ANOMALOUS TRANSPORT OF MAGNETIC FIELD LINES IN QUASILINEAR REGIME

B. R. Ragot

Department of Astronomy, University of Texas, Austin, TX 78712, USA.

In weak magnetic turbulence, the diffusive prediction for the quasilinear spreading of magnetic field lines as a function of the distance z along the average field requires the existence of a sufficiently short correlation length L. Releasing the assumption concerning the existence of L, I will present an analytical proof that, whenever the spectral index of the turbulence does not exactly vanish below the parallel wavenumber 10/z, the transport of the field lines is anomalous (or non-diffusive) on the scale z. Simple expressions will be derived for the transport exponent α and coefficient D_{α} (defined by a field line spreading equal to $D_{\alpha}z^{\alpha}$). This will allow for a quantitative comparison with the prediction of the original quasilinear theory. Some consequences for the dispersion of solar particles in the interplanetary magnetic fields will also be discussed.