the fit-

ting algorithm.

The iterative vertex finding algorithm selects reconstructed tracks which pass

quality selection criteria and include tracks with transverse momentum down to

400 MeV. These potential vertex candidates are constrained to be close to the beam

spot. In the next step, their position is determined using the adaptive vertex fitting

algorithm. This vertex fitting algorithm is based on a χ2 fitting algorithm and uses

the vertex candidates and the tracks around them as inputs. It uses a soft cut-off

value for the χ2 value in the association of tracks to vertex candidates. Each recon-

structed vertex candidate is required to have at least two associated tracks. Outlying

hits are assigned a lower weight in the overall χ2 value per vertex fit in this pro-

cedure. The vertex finding algorithm is repeated until all tracks are associated to a

vertex or no additional vertex candidates can be found.

The main primary vertex is determined as the vertex with the largest sum of p2T
of the associated tracks. The total number of primary vertices is used to determine

the instantaneous pile-up parameter, which is important for trigger operations and

calibrations.

After the vertices are determined, the parameters d0 and z0 are redefined with

respect to the primary vertex in the event. In addition, both σ(d0) and σ(z0) are

recalculated in order to reflect the change of reference point. Due to the proximity

of the pixel modules to the beam spot, both impact parameter uncertainties strongly
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depend on the precision of individual measurements in the four pixel layers.

4.2 Jets

Collimated hadronic particle showers, which can originate from quarks or gluons

produced in collisions, are referred to as jets. These partons accumulate to bound

states via hadronisation and interact mainly via parton scattering which creates

showers of particles which themselves interact and eventually decay or are slowed

down by the detector material in their path. This creates a shower of partons in

the direction of the travel direction of the parton the shower originated from. Due to

predominantly hard initial interactions the shower development proceeds differently

compared to purely electromagnetic showers. This results in a different shower pro-

file depending on the amount of material traversed by the shower, known as lateral

shower development. The lateral shower development is also strongly dependent on

the kinematics of the quark or gluon from which the shower originates. To identify

jets based on their shower development, determine the origin of their initialising par-

ticle, as well as jet kinematics, jets are reconstructed from topologically connected

energy deposits in ECAL and HCAL calorimeter cells. Jets are expected to deposit

the majority of their energy in the HCAL with a small amount of energy deposited

in the ECAL. The signature in the ECAL is due to the production of π0, which upon

production decay into two photons, with hadrons depositing smaller percentages

of their energy in the ECAL. Individual deposits are required to be above a noise

threshold. These connected energy deposits are referred to as topo-clusters.

The sequential recombination anti-kT algorithm [45, 46] is used for the clus-

tering of topo-clusters to define jets. The algorithm uses a radius parameter of

∆R = 0.4, which defines the cone size in η and φ space given by

∆R =

√
(∆η)2 + (∆φ)2. (4.1)

The anti-kT algorithm is used as it favours energy clusters of hadronic origin

rather than clusters originating from soft radiation or energy-independent clusters

in its jet reconstruction. In addition, the algorithm is particularly robust against the

underlying event and pile-up, while still producing cone-shaped jets with circular

base in the η - φ plane. The jets are also infrared and collinear safe by construc-

tion [46]. The algorithm also defines the axis of the cone, which defines the jet axis

as well as the jet direction. The jet direction specifies the propagation of the jet as

either upstream or downstream along the jet axis.
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Calibration

Due to detector response and the dependence on event topologies, several system-

atic uncertainties can result in the recorded data not to reflect the true energy of the

jet. Therefore, the reconstructed jets are calibrated to correct for these systematic

uncertainties using the best understanding of physics. To do this, calibrations are

determined using comparisons to MC simulations and in-situ corrections are ap-

plied. Not taking into account the originating vertex or residual signals from pile-up

events or processes which lead to undetected energy losses, are all systematic uncer-

tainties in jet reconstruction. These aspects are unaccounted for and therefore each

require calibration. The jet calibration [47] relies on reconstructed charged particle

tracks from the ID, which reduces the range to |η| < 2.5. The most important part

of the jet calibration includes the application of an absolute jet energy scale (JES)

factor to the jet.
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Figure 4.2: The average energy response Ereco/Etruth, which refers to the ratio be-

tween deposited Ereco and truth jet (Etruth) energy. The displayed data was derived

using jets from MC simulations of di-jet events for particles of different truth en-

ergy [47]. The origin and pile-up corrections are applied. The average energy re-

sponse is shown as a function of ηdet, the η value of the jet’s cone axis.

Few systematic uncertainties of the jet regarding the reference point of origin

and pile-up can be addressed individually. Since the primary vertex of the event

from which a jet originates is not necessarily the IP, the four-momentum of the jet

might be miscalculated. To prevent this, an origin correction is applied to each jet

where the primary vertex of the event is assumed to be the origin of the jet and
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the four-momentum is re-calculated. The pile-up contribution is accounted for by

including two corrections. A data-driven area-based pT density subtraction [48] is

applied alongside corrections for residual pile-up. The contribution from residual

pile-up is accounted for by additional pile-up contributions to the JES.

Since the detector is not operating at an idealistic efficiency of 100%, ineffi-

ciencies in measuring the energy deposits are expected. In addition, some processes

within a jet, like fission or ν production, lead to energy which escapes the mea-

surement of the calorimeters. Both of these result in the measured deposited energy

being less than its true value. Therefore, the deposited energy of jets is also cali-

brated to make up for this loss by using their energy deposits in the ECAL. Using

this information, the jets are calibrated at the electromagnetic scale [47]. This cor-

rects the overall recorded jet energy to the true value. As can be seen in Figure 4.2,

MC simulations show that the calibration depends on the jet kinematics. Biases in

the jet η reconstruction are also taken into account in the calibration to the elec-

tromagnetic scale. A global sequential calibration [47], which uses measurements

from the calorimetry system and MS, as well as reconstructed tracks, removes resid-

ual dependencies from the JES. As a final calibration step, in-situ calibrations are

sequentially applied, each tailored for individual jet observables, using well-known

reference objects.

Quality Requirements

Quality requirements applied to the calibrated jets used in this thesis include that

they are located within |η| < 2.5 and have pT > 20 GeV. To reduce the amount

of pile-up jets in the event, a k-nearest neighbour finding classification algorithm is

trained on hard-scatter and pile-up jets from MC simulated di-jet events in the effort

to construct a discriminant called the Jet Vertex Tagger (JVT) [49] to reduce pile-up

contamination.

Both the number of primary vertices in an event and track-based variable infor-

mation are combined in two parameters where pile-up is taken into account as well

as the fraction of tracks originating from hard scatterings processes. The algorithm

is run within the two-dimensional plane of these two variables to provide a separa-

tion which is robust to changing pile-up conditions and suited to hadronic showers.

The two emerging variables, which make up this plane, are used in the construction

of a two-dimensional likelihood which provides the relative probability for a jet to

be a hard-scatter jet at each point in the plane. This two-dimensional likelihood,

called the JVT, is used to filter out the pile-up contribution by applying a veto on

low pT jets. Jets with pT < 60 GeV and |η| < 2.4 are required to have a value
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Figure 4.3: The average number of jets with pT < 20GeV as a function of differ-

ent pile-up conditions for both MC simulations and data [50]. Events with exactly

two muons were selected. The yields for both simulations and data where the JVT

quality requirement is included show no dependence on the pile-up condition.

greater than 0.59 to pass the quality requirement. Figure 4.3 shows the impact of

the JVT quality requirements on the average jet yield in simulations and data for

jets with pT > 20 GeV for different pile-up conditions. As can be seen, the pile-up

dependence is removed and the yields in both simulation and data are constant with

varying pile-up scenarios.

4.3 Leptons and Photons

4.3.1 Electrons and Photons

Electrons and photons are reconstructed from energy depositions in the ECAL.

There they are expected to deposit almost all of their energy through the creation of

electromagnetic particle showers in the ECAL.

Electron reconstruction requires an electromagnetic shower in the ECAL whose

axis is matched using restrictions on ∆φ and ∆η to a track in the ID. The TRT

provides additional particle identification information to distinguish between elec-

trons and charged hadrons. Electromagnetic showers, where the constituents only

interact electromagnetically through bremsstrahlung and pair creation, develop dif-

ferently compared to hadronic showers. However, as for jets, the shower develop-
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ment also depends on the kinematics of the originating particle which created the

shower. Because of this, electron reconstruction starts with a selection of topolog-

ically connected clusters in the ECAL, which pass loose shape requirements [51].

These include energy distribution in η as well as restrictions on hadronic leakage

in the ECAL in case of an early shower development of jets which starts already

in the ECAL. This restriction is included to separate the bulk of ECAL clusters of

hadronic origin from those of purely electromagnetic showers but also to correct the

energy deposits for leaking jets. Clusters which pass these requirements are grouped

into Regions of Interest (ROIs). Each ROI is matched to a track from the ID. If this

fails, different methods using Kalman filters can be applied to recover track candi-

dates for the clusters. Electron reconstruction then requires tighter requirements on

|∆φ| between the seed cluster and the matched reconstructed track, which tightens

from an upper limit of 0.2 to 0.1 [52]. Ambiguities arising when matching tracks to

clusters are solved by a track categorisation, which ranks suited tracks higher than

less suited candidates based on structure arguments. The score used in the rank-

ingădepends on which semiconductor layer the track first recorded a hit and which

track has a better ∆R matching to the clusters.

Within the photon reconstruction a distinction is made between converted and

unconverted photons. In case no track can be associated with the electromagnetic

shower recorded in the ECAL, this shower is assumed to originate from an uncon-

verted photon. The TRT again also provides information to help with solving of

ambiguities.

Converted photons are referred to as photons which created an e+ e− pair within

the volume of the ID. This leads to a signature of two electrons with their trajectories

close to each other, which might be misinterpreted with the signature of electrons

if the tracks are not both individually recognised. A conversion reconstruction is

performed using the ID tracks to find a conversion vertex which has the signature

of a massless particle decaying into two charged electrons. Information on the par-

ticle identification is provided by the TRT and is applied as an additional quality

requirement to achieve higher purity for converted photons.

4.3.2 Muons

Muons are identified within the range |η| < 2.7. Their reconstruction is performed

using measurements from the MS, ID and the calorimetry system [53]. The main

difficulty in their reconstruction is the material density between the IP and the MS,

cavern backgrounds and local variations in the magnetic field strength across the

MS. Due to the large range of subdetectors and their respective spatial separation, as
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well as large material density in between, the reconstructed muons are categorised

based on which subdetector systems contributed to their reconstruction. Dependent

on their categorisation, the reconstructed muons have varying degrees of purity, mo-

mentum resolution and systematic uncertainties. The categories they are grouped

into are stand-alone (MS), combined (CB), segment-tagged and calorimeter-tagged

muons. In case matching information is available in both the ID and MS, CB muons

are reconstructed using the combined measurements of these subsystems. Tracks in

the MS are matched to tracks in the ID in η and φ and subsequently refit using all hit

information. This provides the best momentum resolution and muon purity for the

reconstructed muons. In case no track in the ID can be matched to the muon can-

didate measured in the MS, these muon candidates are referred to as reconstructed

MS muons. Their origin is only extrapolated to the beam line. Segment-tagged and

calorimeter-tagged muons both rely on ID tracks. For ID segment-tagged muons,

which have the lowest purity in comparison to the other types of reconstructed

muons, the ID tracks are extrapolated to the MS. Due to the gap in the MS en-

compassing |η| < 0.1, previously described muon reconstruction fails to work. An

alternative for this region is provided by the calorimeter-tagged muon reconstruc-

tion. This reconstruction requires an ID track to be matched to a minimum ionising

particle energy deposit in the calorimetry system.

Figure 4.4: The muon reconstruction efficiency as a function of η as derived from

real and simulated Z0 → µ µ+ events [54].

All reconstructed muons are labelled with a quality depending on which kind of
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reconstruction they originate from as well as their kinematic properties. Four qual-

ity requirements are defined. Muons which pass the loose quality requirements have

good quality tracks and maximise the reconstruction efficiency. Muons of medium

quality are selected only from MS and CB muons and include quality criteria to pro-

vide a reconstructed muon selection which minimises the systematic uncertainties

associated with muon reconstruction and calibration. The reconstruction efficiency

for muons with loose (only for |η| < 0.1) and medium quality requirements is

shown in comparison to predictions from MC simulations in Figure 4.4. A varying

η dependence can be seen, which exhibits a large reduction in reconstruction effi-

ciency of medium quality muons due to services requiring the gap in the MS. The

acceptance of the reconstruction category is even further narrowed in the tight muon

selection, which only accepts reconstructed muons from CB muons, whose tracks

include hits in at least two chambers of the MS and pass the medium selection cri-

teria. This leads to a loss in reconstruction efficiency but maximises the purity of

the reconstructed muons. The final quality requirements are specialised on high-pT

muons. For the high-pT muon selection, an additional constraint of pT > 100 GeV is

added on top of the tight selection requirements but instead of hits in two chambers,

the tracks are required to have at least three hits in three MS chambers. This makes

the high-pT muon selection most suited for searches for the W′ and Z ′ heavy gauge

bosons as the selection maximises the momentum resolution for high-pT muons.

4.3.3 Taus

Tau leptons can either decay leptonically or hadronically. However, since leptoni-

cally decaying taus would decay into either a muon or electron and associated neu-

trinos, with the neutrinos escaping detection, these are misidentified as muons or

electrons. Therefore, attempts are only made to reconstruct hadronically decaying

τleptons (τhad) and their fake rate is very high. Their reconstruction method is based

on a Boosted Decision Tree (BDT) classifier. The BDT uses track and topo-cluster

information as input and provides a classification discriminant which separates true

τhad from candidates which do not originate from τhad. Only jets which contain ei-

ther one or three tracks within a cone of ∆R < 0.2 with |
∑

itrack
qitrack | = 1

are considered in this classification. This restriction is due to the number of charged

pions in the decay products as most τhad decays are either one or three pronged pro-

cesses. Jets which are classified as τhad candidates are required to have pT > 10 GeV

and be within |η| < 1.37 or 1.52 < |η| < 2.5, vetoing the barrel-end-cap

transition region [55].
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4.4 Missing Transverse Energy

All reconstructed objects described above are taken into account when calculating

the missing transverse energy (Emiss
T ) in an event, given by

Emiss
T = −

Nobjects∑
n=1

pi sin(θi).

An additional soft term is added, which reflects deposited energy which is not ac-

counted for by other objects in the event. This term is only calculated from ID tracks

with pT > 400 MeV which are associated to the reconstructed event vertex, in order

to be more robust to pile-up. The chosen tracks are additionally required to pass

vertex association cuts of d0/σ(d0) < 2 and |z0 sin(θ)| < 3 mm [56].
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Since this thesis focusses on the application of a classification algorithm in par-

ticle physics, this chapter provides the concepts which these applications rely on. By

starting with the introduction to the general standard procedure in the development

of a supervised algorithm for classification using machine learning and defining

classification, the foundation for the presented approaches is build.

In the following sections of this chapter, only the concepts of supervised learn-

ing of classification algorithms on objects, where the class association is well known,

will be discussed. Details of specific applications are addressed at a later point.

When considering potential solutions for classification problems, an introduction

to decision trees for classification will be given first. Then, the main focus of this

chapter is building up the understanding of a few of the concepts to build and train

a deep neural networks. This is done by starting from simple structures and moving

on to more advanced and complex networks as well as optimisation strategies and

algorithms. It should be noted that this chapter only aims at a brief overview of the

concepts used in this thesis and for more in-depth explanation the author refers to

the relevant literature which this chapter is based on [57, 58].
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5.1 Introduction to Classification

A classifier provides predictions for an object to belong to pre-defined classes of

interest. In mathematical terms, a classifier is supposed to predict an estimate p(y|x)
for a previously unseen object to be of class y based on a set of n-dimensional input

data x = (x1, x2, ..., xn). In case of multiclass problems, y is of the form (y1,..,yNc
),

with Nc denoting the number of classes under consideration.

The theoretical construct to perform the classification task can be represented as

a graphical model. A graphical model is a visualisation which represents the struc-

ture and information flow of a machine learning algorithm. The structure is given

by individual elements, which are referred to as nodes and the information flow is

indicated using arrows connecting the nodes. A node is a unit where the ingoing

information flow is redirected using mathematical functions. The arrangement of

individual nodes is referred to as the architecture of the model. The chosen model

itself determines the nature of the mathematical operations performed on a node.

This can in the cases discussed in this chapter be a decision tree, where the node is

a decision boundary on attribute values to determine the sample propagation, or a

node in a neural network which propagates a modified value. During the training of

the model, the mathematical formulation is tuned using an optimisation algorithm

to optimise a predefined function for the model, which is referred to as the objective

function. Since the arrows indicate the information flow, these models are to be read

following the arrows rather than following a strict left to right or top to bottom con-

vention and for different models it is chosen what seems more intuitive and better

suited for the intended representation according to personal preference.

For a reliable classification performance of the model, it needs to be trained on a

representative dataset. It is therefore important to have a training set which captures

the features which are representative for the objects of interest. In addition, the

model is required to be able to capture the important features of the training dataset

and generalise to unseen data while being robust enough to minor variations due to

noise in the training dataset. Those features can include direct correlations between

class and individual input variables but also underlying complex correlations which

feature subtly in the input variables. If the chosen training set is not representative

of the full spectrum of data, which is to be tested on, the performance or the model

does not generalise enough or simply learns features, which are very specific to

only objects in the training set, the performance will be worse on unseen data and

the model is referred to as being overtrained as the model is considered to overfit on

the training data.
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User defined parameters which define the model but are not learned by algo-

rithms are referred to as hyperparameters θ of the model. Their parametrisation

of the model turn the previously mentioned estimate p(y|x) into p(y|x; θ). The

more largely uncorrelated attributes a set of samples has, the higher is the dimen-

sionality of the problem. With increased dimensionality, the algorithm can become

more complex to determine a class separation in a higher dimensional space. There-

fore the number of considerations for the architecture design of the model and the

amount of related free parameters increase. This includes both learnable parame-

ters, which the model adapts during optimisation such as the connection weights

between nodes, as well as hyperparameters fixed by the choice of architecture and

optimisation settings. This large increase in possible hyperparameter space is also

known as the curse of dimensionality. Its challenges include the restriction of the

model dimensions with respect to the available statistics, as well as the the potential

impossibility to cover the entire hyperparameter space in the optimisation process

due to time or resource constraints.

The optimisation of the objective function can either mean to minimise or max-

imise its value. When minimised, it is referred to as loss or error function. The set

of objects used for training and performance evaluation are required to be statisti-

cally independent and mutually exclusive. Next to the objective function, another

quantity in monitoring the prediction optimisation is the accuracy of the predictions

made by the model. The accuracy of a model reflects the numbers of mistakes in the

form of boolean losses of the predicted class value in comparison to the original la-

bel value and provides the average misclassification over all classes based on those

boolean values. It is dependent on the task whether this quantity is considered to be

meaningful alongside the objective function and other figures of merit.

An important aspect in finding an optimal classifier is the ability of the model to

generalise well to unseen data which might be slightly different. It can be seen as a

robustness to small variations where the model is expected to still provide meaning-

ful predictions. These small variations can include noise in data generation, reduced

impact of missing data or variations between simulated and recorded physics data.

Methods which perform modifications to the optimisation of the learnable parame-

ters of the model are referred to as regularisers. Those regularisers aim at increasing

the models capability to result in less drastic output changes given small variations

from the expected node inputs or to generalise. This in its correct application results

in less over-fitting on the training data.

The performance is commonly investigated using Receiver Operating Charac-

teristics (ROC) curves where the background rejection is shown against the signal
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efficiency. The area under the ROC integrated from a specified signal efficiency up

to 100% signal efficiency is often used as simple one-value measure of the perfor-

mance and is referred to as the Area Under the Curve (AUC) given the specified

signal efficiency of interest. Overtraining therefore manifests itself in a larger per-

formance degradation between the performance on the test set compared to the per-

formance on the training set and can be picked up on when comparing the average

value of the objective function or ROC curves and AUC values each on both sets.

Depending on the model, overtraining can be prevented using different techniques

but it is important to start with a balanced representation of the expected data popu-

lation and train with enough statistics to fit the model and its optimisation strategy.

An unbalanced dataset with respect to class representation would lead to an effect,

known as the class prior problem, where the model is biased towards classes differ-

ently, which results also in the posterior of the output predictions being affected by

this bias.

5.2 Decision Trees

A simple and computationally cheap way to solve a classification problem is to use

a decision tree, which is especially suited for cases with statistical limitation. Deci-

sion trees [57, 59, 60], as shown in a schematic overview in Figure 5.1, are graphical

models whose nodes are arranged in a directed tree structure. The tree starts with

a node which has no parent and is referred to as root node. Each node element is a

test on a given attribute, which results in a boolean outcome, which results in the

sample being propagated in one of two directions. This can be described as cutting

on a variable of choice. Therefore, decision trees are binary decision making tests,

which split the results into two branches which each connect to a child node. This

means that, except the root node, all other nodes of the tree have exactly one parent.

Nodes which have no children are called leafs and their total number in the tree

determines the complexity of the model. Each leaf can have a different population

of signal samples versus background samples, which is determined by the hyperpa-

rameter optimisation strategy. The training of the algorithm divides the total input

space into regions. Each region is associated with a class. The decision tree clas-

sifier can therefore be considered to provide an association of classes by defining

collections of multidimensional rectangular cuts belonging to predefined classes.

The determination of the width and depth of a decision tree as well as which

variable to test on at each node and which value to choose is part of the model opti-

misation. Specialised algorithms train these models. For these models regularisation
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Figure 5.1: Schematic overview of a decision tree with a zoomed-in visualisation of

a decision boundary at a single node, where a simple cut on an individual attribute

of a sample determines the further propagation of the sample within the tree struc-

ture along the arrows. Grey circles represent individual decision boundaries and

green circles represent leafs. The arrows indicate the possible categorisation paths a

sample could be propagated depending on the individual decision boundaries along

the path of propagation and the values of the attributes of the sample. The leaves do

not include further decision boundaries but represent ends of the chain of cutting on

individual attribute of a sample.
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techniques as mentioned in the previous section include constraints on the tree size,

which parametrises the model. Criteria can be defined as to when a node becomes

a leaf. Those criteria can be based on the purity of the test outcome or minimum

percentage of data points it handles. The complexity of a decision tree can be given

by the number of leave nodes it contains. It is common practice to first grow the tree

and prune it afterwards to reduce the complexity of the model.

Since the χ2 performance measure has several pitfalls when applied in clas-

sification tasks, other performance measures are preferred for the use of decision

trees. These measures of performance for each node τ for growing the tree are the

cross-entropy given by

Qτ (T ) =
K∑
k=1

pτk ln (pτk) (5.1)

or the Gini index, which is a measure of purity, given by

Qτ (T ) =
K∑
k=1

pτk (1− pτk) , (5.2)

where pτk denotes the proportion of samples, which node τ assigns to class k, which

is either signal or background [57]. Both of these performance measures are differ-

entiable, which means are coped better with in the application of gradient based

optimisation algorithms.

To achieve generalisation of the model, overtraining can be prevented to some

extent by applying constraints to the complexity of the tree as not to exceed the

available statistics. One way this can be implemented is by setting a maximum

depth or width of the tree.

The advantage of these models is that they are easily interpretable as they rep-

resent a sequence of binary decisions for each leaf. However, the separation of the

feature space into categories with boundaries which are aligned with the axes of

the feature space, which is referred to as hard cuts on the attributes, is one of the

models weaknesses. The separation only happens via linear decision surfaces rather

than a more flexible function, even if it was just a linear fit as in linear regression.

Such problems can be captured by a decision tree, but only at the cost of increased

complexity by modelling steps via series of linear cuts.

5.2.1 Boosted Decision Trees

Another way to improve the performance of decision trees is to apply boosting,

which leads to the transformation of the decision tree into a BDT. Boosting is a

54



5.2. Decision Trees 5. Machine Learning for Supervised Classification

technique, which implies sequential optimisation, which boosts the performance.

This means that boosted decision trees expand the formulation of individual deci-

sion trees into a cascade of decision trees, which are referred to as forests. Trees are

stacked upon each other, each profiting of the history of previously trained trees,

which results in the performance boost. In each of the sequential iteration, each

sample is associated a relative importance in a given round of the training.

A weak learner is referring to an algorithm which produces a hypothesis which

is only slightly better than a random guess. It is distinguished from a strong learner,

which represents an algorithm whose output hypothesis is of arbitrary accuracy,

which is more desirable as it reduces complexity of the model. In the context of

decision tree classification, a decision tree is a weak learner until its test is adjusted

enough for the resulting hypothesis to provide a good separation.

Algorithms which turn a weak learner quickly into a strong learner are referred

to as boosting algorithms and a decision tree using them is known as a BDT. Weak

learners are iteratively trained and then added to a strong classifier using a weigh-

ing scheme for training data or hypotheses. Boosting algorithms only vary in their

weighing implementation.

The Adaptive Boosting (AdaBoost) algorithm [61] aims to minimise the error

function in a BDT by adjusting adaptively to the outcome of the objective function

between iterations of training. Each subsequent training starts using the weights

from the end of the previous training but uses weighted events based on their clas-

sification accuracy in the previous training step. By weighting the inputs, the hard

cuts are softened. This method does not require prior knowledge on the accuracy

of the weak hypothesis. In the end, an ensemble of weak hypotheses is retained.

Each hypothesis is weighted according to its accuracy. The final output is provided

by summing their individual probabilistic predictions in a weighted majority vote

on the weighted outputs of the trained decision tress. The AdaBoost algorithm is

a popular choice for training decision tree models. Its success is largely based on

empirical results and its formulation provided a theoretical foundation for previous

empirical results.

Checks for overtraining are performed based on the figures of merit. By com-

paring the ROC curves for the performance on the training with the curve calculated

on the test set, the state of overtraining can be inferred. Subsequently, the AUC is

calculated for both. If the AUC and the ROC curves do not match and the perfor-

mance based on the figure of merit on the training set largely exceeds the test set,

the BDT is likely overtrained.

55



5. Machine Learning for Supervised Classification 5.3. Neural Networks

5.3 Neural Networks

A neural network is similar to a decision tree also a graphical model with a directed

tree structure. In this instance however, the nodes it contains are fundamentally

different from those used in decision trees. This difference is that they propagate

individual values instead of making a binary decision on the categorisation of a

sample. This results in the nodes being able to in principle have an infinite number

of inputs but only one output, which can connect to an infinite number of nodes by

infinite connections.

bias
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node
input

node
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output
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weight
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Figure 5.2: Schematic overview of an individual neural network node [2], which

makes up the basic node element in a Neural Network. Output values from the

ingoing nodes, denoted as inputs to the node of interest, as well as the contribu-

tion from the bias node of the previous layer are each multiplied with a connection

weight and then summed up. An activation function is applied to this sum value.

The output after applying this activation is the output of the node and its value is

propagated further.

The architecture of a neural network consists of nodes which are arranged in a

three-fold layer structure of a single input, potentially multiple hidden and a sin-

gle output layer. Each visible and hidden layer includes a bias node of constant

value, which is typically one. This contribution in combination with the individual
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connection weights to immediately connected nodes introduces a way to shift the

activation function individually in each connected nodes. Every node of a hidden

layer is connected to all nodes of the previous layer, including the corresponding

bias node. Input nodes, which together with its bias node compose the first layer of

a neural network, are referred to as visible nodes. All nodes between the input and

output layer are known as hidden nodes. If a network only consists of one single

layer, it is referred to as being shallow. The condition for a neural network to be

deep only requires it to contain more than one hidden layer.

At a typical simple neural network node, the values provided by the connections

to all nodes of the previous layer are multiplied by associated connection values,

which are referred to as weights. The resulting values are subsequently summarised

to provide a linear transformation of all previously available data. Figure 5.2 shows

the individual steps performed at such a typical node. After summation of the in-

puts to the node, an activation function is applied to the resulting value in order

to prevent excessive saturation which would result in a vanishing gradient during

backpropagation which would reduce the learning effect. For this, different proper-

ties of various activation functions can be exploited for different tasks and purposes.

However, if this function were linear, the network would only be able to represent

linear functions. Therefore, these activation functions are preferably non-linear to

provide a network the ability to represent any possible function with minimal addi-

tional complexity, meaning limited additional number of learnable parameters for

an approximately similar result. The value retained after applying the activation

function is referred to as activation and is the output value of the node.

The inputs are desired to be as uncorrelated as possible. It is assumed that the

optimiser of the network will be able to learn the best correlations for the classifi-

cation during training when optimised using a suitable set of hyperparameters. For

individual input variables not to dominate these processes from the beginning, each

distribution for each input variable is normalised. By assuming a gaussian distribu-

tion of the input variables, the distribution is shifted and scaled to have zero mean

and a variance of one standard deviation. In addition, the values of the weights,

which are used in the connection of nodes, need to be initialised to small but non-

zero randomly chosen numbers.

Next to the design of the Neural Net (NN), the optimisation strategy as well

as input preparation determines the model and its success. Hyperparameters are

settings which can be varied to alter the models performance. The architecture of

a model refers to the bare bones building blocks whereas the training is defined

by the optimisation algorithms as well as the assisting algorithms like regularisers.
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The number of learnable parameters of a model is used to specify its complexity and

it is common practice to compare a models complexity to the number of available

statistics when building a model not to construct a model which is likely to overtrain

quickly as not enough samples are provided to learn all learnable parameters of the

model, meaning if the number of learnable parameters of the model exceeds the

number of training samples. It comes down to an intricate problem with multiple

aims which depends on a large number of possible hyperparameter values. The

collectivity of this is referred to as the hyperparameter space, which represents the

space of all possible settings one could choose from.

A validation dataset, which is lower in statistics and typically of the order of

about 5%-20% of the training statistics, is split from the training set, depending on

the classification task and available statistics. When using the validation set to cal-

culate the loss, this disjoint split provides an estimator on generalisation capabilities

and overtraining of the model on the training set.

5.3.1 Multi Layer Perceptron

A Multi Layer Perceptron (MLP) is a neural network with at least one hidden layer,

where the layers only consists of simple fully connected nodes and are known as

dense layers. A schematic overview of the architecture of a typical MLP is shown

in Figure 5.3, where only dense layers are following upon each other and form a

shallow neural network, which consists of only one single hidden layer.

Non-linear activations are applied to the summed node inputs but the activation

functions themselves are typically just sigmoid activation functions given by

h(z) =
1

1 + e−z , (5.3)

which is also known as the standard logistic function. The distribution of typical

sigmoid activation functions is shown in Figure 5.4a. Output layers typically use

the same sigmoid activation function or a employ linear activation functions of the

form h(z) = az + b with a and b being constant parameters.

A drawback regarding the sigmoid function is that it can be approximated at the

origin by a linear function. It might be converging slow compared to other function

choices.

The output value of a node at position j is computed as weighted sum of its

inputs from the previous layer at position i given by

aj =
∑
i

wijzi, (5.4)
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Figure 5.3: Schematic overview of a MLP. Since it only consists of one single hid-

den layer in this representation, it is referred to as being shallow. Framed nodes

provide a constant value to the nodes they are connected to.
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Figure 5.4: Visualisation of examples of the sigmoid (top left), ReLU (top right) and

softmax (bottom) activation functions. For the softmax function, the contributions

from four nodes (n0, ..., n3) are summing up to unity at any point of the distribution,

which transforms the outputs of the nodes into probability values with feasible lower

and upper bounds.
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using factors wij , which are referred to as weights. The final output of the node,

referred to as zj , is given by

zj = h
(
aj
)
, (5.5)

which provides the activation of a node in the previous layer for a given activation

function h. Bias nodes have a fixed activation of +1. Following these two equa-

tions, information is propagated forwards through a simple neural network, a pro-

cess which is known as forward propagation and shown in Figure 5.2. However,

with the weights wij initially defined, no learning takes place and the predicted

values do not change.

A neural network learns by the means of the updates of its internal weights wij

which connect individual nodes. The weight update ∂wij is calculated according to

the weight updating formula given by

∂En

∂wji

= δjzi, (5.6)

with δj representing the update of a node, referred to as error, which represents

the changes to a given node given its weighted connections to the layers closer to

the output based on the estimated error E on the label values. The value of the

error δj is calculated using the backpropagation algorithm, which is given by the

backpropagation formula defined as

δj = h′ (aj) K∑
k=1

wkjδk (5.7)

with k the labelling referring to the subsequently connected nodes and h′(aj) the

gradient of the activation function of aj . These updates ∂wij are performed back-

wards, starting with the calculated error with respect to the label on an output node

and subsequently calculating the update for each node in the layers closer to the in-

puts layer per layer as shown in Figure 5.5. This process is repeated until all weights

are updated.

When training in batches, the weight update is only performed for the summed

error per batch. This reduces the otherwise hard impact of outlier which might dis-

rupt the learning process.

5.3.2 Deep Neural Networks

A simple deep neural network consists of multiple hidden layers. Due to the depth

of these networks the main complication is in training them as their depth results in

vanishing gradients during backpropagation.
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Figure 5.5: Schematic overview of the application of the backpropagation algorithm

in a zoomed-in and cut-away view of a deep NN showing three subsequent hidden

layers. The backpropagation formula 5.7 is applied on the nodes to calculate the

error on node zj , which is denoted by δj , based on all nodes which are directly

connected to this node in the forward propagation step, denoted by the dashed red

arrows. Then the weight update ∂wji can be calculated using Equation 5.6 to be

applied to the forward propagation weight wji, which connects the node zi to the

node zj in the following layer.
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Activation Functions

The activation function which is applied can vary per layer.

The Rectified Linear Unit (ReLU) function given by

h (a) = max (0, a) (5.8)

features a piecewise linear function of two connected linear pieces. As shown in

Figure 5.4b, its non-linearity is expressed by a discontinuity between its two linear

pieces at the origin. What makes a ReLU function a widely used function is its

speed due to its simplicity of its gradient being a stepfunction, which speeds up

computations, and its compatibility to gradient based optimisers.

In order to protect against non-physical under- and overflow of the output val-

ues, an output probability distribution is chosen as output layer activation function.

This choice enforces feasibility, meaning the output will be within the range of zero

to one and the sum over all output nodes per sample sums up to one. The activation

function for the output layer of K output nodes is chosen to be a softmax transfor-

mation function given by

h (a) = softmax(a) =
ea∑K

k=0 e
ak
. (5.9)

As is shown for an example of K = 4 output nodes in Figure 5.4c, the summed

contributions of all output nodes equals unity across the full spectrum of inputs.

The nature of the loss function J(θ) is chosen based on the classification prob-

lem. For multi-class classification the categorical cross-entropy given by

J (θ) =
1

N

N∑
n=1

H(pn, qn) =
1

N

N∑
n=1

[yn log(ŷn) + (1− yn) log(1− ŷn)]

(5.10)

with p the predicted values and q the provided original label values is the most

obvious choice as it includes the relative entropy H(pn, qn) between the predictions

per individual output nodes denoted by n. The predictions per node are given by yn

and the original label values per node by ŷn. It depends on the hyperparameters of

the model and the aim is to find the set of hyperparameter which minimises the loss.

The optimiser algorithm minimises the loss for a given set of hyperparameters.

One approach to minimise the loss is using gradient descent algorithms. The

loss is estimated for a small change around the current value by calculating the

derivative of the loss. Using the directional derivative, the highest gradient is deter-

mined and the update is performed in the direction of the negative gradient. During
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backpropagation the output nodes are therefore adjusted by to x′, which replaces its

previous value x. The updated value x′ is given by

x′ = x− ε
∂f(x)

∂x
, (5.11)

where ε is the learning rate, a hyperparameter which defines the overall size of the

update.

To accelerate the learning progress, the number of floating point precision cal-

culations can be reduced by applying this update after calculating the loss on ran-

domly chosen minibatches. This is then referred to as the Stochastic Gradient De-

scent (SGD) algorithm. Since the minibatches are composed randomly, no gradient

bias is introduced on average and outlier are less likely to direct the updates into

a corner of the hyperparameter space by introducing large updates for individual

samples. Since the gradient decreases upon approaching a minimum, the learning

rate ε can be chosen as a constant.

To speed up the learning process even further, optimisation algorithms adapted

the concept of momentum ~p = m~v from Newtons second law of motion from

classical mechanics. The concept obtains its analogy by treating the negative gradi-

ent in the hyperparameter space upon which the change in hyperparameter space is

based as the force. The current position in hyperparameter space is thereby pictured

as a ball of unity mass whose future motion is not only influenced by the force at

any location but also the velocity at those points, which lets the algorithm take into

account the history of the gradient change. A hyperparameter α, whose values range

from zero to one, acts thereby as a sort of friction coefficient which dampens the

initial velocity at each update. It should be noted though that the dampening effect

is higher for lower values of α and gets smaller as it approaches one. The hyperpa-

rameter α refers to how fast the contribution from previous gradients vanishes. By

giving weight to the alignment of gradients in the update, a minima can be found

quicker.

A variation of the SGD algorithms which use momentum is the ADAptive Mo-

ments (ADAM) algorithm [62]. It uses first and second order momenta which are

weighted by the gradient to find a minimum. The algorithm also includes bias cor-

rections with respect to their initialisation for those momenta.

A default weight initialisation choice is to assign weights to a random small

value. A method which is often used for this is to draw values from a Glorot uniform

distribution [63]. This distribution is a uniform distribution within the range

[
−

√
6

√
nj + nj+1

,

√
6

√
nj + nj+1

]
, (5.12)
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where nj refers to the number of nodes in the previous layer and nj+1 to the nu

mber os nodes in the current layer.

Maxout layers are layers where copies of a layer with varying initialisation

weights are simultaneously trained in parallel. The activation per node of this ’sin-

gle’ layer is calculated as the element-wise maximum of the nodes which were

trained in parallel. A schematic overview is shown in Figure 5.6, where

bias

maxout layer

bias

max

maxpooling
layers

max

=

bias

bias

Figure 5.6: Schematic overview of a maxout layer and its definition for simpli-

fication purpose [2] for further reference throughout this thesis. Within the max-

out layer, layers are trained in parallel and only the element-wise maximum output

value, which is calculated within the element-wise maxpooling layers, is propagated

to the next layer. For simplicity in the visualisations, individual maxpooling layers

are denoted as blue nodes throughout this thesis.

Dropout [64] is a regularisation technique which prevents overfitting of the NN

and effectively samples over reduced versions of the model. During the training on

each mini-batch, hidden and visible nodes of the NN are randomly chosen to be

temporarily dropped. The amount of total nodes to be dropped at each iteration is

specified as by a hyperparameter and the dropping of the node is often effectively

done by effectively masking the node and setting the output of it after application of

the activation function to zero. This results in each node being trained more indepen-

dent on the other nodes. Since this results in fewer floating point operations during

training, it speeds up the training as well. However, this technique only affects the
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training phase. During testing only the complete NN with all nodes included is used.

This can improve generalisation capabilities of the NN as it would not always pick

up on all possible correlations.

During the training each layers input changes after each update. Since the nodes

input expectations keep changing whereas the performed update was performed on

the assumption of an outdated input, this makes it difficult for the weights to adapt

to a value suited for its inputs. This unstable behaviour requires fine tuning of the

learning rate and other parameters of the NN as not to shift the weights too much at

once. This problem is known as the internal covariate shift.

Batch Normalisation [65] applies a Batch Normalising Transform to each node

activation input where a scale and shift parameter is learned from each mini-batch.

The means and variances of the inputs are shifted such that the input distribution

appears more stable with an expected value of 0 and a variance of one standard

deviation, which effectively reduces the internal covariate shift. By having the ac-

tivations in more defined ranges, the learning process is taking place on a stabler

foundation, which can result in faster converging of the network training. It also

reduces the dependence of the training outcome on the initial weight initialisation

and acts as a regulariser while maintaining the capacity of the NN.

5.3.3 Performance Optimisation

As stated by the curse of dimensionality, the complexity of having a large hyperpa-

rameter space from which to optimise the set of hyperparameters results in multiple

challenges. It is therefore a common approach to rather perform an approximate op-

timisation than finding the absolute best solution possible, as shown in Figure 5.7.

For the process of optimisation, it is possible to optimise either all or a spe-

cific subset of hyperparameters by performing a bayesian optimisation [66] based

on a predefined range for those hyperparameters. Each bayesian optimisation for a

parameter is then based on the settings of the others at that moment and the opti-

misation is performed in the initially specified sequence. Another approach which

allows parallelisation of the optimisation of these hyperparameters is a grid search.

This entails a systematic performance investigation of networks which were trained

using a limited number of values within a limited range for each of their hyperpa-

rameters. This brute force approach allows to investigate the performance at any

training state and compare the best results for each hyperparameter combination to

see the impact of hyperparameter changes on both the objective function as well as

the figures of merit.
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Figure 5.7: Next to a global minimum, multiple local minima in the objective func-

tion f(x) are possible in the space of hyperparameters, denoted here for simplified

visualisation by a single dimension variable x. Finding a well performing minimum

is preferable in some cases as covering the full hyperparameter space might not al-

ways be realistic given real-life constraints. Accepting a well-performing minimum

in the hyperparameterspace is known as approximate minimisation [58].
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The optimisation of a Deep Neural Net (DNN) is time intensive. One not only

has to optimise the architecture to best fit the problem and optimise the cost func-

tion. A DNN is represented by an intricate structure of parameter choices, which

involve the placement of regularisers and their parameters as well as choices of

which layer and respective activation function or which algorithm to choose. Not

only is the aim to minimise the loss, but also to generalise to unseen data. Even

the definition of a figure of merit can pose a complex optimisation criteria on its

own. Intuition can be a guiding factor as choices are based on empirical results in

the field. However, understanding the principles of what individual techniques do

provides a basis to help with intuition. In the end, it is impossible to check every pos-

sible combination without infinite time and computing resources. It is not just about

running the trainings but also about evaluating all relevant figures of merit. With the

DNN depending a lot on the inputs and the underlying correlations, a variation in

the inputs might require a new optimisation of parameters or even different archi-

tecture to perform better. With time being of the essence in a large collaboration,

pragmatism regarding getting the best possible result given the time and resources

available is imperative to progress. Bayesian optimisation might speed the optimi-

sation of individual parameters up but that is not to say that it will optimise these

parameters in exactly the way which is best for physics results and some aspects

might be left out or averaged over. A grid search of the most important parameters

based on a set of reasonable parameters allows to get into results at any step of

the training and compare the loss, performance and generalisation capabilities. The

decision can then be made to match the desired performance features over a large

spectrum of criteria.
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Flavour Tagging refers to the association of jets with their originating elemen-

tary particle and recommendations are provided by the dedicated Flavour Tagging

combined performance group. This chapter provides a general overview over the

sample and information content considerations as well as the algorithm structure

towards the final association of a jet to a certain origin.

6.1 Motivation

A jet can originate either from a gluon or a hadronic particle, which in combination

with its kinematic properties determine the shower development of the jet. Due to

differences in the shower development based on the originating particle, the origi-

nating particle of the jet is referred to as its flavour with the distinction between b-,

c-, light-flavour and τ-jets. Of special interest for physics analyses is the association

of jets containing b or c hadrons against those which are missing these constituents

in their early shower development. The association is done based on morpholog-
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ical properties like the internal structure of the jet. The morphological properties

strongly depend on the hadronisation of the initial elementary particle as well as de-

cay and kinematic properties of the hadrons. The signature of the jet development

close to the primary vertex is of large interest and the lifetime is a good indicator for

the originating particle, which created the jet formation. Due to the long lifetime of b

hadrons, a secondary vertex is expected to be found in the jet. However, the lifetime

of the next heaviest particle the c-quark is much reduced and therefore, a detectable

secondary vertex is expected at much shorter distances from the primary vertex.

This characteristic behaviour is also used in the search for top quarks decaying into

b-quarks. All other lighter particles as well as gluons are expected to exhibit similar

behaviour with respect to each other as their shower development does not include

a secondary vertex displaced from the IP. Therefore, Flavour Tagging is consider-

ing the three distinct classes of jets originating from b, c and light-flavour quarks,

referred to as b-, c- and light-flavour jets. The primary interest in Flavour Tagging

is on the identification of b-jets against those of other flavours. In addition, the cor-

rect assignment of c-jets against both b- and light-flavour jets is also an important

instrument provided by the Flavour Tagging combined performance group to anal-

yses. Since more analyses rely on b-jet tagging, good b-jet tagging performance is

the primary focus.

To classify the flavour of a jet, multiple variables are constructed to provide

a discriminant which is derived from the relevant physics of the jet. In addition,

dedicated algorithms, which are called low-level taggers, are constructed based on

these variables to provide physics motivated discriminants. These are subsequently

propagated to a classification algorithm, which is referred to as a high-level tag-

ging algorithm. The low-level algorithms are based on variables which are related

to either the charged particle tracks or reconstruction information of the vertices

associated with the jet. The baseline high-level tagging algorithms are a family of

BDTs, referred to as MultiVariate 2 (MV2) flavour tagging algorithms. One instance

of MV2 is trained for the purpose of b-jet tagging and another instance for c-jet tag-

ging, which is called MV2c(l)100. Both the low-level and high-level algorithms are

described in this chapter.

Samples of simulated collision events generated with the MC method are used

as labelled data to train the flavour tagging classifiers and are discussed in the fol-

lowing section of this chapter. Discrepancies to collision data are studied for each

individual low- and high-level tagging algorithm using predictions from MC simu-

lations. However, only the final output of the high-level tagging algorithm requires

calibration to provide η and pT dependent scale factors which are used to account for
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these variations. The comparisons of data to predictions from MC samples as well

as the calibration technique and results for the baseline algorithms are discussed in

the final sections of this chapter.

6.2 Simulated Samples

A mixed sample of simulated events, which is referred to as the hybrid sample [67],

is used for training and testing of the flavour tagging algorithms. The hybrid sample

contains simulated events from proton-proton collisions resulting in direct tt̄ and

Z ′ production. The tt̄ and Z ′ events are simulated separately in dedicated samples

before being merged.

tt̄ Z ′

ME generator Powheg Pythia 8

PS/UE generator Pythia 8 Pythia 8

ME precision NLO LO

ME (PS/UE) PDF CT10 NNPDF2.3

Additional at least one BR(Z ′ → bb̄)

information leptonic W decay = BR(Z ′ → cc̄)

= BR(Z ′ → uū)

= 1/3

Table 6.1: Simulation details for samples which make up the training sample. Here,

u refers to any quark lighter than the c-quark.

The main sample consists of simulated tt̄ events. This process has a high produc-

tion ratio at the LHC and since the top decay has a branching ratio of t → Wb close

to unity, this production process provides a b-jet sample with low background con-

tamination. In addition, these events contain c- and light-flavour jets from W → qq̄

decays. These events are combined with events of an artificial Z ′ sample, which was

produced to broaden the pT range accessible to the Flavour Tagging algorithms.

The generator of the ME for the initial hard scattering process modelling as

well as PS and UE generators used in the simulation of both samples are listed

in Table 6.1. For both samples the A14 tuned parameter set [68] is used with

Pythia 8 [21]. Both samples are overlaid with an average simulated < µ > = 24.4

pile-up events using Pythia 8 [69].
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For the simulation of the tt̄ events the ME is generated at NLO by Powheg [70].

The ME generator is interfaced with Pythia 8 to model the PS and UE, where the

UE generation is restricted to those which contain at least one subsequent leptonic

W decay. For the ME, PS and UE simulation for the tt̄ events, the CT10 PDF is

used.

The Z ′ → bb̄\cc̄\uū events is simulated using the ME calculated at LO by

Pythia 8 using the NNPDF2.3 PDF. The same generator in combination with the

same PDF is also used to model the ME and UE. The cross section of the hard

scattering process of the Z ′ events has been modified in-situ to produce a sample

with a large plateau for higher pT values compared to the majority of the pT spectrum

of the constituent jets in tt̄ events. Therefore, by using this artificial hybrid sample,

a higher number of jets across the pT range for all relevant jet flavours is available

for the training of the high level tagging algorithms. Within the framework of PS

simulation the BR of the Z ′ events are artificially set to equal fractions of one third

for each decay into bb̄, cc̄ and uū in the simulation, where u refers to light-flavour

quarks u, d and s quarks. This provides a sample which is rich in jets of all flavours

and therefore extends the pT range for them all evenly.

Through subsequent decays of these produced particles the simulated events

contain jets, which are labelled according to their particle content within a cone of

∆R < 0.3 for hadrons and τ leptons with pT > 5 GeV. If a jet contains a b hadron, it

is labelled as a b-jet. If it does not contain a b hadron but the jet contains a c hadron,

it is labelled as a c-jet and subsequently if only a τ lepton is found within the cone,

it is labelled as a τ -jet. In case neither a b hadron, c hadron or τ lepton is found, it

is always labelled as a light-flavour jet.
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Figure 6.1: The jet pT population for light-flavour (left) and b-jets (right) of the tt̄

and Z ′ samples [67]. The Z ′ sample exhibits a plateau of enriched population up to

1 TeV for both b- and light-flavour jets.

For both samples the EVTGEN simulation [23] is applied to model the subse-
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quent decays of b and c hadrons. Events from both samples are also processed using

GEANT [71] to include interaction effects with detector material. The physics ob-

jects in each event are reconstructed as described in Chapter 4. The distribution of

the reconstructed jet pT of b-, c- and light-flavour jets contained in the the tt̄ and Z ′

samples are shown in Figure 6.1.
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Figure 6.2: The jet pT population of the hybrid sample for b-jets [67].

The hybrid sample is created using jets from the tt̄ and Z ′ samples by selecting

b-jets according to their b hadron pT with a boundary value of 250 GeV. The b-jets

whose b hadron pT is below the threshold are only included from the tt̄ sample

and above the threshold, only b-jets from the Z ′ sample are included. The resulting

population as a function of jet pT is shown in Figure 6.2. For c-, light-flavour flavour

and τ-jets a similar procedure is applied for the merging process, however here the

pT of the total jet is used instead, with a threshold of 250 GeV. Jets with lower jet pT

are merged into the hybrid when originating from the simulated tt̄ process, whereas

jets with higher pT are chosen if they are from a simulated Z ′ process. The hybrid

sample contains in total 5 M tt̄ and 3 M Z ′ simulated events with the jet flavour

population varying per jet flavour.

The hybrid sample is used primarily in training the high level tagging algo-

rithms. The low-level tagging algorithms are either using the hybrid sample or only

the tt̄ sample as indicated in Ref. [72]. In addition to the samples used to create the

hybrid training and validation sample, additional samples were generated to perform

checks on the performance of the trained algorithms for other event topologies and

for the predictions for all background processes used in the calibrations.

73



6. Flavour Tagging 6.3. Low-Level Algorithms

6.3 Low-Level Algorithms

The low-level tagging algorithms aim to provide variables with a well understood

physics content which are robust against differences in simulated events compared

to collision data. Each of these algorithms is dedicated to a specific aspect of key

components to differentiate the flavours of a jet. The final list of variables provided

by the low-level algorithms which are used in the high-level tagging algorithms is

provided in Tables 6.2, 6.3 and 6.4.

6.3.1 Track Based Algorithms

Several low-level tagging algorithms use information of tracks reconstructed from

hits in the ID. These are the IP2D, IP3D and Recurrent Nueral Network Impact

Parameter (RNNIP) algorithms which largely concentrate on impact parameter in-

formation of tracks within the jet. In addition, information on reconstructed muon

tracks, which are matched to the jet, provide variables of jet flavour discriminating

power, which are propagated to an additional low-level tagging algorithm, the Soft

Muon Tagger (SMT) algorithm.

For ID tracks to be considered to be within the jet, they need to pass a pT depen-

dent ∆R requirement, which starts with ∆R < 0.45 for tracks with a pT of 20 GeV.

The maximum separation in ∆R becomes tighter with increasing pT of the track to

take into account the more collimated behaviour of constituents. These algorithms

exploit in particular the long b hadron lifetime. As their charged decays are char-

acterised by the distances of displaced vertices, which are further away from the

primary vertex, larger absolute values can be expected for the impact parameters.

By convention, the impact parameters have a positive sign when the primary vertex

is before the secondary vertex in the jet direction as is expected for jets originating

from a b hadron decay. A negative sign is assigned if the secondary vertex is located

before the primary vertex in the direction of the jet. Therefore, important inputs for

these algorithms are the ratios of the transverse and longitudinal impact parame-

ter to their uncertainty, known as the transverse and longitudinal impact parameter

significances Sd0
and Sz0

, which are given by d0/σd0
and z0/σz0

respectively.

The IP2D and IP3D algorithms [73], universally referred to as IPxD, are log-

likelihood ratio based methods, which involve the lifetime information of the hadron

contained within the jet. Each provide a set of IPxD discriminants, which for a jet as-

sociated to N tracks is given by
∑N

i=1 pb/plight−flavour,
∑N

i=1 pb/pc, and
∑N

i=1 pc/plight−flavour.

A typical distribution of the variable
∑N

i=1 pb/plight−flavour as provided by IP3D,

which is referred to as ip3, is shown in Figure 6.3. The Poisson-like distributions
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Figure 6.3: The distribution of the log-likelihood ratio variable to separate b- from

light-flavour jets, which is calculated in the IP3D low-level algorithm. The vari-

able distribution from simulated MC events is compared to pp collision data at
√
s

= 13 TeV. The distributions and comparisons are shown based on the calculation

on the tt̄-dominated eµ sample (left) and the muons and jet dominated Z sample

(right) [67].

for different flavours show a peak between -5 and 0 within an overall range of

-10 < ip3 <30 with varying tail shapes per flavour, which reflects the capability

of the algorithm to discriminate between the different jet flavours. In the definitions

of the variables these algorithms provide, pb, pc and plight−flavour are defined as prob-

ability functions of the track being from a b, c or light-flavour hadron decay. These

probability functions are derived template reference histograms obtained from MC

simulation whose construction differs between IP2D and IP3D. In addition, each

flavour probability differs depending on the hit pattern of the track, which is cate-

gorised into pre-defined hit pattern categories, which are referred to as track grade.

The categorisation of the track is based on individual histograms derived from the

simulation according to the hit pattern. For each flavour the probability function

value for the track grade is used in the calculation of the IPxD discriminants. In the

case of IP2D, the transverse impact parameter Sd0
is used in a one-dimensional tem-

plate. For IP3D, Sd0
and the significance of the projection of the longitudinal impact

parameter are combined in a two-dimensional template. The projection of the lon-

gitudinal impact parameter is performed on the azimuthal angle θ as seen from the

primary vertex and is used to add complimentary information from the orientation

of the track. By combining this information with the longitudinal impact param-

eter, the template dimensionality is kept low and the concept relatively simple in

order to reduce the overall calculations required while adding complementary in-
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formation compared to IP2D. However, by adding up the individual contributions

per each track associated to the jet, the IPxD algorithms do not take into account

correlations between tracks, which could provide additional discrimination power.

The complete list of variables provided by the IPxD algorithms, which are used in

a high-level tagger, is shown in Table 6.2.

The RNNIP algorithm [72] uses the same track based inputs as the IPxD algo-

rithms as well as the relative momentum contribution of a track compared to the

entire jet and its distance in ∆R relative to the jet axis. However, where it differs is

its underlying method is based on a recurrent neural network model. It uses the asso-

ciated tracks as a sequence of inputs, with the tracks arranged according to their Sd0

value in decreasing order. This method therefore includes the correlations between

tracks associated to the jet, which makes it complementary to the information pro-

vided by the IPxD algorithms. The algorithm is trained on b-, c-, light-flavour and

τ -jets and includes four respective output nodes, each corresponding to one of the

jet flavours. These variables are propagated to a high-level tagging algorithm and

are listed in Table 6.2.

Variables related to the presence of reconstructed muons, relying on muon tracks

recorded either in the MS or ID, within the jet can be used in the jet flavour associa-

tion. Muons are rarely found within typical light-flavour jets whereas b and c hadron

decays may include them. Variables dedicated to the location of a muon within the

jet or its relative contribution to it are constructed to allow the higher level flavour

tagging algorithms to take the advantage of additional information of muons in jets.

This can be performed by direct use of these constructed muon related variables,

which are listed under the SMu category in Table 6.2, or by means of the output

variables of a BDT trained using them as inputs, called SMT [67], which are listed

under SMT in Table 6.2.

6.3.2 Vertex Based Algorithms

Another approach is to use information based on vertex reconstruction in the jet

flavour identification. The vertex based low-level tagging algorithms are the Sec-

ondary Vertex 1 (SV1) and the JetFitter algorithms.

The SV1 algorithm [74] aims to reconstruct a single displaced vertex within the

jet using a Jet Vertex Finding (JVF) algorithm. The JVF algorithm is based on a χ2

fit method and reconstructs vertices within the jet from the set of all possible two-

track vertices using the track constituents. The SV1 algorithm includes a likelihood

test between b- and light-flavour jets using template histograms obtained from the

JVF algorithm results from MC simulations. The algorithm provides kinematic fea-
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Track based low-level algorithms

Category Variable Description

IPxD (IP2D, IP3D) ipX Log-likelihood ratio (LLR) to separate b from

light-flavour jets using the lifetime signed im-

pact parameter significance. It is a sum of the

per-track contributions. For N tracks in a jet, this

is given by ΣN
i=1 log

pb
plight−flavour

.

ipXc LLR to separate b- from c-jets using the lifetime

signed impact parameter significance

ipXcu LLR to separate c- from light-flavour jets us-

ing the lifetime signed impact parameter signifi-

cance

RNNIP pb, c, light, tau RNNIP output

SMu ∆RSMu Distance between muon and closest jet

d0 Distance of closest approach to the primary ver-

tex in the r-φ plane

prel
T Orthogonal projection of the momentum on the

jet axis

S Scattering neighbour significance

M Momentum imbalance significance

R Double ratio of Inner Detector and Muon Spec-

trometer q over p ratios

SMT SMTBDT Output of a BDT [67], which is trained on SMu

variables.

Table 6.2: Track based variables provided by the low-level algorithms.
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tures associated to the secondary vertices which are reconstructed within the jets,

which are listed in Table 6.3. An example of one of them, the reconstructed mass

as calculated by SV1, is shown in Figure 6.4 and it can be seen that its population

based on a tt̄-dominated eµ sample can be approximated by a Poisson distribution

with different maxima locations as well as tail shapes per jet flavour.
1/

N
 d

N
/d

M
D

at
a/

M
C

 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
ATLAS  Preliminary

tt 
Data 2016
MC16
b jets
c jets
light−flavour jets

SV1 Vertex Mass [GeV]

1 2 3 4 5 6

s -1 = 13 TeV, 2.5 fb

0.6
0.8

1
1.2
1.41.4

Figure 6.4: Distribution of the SV1 mass mSV1
inv for the tt̄-dominated eµ sample and

its comparison to pp collision data at
√
s = 13 TeV [67].

The JetFitter algorithm [75] performs a topological decay reconstruction of the

jet, which focusses on the topological decay structure of weak interaction decays

within a jet. The JetFitter algorithm includes a reconstruction of the vertices within

the jet as well as track association to these vertices. This reconstruction is funda-

mentally constrained by the underlying assumption that the primary vertex, the b

hadron and the c hadron flight paths are aligned on one line. This line is constrained

to be able to be approximated by the direction of the jet axis within the uncertain-

ties on the distances of the axis to the b hadron flight path. The uncertainties are

derived from simulations and reconstruction or precision measurements. The algo-

rithm considers the line of the reconstructed hadron flight path as the only potential

origin of any subsequent vertex and tracks of the detectable decay particles. The ver-

tices as well as the track association is sped up by these physics based assumptions

and also further by the application of a Kalman Filter. The Kalman Filter method

is applied for the consideration of the contribution of the addition of each track to

the full topology reconstruction on a step by step basis as well as in the cross check

of adding or reconstructing of a vertex. The reconstructed topology is considered
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to simplify the problem as it reduces background tracks and vertices. The variables

provided by this low-level algorithm are shown in Table 6.3 regarding those which

were designed for b-jet tagging and in Table 6.4, which lists the variables designed

for c-jet discrimination towards the other flavours and therefore are categorised as

JetFitterc.

Vertex based low-level algorithms (I / II)

Category Variable Description

SV1 NTrkAtVtx Number of tracks associated with the secondary vertex

mSV1
inv Invariant mass of the tracks associated with the sec-

ondary vertex assuming pion mass

N2TrkVtx Number of two-track vertices candidates reconstructed

within the jet

fSV1
E Energy fraction Σ

Ntrack, secondary vtx
tracki=1 Etracki / Σ

Ntrack, jet
trackj=1Etrackj

with the numerator being the sum over the energy of all

tracks Ntrack, secondary vtx associated to the secondary ver-

tex and the denumerator being the sum over the energy

of all tracks Ntrack, jet of the reconstructed jet

∆Rjet, SV1 ∆R between the reconstructed jet axis and the direction

of the secondary vertex relative to the primary vertex

Lxy Transverse decay length of the reconstructed secondary

vertex

Lxyz Decay length of the reconstructed secondary vertex

Sxyz 3D decay length significance, i.e. the decay length of the

secondary vertex divided by its uncertainty

JetFitter mJetFitter
inv Invariant mass of tracks associated to one or more dis-

placed vertices

fJetFitter
E Charged jet energy fraction in the secondary vertices

Sxyz Decay length significance of the displaced vertex

N1-trk vertices Number of 1-track displaced vertices

N≥2-trk vertices Number of vertices with more than one track

∆R ~pjet, ~pvtx ∆R between the jet axis and the vectorial sum of all track

momenta associated to displaced vertices

Table 6.3: Vertex based variables provided by the low-level algorithms.
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Vertex based low-level algorithms (II / II)

Category Variable Description

JetFitterc Lxyz Distance of the secondary vertex from the pri-

mary vertex

Lxy Transverse displacement of the secondary ver-

tex

Ymin,max,avg
trk Minimum, Maximum and Average track rapid-

ity for all tracks in the jet

Ymin,max,avg
trk (2nd vtx.) Minimum, Maximum and Average track ra-

pidity for tracks associated with the secondary

vertex

m Invariant mass of tracks associated to sec-

ondary vertex

E Energy of charged tracks associated to sec-

ondary vertex

fE Energy fraction of charged tracks (from all

tracks in the jet) associated to secondary ver-

tex

Ntrk Number of tracks associated to the secondary

vertex

Table 6.4: Additional vertex based variables which are specifically designed to im-

prove c-jet tagging, as provided by the low-level algorithm JetFitter.
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6.4 High-Level Algorithms

High-level tagging algorithms combine the discrimination power of the low-level

algorithms into one single discriminant for the jet flavour tagging of interest be-

ing either b- or c-jet tagging. This reduces the required amount of calibrations and

simplifies the inclusion of flavour tagging recommendations in analyses.

The baseline algorithms for b- and c-jet tagging are BDT based methods using

the implementation of BDTs as given by the ROOT Toolkit for Multivariate Data

Analysis (TMVA) software package [76]. This is the MV2 approach, where b- and

c-jet tagging involves separate optimisations of multiple BDTs to contribute a high-

level tagging algorithm of the MV2 family. The training is performed using the

hybrid sample, whereas the performance is studied on the tt̄ and Z ′ samples indi-

vidually. The kinematic variables η and pT of the jet are included in the training of

a MV2 high-level tagging algorithm by default. Due to the kinematic dependence

of the jet topology, the kinematics per flavour need to be represented equally per jet

flavour as not to introduce a prior bias originating from the kinematics population

of the training set. The b- and c-jets of the training training set are therefore modi-

fied in η and pT to have their (η,pT) distributions match the two dimensional (η,pT)

light-flavour jet distribution, which is referred to as reweighting.

The figures of merit are ROC curves, which show the respective background

rejection power of the algorithm against the efficiency of the signal of interest. In

addition, to provide a tagging algorithm which is performing well not just in a few

small isolated pT regions, the background rejection factors for a given signal effi-

ciency as a function of the pT of the jet is an additional figure of merit. Here, the

rejection can either be calculated based on a single restriction for the entire pT re-

gion of interest, which is referred to as a flat cut, or by defining cuts per pT bin to

keep the signal tagging efficiency constant within each pT bin, which is known as a

flat efficiency cut.

Overtraining of the MV2 algorithms is checked by calculating the predictions

on the training set and comparing the resulting ROC curves to those calculated on

the test set. The algorithm hyperparameter tuning was based on the performance on

both of these sets.

A short overview of the MV2 b- and c-jet tagging algorithms is given below.

Further information can be found in Ref. [67].
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6.4.1 MV2 b-Jet Tagging Algorithm

The baseline high level algorithm for b-jet tagging is of the MV2 family and is

known as MV2. The MV2 tagging algorithm utilises a background versus signal

labelling of the training jets where the background is constructed from a pre-defined

mixture of light-flavour and c-jets. The exact mixture of these two components in

the background composition is therefore considered a MV2 hyperparameter which

is tuned in dedicated studies. The procedure and choice is specific to the tagger

optimisation and is not part of a general procedure specific to high level algorithms.

The fraction of c-jets in the background composition of the MV2 algorithm training

set is set to 7%.

By defining a restriction value on the BDT output of MV2, a jet is defined to be

tagged or not depending on whether the corresponding MV2 value of the jet is above

or below the restriction value respectively. Each restriction value is associated to a

signal tagging efficiency, which is determined by the test set. The most common

signal efficiency which is used is 70%, but 60%, 77% and 85% are also investigated

as different analyses require different operating points.

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

lig
ht

-je
t r

ej
ec

tio
n

1

10

210

310

410

=13 TeV, Z’s

MV2

MV2Mu

MV2MuRnn

ATLAS Simulation Preliminary

b-jet efficiency

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

ra
tio

 to
 M

V
2

0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

c-
je

t r
ej

ec
tio

n

1

10

t=13 TeV, ts

MV2

MV2Mu

MV2MuRnn

ATLAS Simulation Preliminary

b-jet efficiency

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

ra
tio

 to
 M

V
2

0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

Figure 6.5: ROC curve showing the light-flavour jet (left) and c-jet rejection (right)

performance of the MV2 b-jet tagging algorithms MV2, MV2mu and MV2rnn on the

simulated tt̄ sample [67].

Since additional low-level algorithms have been developed during Run 2, three

different variations of MV2 are provided for b-jet tagging. These variations each use

a different set of low-level algorithm variables as inputs to the higher level algorithm

construction. The three MV2 variations are known as MV2, MV2mu and MV2rnn,

where each subsequent algorithm includes more input variables compared to the

previous variant. The basic set of input variables used for MV2 includes the IPxD,

82



6.4. High-Level Algorithms 6. Flavour Tagging

SV1 and JetFitter variables, which were designed for b-jet identification. MV2mu

also includes the SMT variables as BDT inputs. In addition to these variables, the

MV2rnn algorithm also includes the RNNIP variables and therefore includes the

largest set of low-level algorithm output variables as inputs compared to the other

instances of MV2 b-jet tagging algorithms. Their performance on tt̄ events is shown

in Figure 6.5 and shows the improvements in background rejections when including

additional information from low-level tagging algorithms.

6.4.2 MV2 c-Jet Tagging Algorithm

Two BDTs are separately trained in the effort to provide a MV2-based c-jet tag-

ging algorithm, referred to as MV2c(l)100. The inputs to these two BDTs are based

on the input set used for MV2rnn but in addition also include additional JetFitter

variables designed for c-jet identification, described previously in Table 6.4. One

BDT, which is referred to as MV2c100, is trained to separate c- from b-jets and

the other BDT, known as MV2cl100, is trained to separate c- from light-flavour

jets. After training, these two BDTs are combined into one single c-jet tagging

algorithm, referred to as MV2c(l)100, by combining their respective outputs in a

two-dimensional discriminant and performing a rectangular cut on this plane.

MV2c(l)100 Operating Points

Operating Point c-jet tagging light-flavour jet b-jet
Name efficiency rejection rejection

Loose 41.5% 19.9 4.0

Tight 17.5% 190.9 18.3

Table 6.5: Chosen operating point of the MV2c(l)100 flavour tagging algo-

rithm [77].

The figure of merit is an iso-efficiency curve, which visualises the background

rejection performances by shifting the rectangular cuts while keeping a constant

c-jet tagging efficiency. The performance is preferably investigated using the per-

formance of the algorithm on the tt̄ events, as shown by the iso-efficiency curve

in Figure 6.6. Based on this figure of merit, two fixed performance points along

given c-jet tagging efficiency lines, are chosen. They are referred to as the loose and

tight operating points and refer to a given predicted light-flavour and b-jet rejection,

which are provided in Table 6.5. The loose operating point corresponds to a c-jet

tagging efficiency of 40%, and has a light-flavour jet rejection factor of 19.9 and a
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Figure 6.6: Iso-efficiency curve showing the performance for selected c-jet tagging

efficiencies of the MV2c(l)100 c-jet tagging algorithm using the simulated tt̄ sam-

ple [67].

b-jet rejection factor of 4.0. The tight operating point corresponds to a c-jet tagging

efficiency of 17% and has a light-flavour jet rejection factor of 190.9 and a b-jet

rejection factor of 18.3 .

6.5 Calibration

In order to use the outputs of the high-level tagging algorithms in physics analyses,

a full calibration is required for their outputs. This is necessary in order to accom-

modate out differences between simulated events and reconstructed collision data

using scale factors, which are defined as the ratio of the selection efficiency ob-

served in data compared to the prediction from MC simulation. These scale factors

are calculated as a function of jet kinematics. For the low-level algorithms a calibra-

tion is unnecessary as they are only used to provide intermediate variables within

the generation of the high-level tagging algorithms.

The calibration procedure for the b-jet tagging efficiency is based on tt̄ based

calibration methods. A distinction is made between tag counting, kinematic selec-

tion, kinematic fit and combinatorial likelihood methods. Each method focusses on

the fitting of either kinematic distributions or object, jet or event multiplicities of
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tt̄ based b-jet tagging efficiency calibration methods
Decay tag kinematic kinematic combinatorial

Channel counting selection fit likelihood

single lepton X X X —

dilepton — X — X

Table 6.6: Application of tt̄ based b-jet tagging efficiency calibration methods de-

pending on tt̄ decay channels.

the collision data and the MC predictions. From these fits the predictions using the

scale factors given by SF=εdata/εMC are extracted and applied to the output of the

high-level tagger for use in data analysis. Different methods are applied depending

on the tt̄ decay channel due to their suitability. The decay channels include the sin-

gle lepton decay or the dilepton decay channels, which are defined using the decays

of the two W± bosons from the tt̄ pair, and the methods that can be used for each

respective decay channel are listed in Table 6.6. A detailed overview of the available

procedures is presented in Ref. [78].

6.6 Monte Carlo Comparisons to Data

Before calibration, the uncalibrated high-level tagging algorithms are compared to

their predictions on recorded pp collision data at
√
s = 13 TeV. This comparison

is meant to indicate the undesirable property whether the scale factors would end

up making up for larger differences of how the high-level tagging algorithm inter-

preted the inputs and assigns class predictions. The recorded events were processed

using the reconstruction settings from 2017 and therefore synchronise this aspect

with the simulated data. This serves to review the agreement of the performance

of the calibrated tagging algorithms compared to its performance on data. These

studies use a tt̄-dominated sample selecting opposite sign eµ events as well as a Z

→ µ+µ−+jets-dominated sample. However, other samples are considered as well in

order to study the universality of the high-level tagging algorithms.

The pre-calibration matching of the MV2 b-jet tagging algorithm to the predic-

tions from simulation shows general good agreement between the predictions on

MC simulation and the predictions on data as is shown in Figure 6.7.
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Figure 6.7: Data-MC comparison plots for MV2rnn on the predictions for b-, c-

and light-flavour jets calculated for a tt̄-dominated selection (left) and the Z →
µ+µ−+jets-dominated selection (right) [67].
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DL1 is a high-level flavour tagging algorithm. The model of the algorithm is

based on a deep NN with three output nodes to match the commonly well modelled

and statistically well represented flavours in flavour tagging. Each output node cor-

responds to the predicted probability of the jet being a b-, c- or light-flavour jet.

The output predictions of the NN simultaneously provide a b- as well as c-jet tag-

ging algorithm, depending on the formulation of the final discriminant using the

three output nodes. Following the Neyman-Pearson lemma [79], which states that

the highest discrimination power is achieved by a log-likelihood combination, the

final discriminant is defined as log-likelihood ratios constructed from the predicted

probabilities to be a b-, c- or light-flavour jet.

This chapter describes the individual steps used to create instances of the DL1

tagging algorithm and making these available within the framework of the ATLAS

collaboration. It covers the preprocessing required and performed before training,

the tagging algorithm general overview of the overall software set up, how the dis-

criminants to use the algorithms for both b- and c-jet tagging are constructed as well

as the training approach. Different variants of the tagging algorithms are described

and their set up is described at the end of this chapter and monitored quantities to

decide on the final training hyper parameters.
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7.1 Input Preprocessing

A few steps are required to prepare the input data for training in order to protect the

NN from an a priori bias as well as destabilising effects, which disturb or alter the

learning process. This is handled in three individual preprocessing steps before the

training.

The first aspect of the preprocessing involves setting feasible default values for

each attribute, which suit the usage within a NN model. Should the value of an at-

tribute be undefined, default values are provided, which are usually far displaced

from the physics values. However, using them as input variables to a NN, which

works with the values of the attributes, is questionable as they would disturb the

learning process as they largely extend the range of possible values even after ap-

plying an offset and scaling. Therefore, instead of using values far away from the

valid physics distribution, the mean values of the distributions are used in combina-

tion with an additional binary check variable, which are shown in Table 7.2. These

binary check variables indicate whether an input variable category contained a vari-

able which includes a default value. This is to distinguish these jets from those

which have the same value coming from underlying physics. As jets with a non-

zero check variable have values for the given category, which are not determined

by physics, they require special handling in the DNN. The binary check variable

propagates this additional information. This procedure is followed except for few

attributes where default values, which are motivated by the physics that results in

them being undefined, are chosen in combination with the additional binary check

variable. This is the case for the energy fractions associated to the reconstructed

secondary vertex of a jet as well as the number of vertices with more than one track

in a reconstructed jet. These variables are provided by vertex based low-level al-

gorithms shown in Tables 6.3 and 6.4, which are set to a default value of zero as

this value is undefined in the case no secondary vertex could be reconstructed in the

event as it mostly is the case for light-flavour jets. The number of tracks associated

with the secondary vertex of the SV1 vertex based low-level algorithm is set to two

as this is the minimum track requirement for a vertex reconstruction within a jet.

In the second step, the values of the input variables are modified to work well in

a NN. The individual input variables are scaled and shifted into distributions with

a mean of zero and standard deviation equal to unity. This is achieved by applying

an offset value to shift and a scale value to scale the distribution. The procedure

is motivated by the desire to limit all the input ranges to have approximately the

same ranges and to prevent individual variables from dominating the NN solely as
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a result of their range of possible values when compared to others. Therefore, this

step results in a more balanced set of input variables.

Finally, in order to provide a single training which is unbiased to favour the

classification of any jet flavour against another, the values of the input variables are

weighted to match the two-dimensional jet kinematics distribution of b-jets in |η|
and pT as the distribution is smoother than the light-flavour jet distribution. This is

in contrast to the MV2 procedure, which will adapt to also use the b-jet distribution.

The absolute value of jet η is used as the particle population, and therefore the jet

population, is symmetric in η around the IP for pp collisions.

The distributions of both attributes are shown per jet flavour in Figure 7.1, which

highlights the jet kinematics dependence on the jet flavour. The weights used to

modify the distributions are calculated from the training and validation set. They

are used during training when updating the NN connection weights as well as when

validating the performance of the NN based upon the objective function on the

validation set after each training epoch.

The distribution of the weights applied to the samples are shown in Figure 7.2.

The range of values does not exceed many orders of magnitude, which prevents

updates using them to dominate against other contributions and disturb the learning

process.

As is shown in Figure 7.3, after applying these weights, there are negligible

differences in both kinematic variables between the three different jet flavours, as

expected. These weights also affect the effective representation of the attributes.

Therefore, a jet flavour class prior in the training data is prevented from entering

and influencing the training.

It is shown in Figure 7.4 how the distributions of a variable change for c- and

light-flavour jets change when applying the weights to match the c- and light-flavour

jets to the two-dimensional (η, φ) b-jet distribution. It is also shown in the same Fig-

ure how the distributions of all flavours change when applying the scale and offset

corresponding to the distribution of the attribute. However, it should be noted that

the weights are only entering the network training in determining the loss contri-

bution of the NN outputs. The NN is then optimised on the weighted sum of the

of the losses for all individual three nodes. This way the network weights are opti-

mised in the connection weight update step towards the weighted distributions and

effectively see these weighted distribution as per attribute only one value can be

propagated, not a weighted value.
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Figure 7.1: The jet pT (top) and jet |η| (bottom) distributions for b-, c- and light-

flavour jets in the training and validation sets from the hybrid sample before

reweighting.
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Figure 7.2: The weights used for b-, c- and light-flavour jets in the training and

validation sets from the hybrid sample.
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Figure 7.3: The jet pT (top) and jet |η| (bottom) distributions for b-, c- and light-

flavour jets in the training and validation sets from the hybrid sample after applying

the weights.
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Figure 7.4: The SV1 mass distribution for b-, c- and light-flavour jets in the training

and validation sets from the hybrid sample before (top) and after (middle) reweight-

ing as well as with the corresponding scale and offset applied (bottom).
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7.2 General Arrangement

Besides the preprocessing, architecture design and optimisation during the train-

ing it is a desirable feature of DL1 to provide a highly flexible high-level tagging

algorithm. Since DL1 requires only one training to deliver multi-purpose tagging al-

gorithms, it reduces the overall person power, computing power as well as required

storage space in space-limited configuration databases and reduces the number of

variables to be stored in simulated MC and collision data sets after including the ob-

ject reconstruction recommendations. In addition to this, a portable implementation

is required for the algorithm to be applied within the framework of a large collabo-

ration with a bare minimum of library dependences and computational overhead.

7.2.1 Definition of the Final Discriminant

One of the biggest assets of DL1 is to be able to provide a general-purpose flavour

tagging algorithm which can still be tuned after the training. This is provided by

DL1 being a NN with multiple output nodes, which effectively is trained on an

equal flavour representation. The outputs of the DL1 DNN can be combined to pro-

vide either a b- or c-jet tagging algorithm, where the extend of taking into account

the different background output nodes can be tuned towards a desired performance

within the discrimination capabilities of the DNN.

To provide a b-jet tagging algorithm, the outputs are combined into DL1cfc−jets

given by

DL1cfc−jets = ln

(
pb

fc−jets · pc + (1− fc−jets) · plight−flavour

)
, (7.1)

and the log-likelihood ratio DL1bfb−jets to provide a c-jet tagging discriminant given

by

DL1bfb−jets = ln

(
pc

fb−jets · pb + (1− fb−jets) · plight−flavour

)
, (7.2)

where pb, pc and plight−flavour are the outputs of the respective nodes from the same

trained DL1 NN. This provides a high flexibility in tuning the fractions fb−jets and

fc−jets after the training to tune the performance of the b- or c-jet tagging algorithms

to match analysis preferences. In each case, the chosen value of the fraction is a

hyperparameter in the optimisation of the final flavour tagging algorithm.
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7.2.2 Software Implementation

The DL1 framework is an offline Python 2.7 based framework, which makes exten-

sive use of open source libraries, especially NumPy [80]. The training of the DNN

is performed on a graphical processing unit (GPU) cluster using Keras [81] with a

Theano [82] back-end using 32-bit floating point precision. Next to NumPy, Pan-

das [83] is used for data handling and data is stored in the HDF5 [84] and JSON

file formats. The hyperparameter space is probed using a grid search over feasible

combinations of architecture constructions and training parameters. An optimally

trained NN is chosen based on the performance of the NN. The performance is

judged by the development of the objective function result as well as dedicated fig-

ures of merit calculated from the predictions on MC simulated events as well as

comparisons using data recorded from pp collisions. Alongside the optimisation of

the trained NN, the figures of merit are also analysed for different fc−jets as well as

fb−jets. These fractions are specifically optimised for each single training, however,

they remain variable until set by calibration and can be optimised for individual use

cases.

The final trainings are provided to the ATLAS software framework in ATHENA

to apply the algorithm to jets of any sample of interest and include it in the general

MC simulation productions as well as data processing. Within ATHENA, the NN

model and connection weight information is combined within one configuration file

to rebuild the DNN and the required calculations are performed using C++ libraries.

For this, a C++ client called LightWeight Tagger Neural Network (LWTNN) [5] was

developed to construct the NN within C++. The predictions pb, pc and plight−flavour

of the NN are stored for each jet from which a final tagging discriminant can be

calculated. This is done to preserve the flexibility of the algorithm. By changing the

fractions fc−jets and fb−jets, which let the background prediction values contribute

respectively to the value of the final discriminant to a different extent, the freedom to

vary the background rejections is kept. This enables people performing an ATLAS

physics analysis the optional tuning of the flavour tagging algorithm to individual

use cases. However, only a few selected fractions are chosen for calibration by the

flavour tagging combined performance group.

7.3 Architecture and Training Considerations

The DL1 architecture is constructed from advanced layers featuring both dense and

maxout layers described in Chapter 5 and a schematic overview of a typical DL1
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Figure 7.5: A schematic overview of a typical DNNarchitecture as used for DL1 [2].

architecture is shown in Figure 7.5. The ReLU activation functions applied to all

layers except the output layer, where the softmax function is applied for the NN to

provide classification probabilities per jet to each of the considered classes. Batch

normalisation is included for theoretical reasons as well as empirical results as it

leads to a faster training and improved performance. During training dropout is

employed to provide a robust DNN.

Hyperparameter Range

Nhidden layers 5 to 14

Nmaxout layers 1 to 3 at different positions

Nparallel layers per maxout layer 5 to 30

Nnodes/layer Up to 78

Ntraining epochs 100 [50 (10)] 1

Learning rate 0.0001, 0.0005, 0.001

Training minibatch batch size 50 to 500

Table 7.1: Table of hyperparameters used in the DL1 grid searches.

The optimisation process relies on a grid search over multiple hyperparameter,

as seen in Table 7.1, which is combined with manual quality checks. The construc-

tion of the grid search is guided by the principle of keeping the number of learnable

1The best performing configurations are trained further and considered from 50 to 500 in steps

of 50, then those which perform best are considered in steps of ten.
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parameters about an order of magnitude lower than the available number of jets in

the training sample to prevent larger risks of immediate overtraining. The training

set consists of 5.1 million jets, the validation set of 1.3 million jets and the test set

of 6.6 million jets. The quality checks include the monitoring of the development

of the objective function as well as performance measures based on multiple figures

of merit. Keras is performing the training as well as calculating the predictions on

the test set. During the training of each NN the NN connection weights and the loss

calculated on the training and validation sets are saved after each single training

epoch. This allows monitoring checks and a quick post-training optimisation of the

number of training epochs, which is an important hyperparameter of the training.

For the DL1 trainings with the best overall performance the training is extended to

500 epochs and the performance is further monitored in training epoch steps of 50.

The final number of epochs is determined by investigating the loss develop moni-

toring and performance figures of merit in steps of 10 for the previously found best

performance.

7.4 DL1 Variants

Within a flavour tagging configuration database is the infrastructure for three vari-

ants of DL1 NN configurations to make the outputs available for analyses. One

flavour tagging configurations database is created for internal performance compar-

isons to reflect the possibilities of the methods using the same information content as

used by the MV2 variants with the limitations to three variants within the ATHENA

framework.

The versions of DL1 in this configuration are referred to as DL1baseline, DL1mu

and DL1rnn and described in detail in Ref. [2]. A ROC curve performance compar-

ison is comparing the rejection factors of the b-jet tagging algorithm DL1rnn to the

flavour tagging baseline is shown in Figure 7.6.

Another flavour tagging configurations database, which is used for physics anal-

ysis and is the main focus of this thesis as it represents the full spectrum of tagging

algorithms which end up available to analyses. The DL1 variants which are avail-

able to analyses always include the additional JetFitter variables designed for c-jet

tagging as DL1 is designed to be both, a b- and c-jet tagging algorithm simultane-

ously. These variants are referred to as DL1baseline, DL1mu and DL1 and written

in italic when referred to throughout this thesis. The number of learnable parame-

ters of the DNN models of these DL1 variants range from approximately 110,000

to 135,000.
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,

Figure 7.6: The ROC curves showing the light-flavour (top) and c-jet (bottom) re-

jection factors of the b-jet tagging algorithm DL1rnn compared to the performance

of the MV2 baseline high-level flavour tagging algorithm MV2rnn as shown in

Ref. [2].
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Binary default check variables

Category Variable Description

Binary (IP2, IP3, SV1, JetFitter,

JetFitterc, SMu, RNNIP)check

To keep track of jets with default

values in each category. Variables

equal one if category contains a

default value, else zero.

Table 7.2: Binary input variables accompanying the different sets of input variables

in the different DL1 variants.

DL1 Variants
Low-level algorithm DL1baseline DL1mu DL1

IPxD X X X

SV1 X X X

JetFitter X X X

JetFitterc X(*) X(*) X(*)

SMu – X X

SMT – – –

RNNIP – – X

Table 7.3: Overview of the low-level algorithm categories of input variables for the

instances of DL1 high-level tagging algorithms. The kinematic variables |η| and φ

are included by default, which results in a total number of 35, 42 and 46 attributes

for DL1baseline, DL1mu and DL1 respectively. Ref. [2] compares independently

optimised variants of DL1 tagging algorithms where categories denoted with * are

excluded. The reference also includes DL1 in order to have a presentation of its c-jet

tagging performance, which is a fair comparison to MV2c(l)100 as both algorithms

use the JetFitterc variables shown in Table 6.4.
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The different variables used for each DL1 variant are given in an overview per

category in Table 7.3. The binary check variables mentioned in Section 7.1 are

added per input category shown in Table 7.3 as listed in Table 7.2. It is chosen to

add them per category in order to prevent copies of the same information content

and keep the number of input variables at a minimum.

7.5 Monitoring and Quality Checks

While the Grid Search described in Section 7.3 was performed for each of the three

DL1 variants described in Section 7.4, this section focusses on determining the best

suited NN hyperparameters to provide high-level flavour tagging algorithms for the

different sets of attributes presented in Table 7.3. The decision on the final hyper-

parameter values is based on a series of cross checks involving monitoring of the

training on the hybrid sample, containing tt̄ and Z ′ events, as well as a systematic

sequence of multiple figures of merit, each reflecting the performance of the DNN

at a given stage in the training using tt̄ events.

Due to the large number of trainings, the first sets of hyperparameters are filtered

out by monitoring the loss development on the training and validation dataset. The

loss on each dataset should not be separated by a large amount and the number of

training epochs should preferably be chosen so as not to coincide with a spike in the

loss calculation on the validation set.

Alongside the relative difference between the loss on the training and validation

set, the overall decrease of the values is to be minimised. The loss development on

the training and validation sets for the DL1 training is shown in Figure 7.7. The

calculated losses on both sets are decreasing up to about ten epochs from where the

validation loss starts to slowly increase whereas the loss on the training set continues

to decrease from values which are larger than the loss calculated on the validation

set. Both loss developments have overlapping values from 50 to 80 training epochs

above which the validation set starts to continuously show higher values. While

the loss calculate on the training set continues to drop slightly above 100 training

epochs, the validation set loss begins to rise to higher loss values which clearly

separate these two developments and indicate overtraining, which also reflects itself

in the decreasing performance in the figures of merit on the test set. During the

entire training large spikes in the validation set for individual training epochs can

be observed. These spikes are also an indication for overtraining on the training

dataset and the corresponding epochs are best to be avoided as the final choice but

the NN might be able to recover from it in the next training epoch.
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Figure 7.7: The loss development on the training and validation set for DL1 for the

extended number of training epochs (top) and a cut-away view over the first 100

training epochs. The dashed line represents the number of training epochs chosen

as the final hyperparameter value of DL1.
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Trainings with the lowest overall loss values are determined from the grid search

runs. In a next step these trainings are evaluated on the test set consisting of tt̄

events, which are a disjoint selection from the training and validation set. The fig-

ures of merit are compared to a baseline. At first the background rejection factors

provided by iso-efficiency curves are analysed. From this figure of merit general

performance trends are deduced and individual fractions fc−jets are selected to be

used for further performance investigation. This further investigation of the perfor-

mance includes ROC curves for selected signal tagging efficiencies. The main focus

of the optimisation was on the performance of b-jet tagging at 77% b-jet tagging ef-

ficiency. Promising NN trainings are further analysed using the rejection factors as

a function of jet pT. Both the ROC curve and the jet pT dependence uses a flat cut

calculation for the performance as described in Section 6.4 on the tt̄ jet pT spec-

trum up to 300 GeV, selecting only jets below this threshold. At this stage, the most

promising DNN trainings are continued to 500 training epochs and their perfor-

mance is re-evaluated in steps of 50 and subsequently 10 for regions of interest to

optimise the final total number of training epochs after which the network training

is determined. Only DL1 trainings with a consistent improvement are considered

as DL1 high-level tagging algorithm candidates and have their c-jet tagging perfor-

mance evaluated using iso-efficiency curves. After all these stages for DL1baseline,

DL1mu and DL1baseline, a final candidate is chosen for each of them from their

individual grid searches. The DL1 variant is again chosen in the remaining part

of this chapter to illustrate further quality checks which are performed on all final

candidates for DL1.

The classification predictions are shown per DL1 output node in Figure 7.8,

where the distributions are shown for each jet flavour label. As can be seen, the

DNN predicts the labels, which it was trained with, with high probability as the

distributions of the matching labels are peaking at higher values for these nodes.

Nonetheless, jet overlap of different labels remains, though for high values of prob-

ability in each node, the other jet flavour labels, which a node was not trained on,

are around an order of magnitude smaller. Additionally, these distributions reflect

the expected trend that b- and light-flavour jets are more different from each other

and easier to separate than c- and light-flavour jets.

The tunings of the final discriminants when using the same pb, pc and plight−flavour

shown in Figure 7.8 using Equations 7.1 and 7.2 lead to different distributions of the

final discriminants. The final discriminants for the b- and c-jet tagging algorithms

of DL1 with the tuned fc−jets or fb−jets are shown in Figure 7.9. It is desirable to

avoid extreme peaks of multiple orders of magnitude difference for a small range
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Figure 7.8: The per flavour normalised distributions of the predictions provided by

the outputs of the output layer of the DL1 DNN [2].
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Figure 7.9: The final discriminant distributions of DL1 for the different background

node tunings for b- (top) and c-jet (middle and bottom) tagging normalised for all

individual jet flavours. The middle plot shows the final discriminant distribution for

the loose c-jet tagging operating point and the bottom plot for the tight c-jet tagging

operating point, where both have individually tuned background node fractions.
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of final discriminant values in regions of signal efficiencies of interest. If present in

the distribution of the final discriminant, they can have a large impact on the perfor-

mance when considering small shifts of the cut value if the cut values are located

close to the spike. All three presented variants of DL1 have been checked and no

such spikes are present. It is found that the addition of the binary check variables as

input variables help broadening peaks originating from default variable spikes.

The DL1baseline b-jet tagging algorithm uses a fb−jets of 3%, which is chosen

based on an optimisation comparing the light-flavour and c-jet rejection factors at

77% b-jet efficiency to the same figures of merit of the MV2 high-level b-jet tagging

algorithm MV2rnn. The chosen operating point of 77% b-jet tagging efficiency is

used for the optimisation of high-level flavour tagging algorithms as it is considered

the most important one of the four operating points used in flavour tagging, which

correspond each to a b-jet tagging efficiency of 60%, 70%, 77% or 85%.

The c-jet tagging algorithm performance is separated into a loose and tight op-

erating point and uses a c-jet tagging efficiency of 40% at a fb−jets of 8% for the

loose operating point and 17% at a fb−jets of 2% for the tight operating point. These

operating points were primarily tuned to match the b-jet rejection factors of the

operating points chosen for MV2c(l)100. Both are calculated using the tt̄ sample

while keeping the c-jet tagging efficiency approximately fixed as it was chosen to

reduce the tagging algorithm complexity for DL1 algorithms to only allow for in-

teger percentages of c-jet tagging efficiencies. A variation of single percentages is

only allowed if the light-flavour jet rejection factors are largely improved by doing

so.
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Following on from the setup and optimisation strategy discussed in Chapter 7,

this chapter presents the b- and c-jet tagging performance of the three DL1 variants

DL1baseline, DL1mu and DL1 evaluated on simulated tt̄ events with a jet pT of up

to 300 GeV. The performance is measured using different figures of merit for the

b- and c-jet tagging algorithms. Additionally, the calibration is presented to show

that the MC simulation based performance of DL1 is in very good agreement with

collision data and therefore the shown algorithm performance can be assumed to

hold true on collision data as well as simulation.

8.1 b-Jet Tagging Performance

For b-jet tagging, figures of merit used to evaluate the performance are ROC curves,

calculated using a flat cut efficiency and investigating the background rejection fac-

tors as a function of jet pT using a flat signal efficiency efficiency calculation across

individual jet pT bins. Both flat efficiencies and flat cuts are calibrated and used for

b-jet tagging in physics analyses.

The b-jet tagging performance of all three DL1 variants for a b-jet tagging ef-

ficiency calculated using all jets with pT > 20 GeV ranging from 60% to 100%

is shown in Figure 8.1. Since the tagging algorithm were optimised especially for

a b-jet tagging efficiency of 77%, with the intention to prioritise on increase in the

light-flavour jet rejection factors rather than the c-jet rejection factors, it can be seen
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Figure 8.1: The ROC curve b-jet tagging performance plots showing the light-

flavour jet (top) and c-jet (bottom) rejection factors on jets reconstructed in sim-

ulated tt̄ events from pp collisions at
√
s = 13 TeV as a function of the b-jet tagging

efficiency of the DL1 variants DL1baseline, DL1mu and DL1.

that the c-jet rejection factors at 77% are quite close across the DL1 variants, with

DL1mu and DL1 performing slightly better. However, the light-flavour jet rejection

factors increase when increasing the information content used as an input to the

individually optimised DNNs. This behaviour for light-flavour jet rejection factors
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is quite constant for b-jet tagging efficiencies down to 68%, where the light-flavour

jet rejection factors of DL1mu outperform those of DL1 and below which exhibits

a performance closer to DL1baseline. For c-jet rejection however, DL1 outperforms

the other two DL1 variants for b-jet tagging efficiencies below 72%, where DL1mu

and DL1baseline indicate similar rejection power. The overall performance is in

agreement with the intended optimisation, favouring the light-flavour jet rejection

power over the c-jet rejection power and focussing especially on a b-jet tagging

efficiency of 77%.
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Figure 8.2: The b-jet tagging performance plots showing the light-flavour (left) and

c-jet rejection factors (right) on jets reconstructed in simulated tt̄ events from pp

collisions at
√
s = 13 TeV as a function of jet pT for a b-jet tagging efficiency of

77% for the DL1 variants DL1baseline (top), DL1mu (middle) and DL1 (bottom).

However, ROC curves on their own do not provide sufficient enough informa-
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tion concerning the quality of the performance. The overall performance calculated

using a flat cut efficiency masks occurrences where the DNN might be very well

optimised for classifying jets within a small region of high population in the tt̄ sam-

ple, which then counteracts less well performing classification in the remaining jet

pT spectrum.

To study the consistent performance of a b-jet tagging algorithm, flat efficiency

cuts are applied and the performance in terms of background rejection factors is

analysed per bin as a function of jet pT. The light-flavour and c-jet rejection factors

for a b-jet tagging efficiency of 77% are shown for all three DL1 variants as a func-

tion of jet pT in Figure 8.2. The rejection factors for both light-flavour jet and c-jet

rejection follow the generally expected shape which is also observed for the MV2

b-jet tagging algorithms. This expected shape consists of high rejection factors for

jets in the mid pT range from 60 GeV to 200 GeV, where enough statistics is present

and the b hadron pT is high enough to result in a distinguishable travel path, whereas

in the lower jet pT region the travel path is shorter and therefore leads to a jet topol-

ogy, which is more difficult to distinguish from c- and light-flavour jets. For more

boosted jets in the higher jet pT region the rejection factors are expected to decrease

a bit due to the modelling of the boosting of the jet and lower statistics.

From these plots, the overall good performance improvement is seen throughout

the full jet pT spectrum and not due to a localised performance improvement for all

DL1 b-jet tagging algorithms. While there are only slight improvements observed

when moving from DL1baseline to DL1mu, they become more visible when com-

paring to the b-jet tagging performance of DL1. This is especially the case in the

light-flavour jet rejection factors of DL1, where the improvements with respect to

the other DL1 b-jet tagging algorithms are global improvements. In the mid pT range

from 60 GeV to 200 GeV, which covers the majority of the region of interest in jet

pT for b-jet tagging performance on tt̄ events, the improvements are most visible

to the extent of a less curved but more plateau-like behaviour in the rejection fac-

tors. However, improvements can also be seen in the rejection factors in the lower

and higher jet pT regions. As expected from the rejection factor values observed in

the ROC curves at 77% b-jet tagging efficiency, the performance increase, though

present, is less obvious in the c-jet rejection factors.

8.2 c-Jet Tagging Performance

In contrast to b-jet tagging, the main figures of merit for the overall tagging per-

formance in c-jet tagging are iso-efficiency curves, where the rejection factors for
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both b- and light-flavour jets are calculated at a given c-jet tagging efficiency. In this

method a single fb−jets value can be represented as a dot and a fine array of them as

an iso-efficiency line, whose values correspond to the same c-jet tagging efficiency.

The overall rejection power is shown across the jet pT spectrum up to 300 GeV. The

DL1 c-jet tagging algorithm allows for a direct comparison to the MV2 c-jet tagging

variant, which is used to define the loose and tight c-jet tagging operating points.

For DL1baseline and DL1mu similar tunings of the final discriminants are shown

in Figure 8.3 without showing their individual tunings, which vary due to optimi-

sation in the choice of fb−jets in each of their final discriminants and slightly in the

choice of c-jet tagging efficiency. For all three DL1 variants the same c-jet tagging

efficiencies as well as position of the performance given the same fraction fb−jets in

the final discriminants are shown, as long as they represent a valid choice for the

tagging algorithm. A valid choice is defined as being in a region of performance,

which would be considered for use in an analysis. As already observed in the per-

formance of the b-jet tagging algorithm, additional variables improve the rejection

factors for both b- and light-flavour jets. This can be seen in the iso-efficiency lines,

which given the same b-jet rejection factor only showing higher light-flavour jet re-

jection factors as the number of input variables increases. It should be noted that

the position of the performance corresponding to the same fb−jets in the definition of

the final discriminant for every iso-efficiency line does not lie at the same distance

along the line with respect to the starting point of the iso-efficiency line, and that

respective distances can vary individually per line and per line segment. This re-

flects the fact that the fractions fb−jets, as well as fc−jets, are performance parameters

which need to be optimised for each individual flavour tagging algorithm.

The rejection factors for the chosen operating points for DL1 are listed in Ta-

ble 8.1, where the values are compared to the operating points defined for MV2c(l)100.

While both c-jet tagging algorithms perform quite similarly for the loose operating

points, the good flavour separation power of DL1 tagging algorithms becomes more

visible when moving to a tighter operating point, which involves a lower c-jet tag-

ging efficiency. There the smaller overlap in the final discriminant between c- and

light-flavour jets becomes apparent and is reflected by large light-flavour jet rejec-

tion factors. It is possible for analyses, which use c-jet tagging, that the performance

provided by these MV2c(l)100 information based definitions of DL1baseline oper-

ating points can be improved further by tuning the definitions of the operating points

purely for DL1. This can also include a new tuning of fb−jets for their final discrim-

inants.

An additional figure of merit is provided by the rejection factors as a function
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Figure 8.3: The iso-efficiency curves showing the performance of each chosen final

discriminant tunes of DL1 for c-jet tagging efficiencies matching the loose (top)

and tight (bottom) operating points. Only valid b-jet fractions fb−jets are used to

define the final discriminants of the individual algorithms. The rejection factors

are calculated using jets reconstructed in simulated tt̄ events from pp collisions at
√
s = 13 TeV. Each iso-efficiency line corresponds to the c-jet tagging efficiency of

either the loose (40% c-jet tagging efficiency) or tight (17% c-jet tagging efficiency)

operating points of DL1 and the markers indicate the same fractions fb−jets as tuned

for those operating points.

of jet pT using the fixed cut calculation. The calculation method is preferred in c-jet

tagging for its simplicity and therefore used in the determination of the loose and

tight c-jet tagging operating points. The rejection factors for the loose and tight

operating points of DL1 are shown as a function of jet pT in Figures 8.4 and 8.5. As

with b-jet tagging, the jet pT dependence is again in agreement with the expected
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Operating Point MV2c(l)100 DL1

loose
c-jet tagging efficiency 41.5% 40%

light-flavour jet rejection factor 19.9 26.6

b-jet rejection factor 4.0 4.0

tight
c-jet tagging efficiency 17.5% 17%

light-flavour jet rejection factor 190.9 527.1

b-jet rejection factor 18.3 17.9

Table 8.1: Rejection factors for the chosen loose and tight c-jet tagging operating

points of DL1 and the comparison to the rejection factors of the loose and tight

operating points defined for MV2c(l)100 [77].

shape of the distribution. For jets with higher pT, statistical uncertainties which are

especially visible for the tight operating point are a result of limited statistics in the

sample used to evaluate the performance. As before in the case of b-jet tagging, the

c-jet tagging performance shows a plateau structure, which is more pronounced for

the tight operating point in the mid pT range, from where it also extends into the

lower and higher jet pT regions.

From the overall performance it can be concluded that DL1 is not only the

tagging algorithm with the best b-jet tagging algorithm performance but also the

best c-jet tagging algorithm performance. This is expected from a larger informa-

tion input. This performance strongly indicates the simplicity of the multiple pur-

pose flavour tagging algorithm DL1, which not only results in great performance in

flavour tagging but at the same time reduces the amount of person power required

for tagging algorithm maintenance or re-optimisation in case of updates on object

reconstruction or recommendations from relevant combined performance groups

which impact the input variables. This is due to the fact that only one DNN training

is required to be trained and stored.
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Figure 8.4: The c-jet tagging performance in terms of the jet pT dependence of the

c-jet tagging (top), light-flavour jet rejection factors (middle) and b-jet rejection fac-

tors (bottom) of DL1 as calculated on jets reconstructed in simulated tt̄ events from

pp collisions at
√
s = 13 TeV using a flat cut calculation for the c-jet tagging effi-

ciency across the indicated jet pT range for the loose operating point. Only statistical

and no systematic uncertainties are included in the error calculation.

114



8.2. c-Jet Tagging Performance 8. DL1 Performance

0 50 100 150 200 250 300
Jet pT [GeV]

0.10

0.15

0.20

0.25

0.30

c-
je

te
ffi

ci
en

cy √
s=13TeV, tt

17% c-tagging efficiency (flat cut)
DL1 tight

0 50 100 150 200 250 300
Jet pT [GeV]

0

100

200

300

400

500

600

700

lig
ht

-fl
av

ou
rj

et
re

je
ct

io
n

fa
ct

or √
s=13TeV, tt̄

17% c-jet efficiency (flat cut)
DL1 tight

0 50 100 150 200 250 300
Jet pT [GeV]

0

5

10

15

20

25

30

35

b-
je

tr
ej

ec
tio

n
fa

ct
or √

s=13TeV, tt̄
17% c-jet efficiency (flat cut)

DL1 tight

Figure 8.5: The c-jet tagging performance in terms of the jet pT dependence of the

c-jet tagging efficiency (top), light-flavour jet rejection factors (middle) and b-jet

rejection factors (bottom) of DL1 for a flat cut across the indicated jet pT range

for the tight operating point. The performance is calculated on jets reconstructed

in simulated tt̄ events from pp collisions at
√
s = 13 TeV. Only statistical and no

systematic uncertainties are included in the error calculation.
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8.3 Calibration

In order to qualify the performance and demonstrate that the algorithm has learned

the underlying physics, comparisons of the per jet predictions in MC simulations

need to be compared to real life collision data. The data-MC agreement of predic-

tions of the DL1 variants using a tt̄-dominated selection (left) and a Z → µ+µ−+jets-

dominated selection of events from pp collision data collected at
√
s = 13 TeV is

very good. This is shown for DL1 in Figure 8.6 for both the tt̄ dominated selection
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Figure 8.6: Data-MC comparison plots for DL1 on the predictions for b-, c-

and light-flavour jets calculated for a tt̄-dominated selection (left) and the Z →
µ+µ−+jets-dominated selection (right) [67].

as well for the jets of higher jet pT in the Z → µ+µ−+jets-dominated selection. Be-

sides larger uncertainties for bins with lower-statistics, only slight disagreement is

observed at the starts and tails of the prediction distributions. However, the origins

of these can be understood in part to be a result of the MC subtraction methods

which result in an imprecise MC prediction estimate. This contributes additional

uncertainty, but it is a requirement as it is impossible to select a sample of collision

data which only contains one interaction process of the colliding protons. The slight

disagreement can also originate from a slight generator mismodelling of the data,

which is also expected. Due to this generally good agreement the jet pT dependent

b- and c-jet tagging efficiency scale factors, which are used to bring the predic-

tions in line with real collision data, are expected to be close to one. The fact that

the agreement is this good when considering not only tt̄ but also different topolo-

gies such as Z + jets events shows that the DL1 tagging algorithms generalise jet

topologies well independent of the event topology. This means that the DL1 tagging
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algorithms picked up on the underlying physics of the jets and learned jet informa-

tion as intended. It is also an indicator that the algorithms generalise well enough

not to display exceedingly worse behaviour where there is generator mismodelling.

Otherwise this would indicate that instead of being robust to small variations in the

values of the attributes, which can be expected when moving to predicting on col-

lision data, the algorithm picked up too much on generator specific features in the

attributes or even statistical fluctuations in the training data, which is part of why

the monitoring and the initial setup of a well balanced training set is of such high

importance. This undesired behaviour would not necessarily be visible in the loss

development on the training and validation set or the figures of merit in the simu-

lated test set. In that case the algorithm would be an unreliable toy model, which is

of little use for physics analyses, both precision measurements and searches, which

require generalisation beyond the phase space of the training regime.

Unfortunately, only flavour tagging algorithms without SMu or SMT informa-

tion are currently able to be calibrated. Including the muon information in the cal-

ibration is ongoing work. Therefore, only DL1baseline is currently calibrated for

use in physics analyses.

The scale factors for DL1baseline at the 60%, 70%, 77% and 85% b-jet tagging

efficiencies are shown as a function of jet pT in Figure 8.7 and 8.8 [85]. Overall the

b-jet tagging efficiency scale factors are very close to one with excellent proximity

to one for the higher jet pT regions across all relevant b-jet tagging efficiencies.

Due to the usage of muon information in MV2c(l)100, DL1baseline is currently

the only c-jet tagging algorithm in ATLAS flavour tagging, which is able to be cali-

brated. However, the full calculation of the calibrations has not yet been performed.

However, based on the available b-jet tagging efficiency scale factors, it can be

concluded that the DL1 tagging algorithms provide a robust, reliable and therefore

trustworthy performance. This makes DL1 a fully-fledged and trustworthy high-

level flavour tagging algorithm family for use in all physics analyses performed

within the ATLAS collaboration.
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Figure 8.7: The b-jet tagging efficiency scale factors (SF) for DL1baseline as a func-

tion of jet pT for of 60% (top) and 70% (bottom) b-jet tagging efficiencies [85]. The

SF are derived using the combined full collision datasets collected in the years 2015

to 2017.
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Figure 8.8: The b-jet tagging efficiency scale factors (SF) for DL1baseline as a func-

tion of jet pT for of 77% (top) and 85% (bottom) b-jet tagging efficiencies [85]. The

SF are derived using the combined full collision datasets collected in the years 2015

to 2017.
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A new family of flavour tagging algorithms has been presented. Three different

variants to provide b- and c-jet tagging algorithms for the ATLAS collaboration are

employed and available for use in physics analyses with recommendations provided

by the flavour tagging performance group. DL1 is recommended on par with the

previous high-level b-jet tagging algorithms baseline MV2. DL1baseline currently

provides the only c-jet tagging algorithm which is able to be calibrated and used

in analyses. The calibration of the three DL1 variants for b- and c-jet tagging is

available to be used in ATLAS analyses on pp collision data at
√
s = 13 TeV. The

significance of the impact of the performance improvements provided by the DL1

algorithms and is investigated by a large fraction of physics analyses within the

ATLAS collaboration.

An example is the application of the DL1baseline b-jet tagging algorithm us-

ing an flat cut operating point corresponding to 70% b-jet tagging efficiency in

the tt̄H
(
H → bb̄

)
analysis. The choice of 70% b-jet tagging efficiency reflects the

nominal flavour tagging operating point of the analysis. This high jet multiplicity

analysis is highly reliant on flavour tagging as in the single lepton channel a total

of six jets of which four should be b-tagged are expected. The tt̄H
(
H → bb̄

)
pro-

cess is expected to result in a reconstructed physics object signature containing one

b-jet from each semileptonic top-quark decay, and a bb̄ pair coming from the decay

of the Higgs boson. The analysis benefits in important areas of the high jet mul-

tiplicity phase space from the separation power provided by DL1baseline, which

enables the analysis team to reduce signal region contamination from tt̄ production

in association with additional light-flavour or c-jets in particular. This can be seen in
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(a) Application of the DL1baseline b-jet tagging algorithm

 = 13 TeVs

 + lighttt + Vtt

1c≥+ tt 1b≥+ tt
tNon-t

5je 2be @70 5je 3be @70 5je 4bi @70

6ji 2be @70 6ji 3be @70 6ji 4bi @70

(b) Application of an alternative high-level b-jet tagging algo-

rithm.

Figure 9.1: Pie charts showing the background contributions from different physics

processes in regions defined by jet and b-jet tagging multiplicities. Either the

DL1baseline b-jet tagging algorithm (a) or a corresponding alternative high-level

b-jet tagging algorithm (b) is used, both employing an operating point correspond-

ing to a b-jet tagging efficiency of 70% [86]. The top rows show regions containing

exactly five jets (5je) and the bottom rows show regions with at least six jets (6ji).

The columns, moving from left to right, show the regions which have exactly two

(2be), exactly three (3be) or at least four (4bi) b-tagged jets. The most signal en-

riched regions are those containing at least four b-tagged jets matching the expected

reconstructed objects in the tt̄H
(
H → bb̄

)
process [87].
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Figure 9.1, which shows the background composition in regions defined by jet and

b-jet tagging multiplicity. Of special interest are the pie charts corresponding to a

selection closest to the signal, which encompasses regions including three exclusive

b-tagged jets (3be) as well as four inclusive b-tagged jets (4bi). In these regions the

dominant background is expected to come from tt̄+ ≥ 1b, which matches the final

state of tt̄H
(
H → bb̄

)
. However, in addition there are contributions from tt̄+ light

and tt̄+ ≥ 1c due to c- and light-flavour jets passing the operating point require-

ments and therefore are labelled as b-tagged jets. In Figure 9.1 it can be seen that

the tt̄+ light and especially tt̄+ ≥ 1c backgrounds are largely reduced when using

DL1 in comparison to the corresponding alternative high-level b-jet tagging algo-

rithm. This result is a direct consequence of the improved light-flavour and c-jet

rejection factors of DL1baseline at a 70% b-jet tagging efficiency. The reduction of

the tt̄+ ≥ 1c contribution in the signal regions was one of the main experimental

challenges of the previous iteration of the analysis, as shown in Ref. [87].

The careful preprocessing procedure including the two-dimensional weighting

to the b-jet distribution, whose population is smoother in the hybrid sample for jets

with jet pT of ∼ 200 GeV than for c- or light-flavour jets, results in a more attrac-

tive performance as a function of jet pT for analyses in comparison to algorithms

in the MV2 family. In addition, as expected from the careful preprocessing and

inclusion of generalisation techniques in the training of each DNN, the DL1 algo-

rithms extrapolate well to higher jet pT. This is apparent in the high jet pT regime

above 1 TeV, where the light-flavour jet rejection factors of the MV2 b-jet tagging

algorithms display non-continuous behaviour and decrease with increasing jet pT in

contrast to the corresponding DL1 variants presented in this thesis. This regime is of

high interest for heavy resonance searches such as Z ′ → bb̄, where the robustness

and understanding of the tagging performance is critical.

For these reasons it is crucial to point out the importance of the DL1 preprocess-

ing as well as using multiple figures of merit to evaluate the overall performance.

Both are extremely valuable in determining the final optimised DL1 version to be

applied to collision data. One of the most important aspects of the preprocessing

is that it counteracts the class prior problem and prepares the MC simulation data

to match the applied classification algorithm. In addition to the preprocessing, as

has been shown, a single figure of merit is not able to encompass the complexity of

the task and evaluate the desired performance. Determining the full set of impor-

tant figures of merit is one of the crucial first steps in the development of DL1. It

is therefore important to keep in mind that it is this carefully designed sequence of

steps that provides the foundation of DL1 toward the final family of algorithms. The
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success of this family of algorithms is to a large extent based on this foundation.

As DL1 is based on supervised learning, potential performance improvements

are possible using more precise labelling of the MC training data. Improvements

in the modelling of processes as well as a better physics understanding in the sim-

ulation of the MC data and more precise generation of processes are expected to

provide a simulation, which describes collision data with higher accuracy. This im-

proved picture of nature would enable a more precise labelling in the simulated data

and therefore enables the DL1 algorithms to provide predictions on collision data,

which closer reflect nature due to less association errors in the MC training data.

Algorithms in the DL1 family are designed carefully and their performance is

monitored towards the aim of providing a robust and reliable flavour tagging algo-

rithm which is well optimised, robust towards deviations in the expected MC sim-

ulated training data and capable of generalisation of the underlying physics. The

studies shown in this thesis show that this aim has been achieved and the high-level

flavour tagging algorithms are now established within the collaboration with the

added success of having gained equal recommendation to analyses by the flavour

tagging performance group. The presented data-MC comparisons show very good

agreement and the MC scale factors derived using real pp collision data recorded

by the ATLAS detector during Run 2 at
√
s = 13 TeV are consistent with one even

up to high jet pT for all operating points of interest. The presented performance of

DL1 on jets from simulated tt̄ events can therefore be considered to be the same on

ATLAS pp collision data at
√
s = 13 TeV during the Run 2 data taking period.

9.1 Outlook: Ideas on Developing DL1 Further

Several aspects of DL1 can be investigated for potential performance improvements.

They go partially beyond the ramifications of the first proof of principle of the

method where restrictions are imposed in order to treat all high-level flavour tagging

algorithms the same and provide them with the same information content. Now that

DL1 has proven that it can hold itself up to the previously existing methods, the full

potential of the DL1 method can be explored in more depth.

Before discussing the potential changes to DL1, it should be pointed out that

it would be largely beneficial to calibrate the DL1 outputs directly rather than the

defined final discriminant which requires tuning and re-calibration already for b-jet

tagging and two operating points for c-jet tagging, which results in three different

final discriminants to calibrate. For the same amount of calibrated variables, the

outputs of the DL1 output nodes pb, pc and plight−flavour could be calibrated. This
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would lead to highly improved flexibility for adaptation within physics analyses, as

the values of fc−jets and fb−jets in the final discriminants of the b- and c-jet tagging

algorithms could be optimised per use case. Any potential configuration requested

by analyses which would benefit by a change would have access to a calibration

and be able to tune their flavour tagging for their own use case. This could improve

sensitivity in all areas of physics using flavour tagging information and especially

help pushing the significances of observations like the H → bb̄ decay observation,

which are heavily reliant upon flavour tagging.

An obvious area for improvement would be to include the inputs to the low-level

algorithms of flavour tagging directly. However, in order to have a direct comparison

to the MV2 method, the same variables were used to provide an apples to apples

comparison of first principles of the two methods. It would have to be carefully

checked whether the physics content communicated by a DL1 algorithm trained on

these variables would still show the same robustness, generalisation and agreement

with experimental collision data as seen for the current implementation. The addi-

tional variables would include hit-based variables and the performance under ad-

dition of jet substructure variables could be investigated as well. Additionally, the

training of the RNN of the RNNIP low-level algorithm could be directly included

in the DL1 DNN by merging the architectures.

Even without adding new variables or variables which were used by low-level

algorithms, an optimisation of the current set of input variables could also be con-

sidered. This could be done in order to achieve a set of more orthogonal information

content and higher information density.

Furthermore, the construction of a well modelled MC simulated training sam-

ple, which includes for example gluon or double-b hadron labels, might be possible.

Then DL1 could be extended to more than three outputs but the same MC generator

would be needed as not to learn generator differences between jet flavours. While

additional labels would extend the use case of DL1 and reduce overall required per-

son power, the b- and c-jet tagging algorithm performances should not be degraded

in the process. Therefore, additional studies would be needed if it is beneficial for b-

and c-jet tagging which remains of primary interest. In case of a performance degra-

dation, it might be a better approach to train individual DNNs for different sets of

labels. It should be kept in mind when thinking about this addition of new labels

that different labels might be best modelled with different generators or generator

setting. For example, this is the case for τ-jets whose decays are known not to be

well modelled with EVTGEN, which specialises on modelling hadronic decays, but

better with different hadronisation generators. Due to MC-MC scale factors, which
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point out disagreements between different generators, it is known that these gen-

erators introduce features, which when mixed in a DNN training might be picked

up upon in combination with the jet topology of different flavours. This would be

highly undesirable as it would lead to increased MC-MC scale factors, worse agree-

ment to collision data and therefore a reduced sample statistics in physics analysis

by increasing the flavour tagging related MC-MC scale factor weights. Therefore,

this requires a careful approach, which is not to be taken lightly.

In a few cases the distributions of the discriminants provided by the low-level

algorithms of flavour tagging are exhibiting tails, which for few cases results in

jets still having a value for this attribute which is of a higher value compared to the

majority of the attribute values. This could be shortened by applying a log transform

before the application of a scale and offset. Doing so might potentially improve the

performance.

The pile-up profile of the training set used for DL1 is currently flat. Instead, one

could train on a pile-up profile which matches the profile expected of events over

the intended data taking period so that the DL1 NN becomes aware of the changed

pile-up situation and is aware of small changes when moving to higher pile-up. This

adds additional complications of its own. Besides unforseen conditions and the wish

for a general well working tagging algorithm, including this is a balancing act. In

order to make the DL1 DNN aware of the pile-up situation, the pile-up parameter

can be parametrised and taken into account for example in the weighing procedure

during preprocessing in order to not prioritise the jets of a certain pile-up against

others. Following another approach, the pile-up dependence could also be mitigated

using an adversary discriminator to train out the dependence of the performance on

the pile-up situation. The final approach will, however, heavily depend on empirical

results.

Training of DL1 on other jet collections is currently in progress by the flavour

tagging performance group. This includes Particle Flow jets [88] as well as jets

constructed using ID tracks instead of topo-clusters as inputs to the anti-kt clustering

algorithm.

In addition, the development and support of the Theano libraries has been ter-

minated. However, TensorFlow [89] libraries as well as NN architectures and opti-

misation tools remain under active development. Their availability within Keras or

by direct access using TensorFlow is constantly being updated. New architectures

and optimisation strategies could be investigated in their use for DL1 performance

optimisation and generalisation.

Considering the wide spectrum of potential developments, it is important to ap-
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proach the next steps in the DL1 development wisely. The proper preparation of a

solid training set, the monitoring and cross checks of figures of merit as well as good

generalisation capabilities are crucial for a reliable performance. For all changes the

basic principle of the added steps need to be questioned for feasibility, theoretical

sense and potential impact. It is very important to keep the full picture in mind.

While some of the proposed changes seem trivial, they might turn out more com-

plicated in praxis and care must be taken in further developments to deliver a robust

and reliable tagging algorithm. Also the person power, estimated development time

and complexity need to be taken into consideration in relation to the potential over-

all gain when prioritising one over the other. Long term research and development

is needed and should be encouraged. However, solid short-term improvements are

also a priority. These improvements leading to an increase in performance of the

DL1 family then directly feed into potential improvements within analyses.

Overall, DL1 has demonstrated excellent performance as well as agreement with

recorded collision data. With more physics analyses investigating the use of DL1,

its benefits and the potential improvements to sensitivity and precision of both mea-

surements and searches will be ascertained as more results become available. Going

forwards, keeping an open mind and sensibly incorporating new ideas with the full

picture in mind will continue to aid and improve analyses and push onwards in the

hunt for new physics.
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