ICRC 2001

Neon galactic cosmic ray isotopic abundances: Comparison with Wolf-Rayet star models and meteoritic abundances

W. R. Binns¹, M. E. Wiedenbeck², E. R. Christian³, A. C. Cummings⁴, P. L. Hink¹, M. H. Israel¹, R. A. Leske⁴, R. A. Mewaldt⁴, E. C. Stone⁴, T. T. von Rosenvinge³, and N. E. Yanasak⁴

¹Washington University, St. Louis, MO 63130 USA

²et Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA

³NASA/Goddard Space Flight Center, Greenbelt, MD 20771 USA

⁴California Institute of Technology, Pasadena, CA 91125 USA

Abstract. Measurements of the neon isotopic abundances by the ACE-CRIS experiment have been obtained in seven energy intervals over the energy range of ~ $80 \le E \le$ 280 MeV/nucleon. The ²²Ne/²⁰Ne source ratio is derived using the measured ²¹Ne abundance as a tracer of secondary production of the neon isotopes. We find that the ²²Ne/²⁰Ne abundance ratio at the cosmic-ray source is a factor of $5.0 \pm$ 0.2 greater than for the solar wind. The GCR ²²Ne/²⁰Ne ratio is also shown to be considerably larger than that found in anomalous cosmic rays, solar energetic particles, and most meteoritic samples of matter. Recent two-component Wolf-Rayet and supernovae models in which GCRs at Earth preferentially sample material from the galactic interior provide predictions for the 22 Ne/ 20 Ne ratio and other isotope ratios. We will compare the CRIS neon, magnesium, silicon, and iron isotopic source abundance ratios with predictions from these models.