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ABSTRACT 

Parker’s 2-dimentional transport equation has been numerically solved to investigate the influence of the different 
radial internal boundary conditions on the expected distributions of the density of galactic cosmic rays. The radial 

internal boundary conditions, obtained from the physical assumptions, 0
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density of galactic cosmic rays and r and r1  are the relative radial distances from the Sun) and 0
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, obtained 

from the Parker’s transport equation (with the singular point , r = 0) have been considered. The numerical solutions of 
the transport equation with drift for the different radial internal boundary conditions and for the various ratios of the 
perpendicular and parallel diffusion coefficients of galactic cosmic rays have been compared. It is concluded that for 
the solving of the Parker’s transport diffusion equation (possessing a singular point, r = 0) one must use the boundary 

condition, 0
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. 

INTRODUCTION 
Problems of initial and boundary conditions for the differential equations up to day remain as a vital subject of 
investigation [1]. The Parker’s anisotropy diffusion equation [2] describing a propagation of galactic cosmic rays 
(GCR) in interplanetary space is not an exception one in this direction. In fact, a choice of the internal boundary 
condition for Parker’s transport equation at the point r = 0 or near this point is more or less clear [3, 6] based on the 
physical assumption about the distribution of the intensity of galactic cosmic rays (GCR). Nevertheless, from the point 
of view of the mathematical exactness the internal boundary condition obtained from the physical assumption is not 
justified with respect to the singular point (as is the point corresponding to the Sun’s location in the interplanetary 
space) [5, 6]. It is true that the internal boundary condition at the point r = 0 or near it could not sufficiently influence 
on the distribution of the GCR intensity in the interplanetary space (with the dimension of the modulation region of the 
tens of astronomical units). However, to choose the internal boundary condition without a rigorous method is not an 
acceptable argument  from the point of view of the mathematical accuracy; the more so, that there exists the method [7] 
how to find the boundary conditions for the differential equations containing a singular boundary (or singular point). 
 
DETERMINATION OF THE INTERNAL BOUNDARY CONDITION 
Parker’s transport equation [2] has a form: 
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where N, and R are density (in interplanetary space) and rigidity of GCR particles, respectively; Kij is diffusion tensor 
consisting from the symmetric and anti symmetric parts; Ui is the solar wind velocity and t – time. The equation (1) in 

the spherical coordinate system ρ, θ, φ, for 2-dimentional (
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=0), steady-state case (neglecting the term 

∂N/∂t), can be written: 
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The dimensionless density, n = N/N0 , where N0 is density of GCR in the interstellar medium accepted as, 
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N0 ∝ R-2.5 for the rigidities R to which neutron monitors are sensitive; the dimensionless distance r = ρ/r0, where r0  is 
the size of the modulation region and ρ is the distance from the Sun; The A1, A2, . . . , A6 are the function of r, θ, and R. 
The parallel diffusion coefficient, K is represented as , 
K=K0 K(r) K(R), where                                                                                                                 (3) 
K(r) = 1 + α0r,  K(R) = R 
K0 is equal to the 2×1022 cm2s-1 for the energy of 10 GeV. the radius r0 of the modulation region is 100AU and the solar 
wind velocity U equals 4×10 7 cm/s. All functions A1,…, A6 contain the expression rβ with the power, β≥1, i.e. the 
equation (2) has the singular point, at r = 0. The functions A1, A2, A4 and some addends of the A3 contain the 
expression rβ with the β >1; at the same time one addend of function A3, and functions, A5 and A6 contain only the 
expression rβ with the power, β =1. According to the [7] there can be found an internal boundary condition from the 
differential equation with the singular boundary by the way, as is has been done in [5, 6]. All terms of the equation (2) 
must be cancelled by the expression rβ with the possibly maximum value of the power β. In the case of the equation 
(2), β maximum equals 1. After dividing all terms by the r and then tend to zero r in the all rest terms where r still 
exists, one can obtain: 
A1 = 0,  A2 = 0,  A3 = 2,  A4 = 0,  A5  = -3 S,  A6 = 2 S R/3 
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From the equation (4) for the point r = 0, can be written:  
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where, α = -3 S/2,  β = S R/3 , and S= Ur0/K0. 
The expression (5) is the internal boundary condition at the point r = 0 for the equation (2), which is using to solve the 
equation (2), e.g. in [8]. An internal boundary condition,  
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can be obtained owing to the parabolic approximation using the average values of the densities around the centre  
(r = 0) of the coordinate system [5]. The more widely used popular boundary condition,  
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can be obtained based on the absorbing or reflecting conditions near the Sun or to assume that the radial gradient of the 
intensity of GCR just outside the boundary r ≥ r1 is equal to the gradient just inside 0≤ r ≤ r1 e.g. in [3, 4, 9]. 
Before to discuss the influence of the different internal boundary conditions on the solution of the equation (2) there 
must be considered the case when the ratio α of the perpendicular and parallel diffusion coefficients (α = K⊥/ K) is 
assumed to be constant, e.g. as, in [10]. In this case, e.g. the function A2  in the equation (2) does not contain the 
expression rβ ( with the, β ≥1) and it is not possible to use the above-mentioned method for the finding of the internal 
boundary condition. In this case the determination of the internal boundary condition can be considered in two stages. 
First of all one can underline that near the region, r→0 the IMF is so much strong that (in the equation (2) the strength 
H of the IMF is proportional to the distance r according to the Parker’s spiral rule as, H ∝ 1/r2) a perpendicular 
diffusion of GCR can be neglected. So, the ratio, α = K⊥/ K tends to zero at the point r = 0. The ratio α1  of the drift 
Kd and parallel diffusion coefficients (α1 = Kd/ K) is proportional to Sinψ, which equals zero at the point, 
 r =0. Thus, in the equation (2) remain only terms proportional to the expression of the rβ and the internal boundary 
condition can be found as above. Now, having different internal boundary conditions,  
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there is possible to investigate the role of each one in the solution of the equation (2).The equation (2) numerically was 
solved using the difference grid scheme for α= (1 + ω2τ2)-1, where ωτ =300HλR-1; H is the strength of the IMF and  
λ - the transport free path of GCR particles. At the Earth’s orbit H = 5 nT, λ = 2×1012 cm, and ωτ =3, for the energy of 
10GeV and then it changes depending on the spatial coordinates according to the Parker’s spiral magnetic field [2]. At 
the boundary of the modulation region (Z =100AU) α tends to 1. Solutions of the equation (2) for the α0 = 100 are 
presented in Figures 1 and 2 for the different directions (qA >0 and qA <0) of the Sun’s global magnetic field. It is seen 
from these figures that at the point r = 0, there are differences between the values of the densities of cosmic rays for 
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different boundary conditions, but for the distances more than 0.5AU these differences are vanishing. The differences 
between the values of the densities of cosmic rays at the point r = 0 for different boundary conditions have the similar 
character (in Fig.1, 2) for the different ratios α of the perpendicular and parallel diffusion coefficients. Thus, as far the 
internal boundary condition (5) is obtained from the differential equation (with the singular point, r = 0) without any 
additional assumption, the (5) can be considered as the mathematically justified and acceptable radial internal boundary 
condition for the solving the Parker’s transport equation (2). 
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CONCLUSION 
For the solving of the Parker’s transport diffusion equation (possessing a singular point, r = 0) one must use the 
boundary condition 
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, which is obtained from the differential equation (2) without any additional 

physical assumption. 
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Fig.2. Changes of the expected density of cosmic rays 
for the internal boundary conditions  
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 (solid line)   in qA>0. 

Fig.1. Changes of the expected density of cosmic 
rays for the internal boundary conditions  
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