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Abstract. Approximation of individual cascades of
giant energies is an essential part of energy determina-
tion methods for primary particles. Fluctuations of the
cascades and their distribution shapes were investigated
based on a sufficient number of MC simulated showers,
as dependent on primary energy, zenith angle and regis-
tration method. Individual cascades were approximated
with high accuracy using some special parameters. It
enables creating formulae convenient for both processing
experimental data and analytical investigation. The lat-
ter allows to obtain some physically interpreted charac-
teristics. Quality of this approximation and applicability
of the traditional approximation of mean cascades for es-
timation of individual giant cascades are discussed.

1.Introduction

To study showers of energy > 5.0 - 10° Gev as physi-
cal phenomenon, L.G.Dedenko and G.F.Fedorova have
calculated (Antonov et al., 2001) the showers generated
by 10+ 1000 EeV protons.The calculation has been per-
formed for zenith angles of § =0°, 24° 36', 44° 24', 60°
in terms of the KGS model taking into account neutral
pion interaction in the atmosphere. The present report
deals with the approximation of the number of electrons
N(t) at depth t. The method and conclusions are spread
over the cases of taking into account all charged particles
and over the cases of detection of these particle density

at the usual scale of distances from the shower core.
he simulation results (taking into account the LPM-

effect) showed that 1. Fluctuations of cascades in the
vicinity of maximum (t,, £ $t,,) are small (Varn(t) =
o/ < N(t) >< 1%, o is the standard deviation, <> being
the mean) due to the large number of particles (~ 10'°) in
a shower. At large energies (1000 EeV) and small angles
this region covers almost the entire depth of the atmo-
sphere. 2. The greater the distance to the maximum, the
greater the fluctuations, and at t > 2t,,VarN(¢) > 100%,
that is clearly manifested in showers of less energies and
greater angles. 3. There are present showers significantly
(more than by 100) deviating from the means due to fea-
tures of the nuclear cascade. These deviations are of
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complex character and cannot be reduced to fluctuations
of the first interaction depth or to fluctuations of the
depth or value of maximum. These showers are small in
number (~ 1%), but they are no question present and re-
vealed when the statistics is rather large. The existence of
these peculiar showers cannot be explained by the draw-
backs of the model, probably vice verse. Therefore a large
variety of experimentally detected giant showers can be
expected.

This behavior of fluctuations (in particular, their depth
dependence) is known and in the case of electron-photon
cascade of energy £ ~ 1 —1000 TeV are studied in detail
(Kirillov et al., 1983; Ivanenko et al., 1988). The fluctua-
tions themselves are thought to be deviation of individual
cascade from some mean shower. It is significant to note

that the same behavior is observed for individual cas-
cade, if the fluctuation is thought to be a deviation from

its smoothed value, i.e. a local spread of the value. This
fact means that, if the object is identified by a uniformly
smoothed function and an accuracy is thought to be a
sum of absolute errors, then an accuracy of this object
description is a function of the measure of its variabil-
ity. Thus, the individual cascade description should be
very accurate in the maximum region, being sufficiently

accurate as the distance from the maximum increases.
Since each giant shower is a rare valuable event, an

apparatus is necessary to describe (measure) these show-
ers to an accuracy enabling distinguishing between them
and efficient over a rather wide range, i.e. individual cas-
cades should be approximated with an accuracy of < 1%
at %tm <t< %tm and < 10% at t > 2t,,.

2. The Approximation Function Form

The above noted fluctuations leads to smooth bell-like
right-asymmetric functions with a smooth region of the
maximum (see examples below in fig.3,4,5). The known
formula of T.K.Gaisser, A.M.Hillas (1977) obtained for
the mean number of particles N(E,t) in a vertical (§ =
0) shower generated by a proton of energy E > 10'° eV
at the depth #¢ is

N(B, ') = No(E/c)exp(,) (i)ﬁ"

tm

t' is measured in units A = 70 g/cm?, the depth of max-
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imum being
tm' = 0.51In(Eo/c) — 1and Ny = 0.45, ¢ = 0.074GeV,

considered (as in (Bird et al., 1995)) to comprise 3 free
parameters (Ny,, tm, to) enable in many cases description
of a cascade in the region ¢, £ %tm with a relative error

less than 10% . Assuming the parameter A = 70 g/cm?
to be free, this region can be enlarged. An accuracy of
the approximation can be increased by introducing ad-
ditional parameters and complicating the formula with
saving the form of the product of an exponent and a
power function. But the description of the entire vari-
ety of model cascades failed here. A qualitative analysis
showed that the formula should be constructed based on

a dependence of the form: e~ 775,

To approximate individual cascades, use was made of
the formula

t—tpm )2

N(t) = Nype 7007 at — tm) +5>0, (1)
where N,,,t,, are the location of the maximum, a is the
asymmetry parameter, b is the area parameter (interpre-
tation of a and b will be given in the section Parameters).

This distribution is determined over the half-line, hav-
ing exponential asymptotics. N, and t,, were calculated
as the location of the maximum of parabolic approxima-
tion by the method of least squares 5 points close to the
cascade maximum. The ways of determination of @ and b
are somewhat free. The most general rule in determining
their values is a linear approximation (by method of least
squares) of the function:

D(t;) = (ti = tm)*/(In(N (t:) /Nim)), (2)

where N(t;) are the known values of the cascade being
approximated. An example of this function for two values
of energy and angle (E=10 EeV, 6 = 60°; E=1000 EeV,
6 = 0°;) is shown in Fig.l. An examination of (1,2)
and Fig.1 shows that (1) describe the cascade beginning
not so well, and for (2) the points about the maximum
(~ N(t;) /Ny >0.9) would be excluded.
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Fig.1. Discrepancy function and its linear approximation for

two individual cascades, squares - E = 1000 EeV, 8 =0 (the
upper pair); circles - 10 EeV, 8 =60° (the lower pair).

Use will be made of (1), taking in (2)

1
t> 5tm. (3)

3. Accuracy

Fig.2 shows the depth dependence of a relative error of
the approximation for E = 10 EeV, 8 = 60° as more dif-
ficult case for approximation. The solid lines are for the
mean and for maximal ¢ - relative errors of approxima-
tion of the entire amount (500) of cascades with of this
energy and angle. The dashed line is for relative errors
of typical individual cascade from Fig.1.

The mean > || < error is calculated as the mean of
absolute values and is finally presented with a sign of

usual mean value. A difference between the mean errors
and the errors for typical individual cascade is due to the

influence of the above noted peculiar showers. Averaging
over depth in the same manner for the presented individ-
ual shower, obtain
> |o| <= 2.05%, |maxo| = 11.8%, for the entire set:
> |o| <= 2.56%, > |mazo| <= 12.5%.
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Fig.2. The depth dependence of relative error of the approx-
imation (see notations in the text) for E= 10 EeV, 6§ =60°.

This figure confirms the above qualitative statement
about the approximation accuracy and shows that the
physically informative region ¢ < 1t,, should be investi-
gated separately.

Table 1 lists (in %) the means of a relative error
> |o| < obtained when approximating all the simulated
cascades (500 for each event)

Table 1
% 0° 24°36" 44°24' 60°
10 EeV .25 .29 40 2.56
100 EeV .28 .35 49 1.21
1000 EeV .37 .34 .69  4.00

The mean maximal deviation is about five times greater
than the corresponding > |o| <. As a preliminary fact, it



should be noted that this relative error increases with energy
as the above mentioned measure of cascade variability.

4. Parameters

Formula (1) can be seen to be similar to the Gaussian dis-
tribution, coinciding with it at @ = 0. It can be also seen
that at ¢ < ¢, (1) has more narrow distribution and at
t > tm, wider distribution than that Gaussian one. Thus,
distribution (1) is the right-asymmetric, this asymmetry mea-
sure being proportional to a. A similar consideration shows
Vb to be the measure of the distribution width. To deter-
mine more precisely these qualitative considerations, it should
be noted that parameters a and b can be determined by re-
quiring the approximation to coincide with the initial data at
two points. In particular, if these points are taken so that
N(t1) = N(t2) = (1/¢)Np,, an obvious interpretation of a
and b is obtained. This is especially simple at ¢ = e: deter-
minant of the obtained linear system for a and b is equal to
to — t1, i.e. to a width of the distribution N(t) at the level e,
a = (ta—tm)—(tm —t1), i.e. asymmetry measure of a cascade,
b= (t2 — tm)(tm — t1), i.e. to a product of the left and right
widths. Fig.3 showers an example of the same cascade as in
figs.1 and 2 and presents the interpretation of the parameters.
These parameters values are t,, = 776, N, = 72.5-10%, a =
60.6, b = 103 -10°.

The known physically interpreted and widely used char-
acteristic - the area under the cascade curve - can be easily
and rather precise obtained from (1).

Integrating (1) in ¢ and leaving only one term in expansion
of Ki(z), a useful relation
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Fig.3. Approximation of individual cascade and interpreta-
tion of the approximation parameters.

/ - | Nt~ VTNV (a)

tm

can be obtained to an accuracy of ~ 1%, which can be treated
as the interpretation of the parameter b and one of the meth-
ods of obtaining its value. The direct formula for a in this
case_is obvious.

For this individual cascade, one can easily obtain, using

(4), the mean energy lost by an electron traversing 1 g/cm?.

< E. > MeV/(g/cm?) = E/(v/TNuVb) = 2.4 MeV /g/cm?

The above described properties and varying (1) in ¢ and
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where x = t — t,, showed that: 1. calculation is stable
(1); 2. the parameters a and b are available to be used in
the methodics of determination of energy of a primary; 3. the

product N, Vb is the most stable.

5. Examples

The direct application of the above presented approxima-
tion to experimental data on N(t) of a shower detected by
Fly-Eyes (Bird et al., 1995; Halzen et al., 1995) yielded: t,,
= 815 g/cm?, Ny, = 22.1-10'°, a = 74.8, b= 124-10°. When
calculating D(t;) by (2) two points around the maximum were
excluded. Fig.4 and table 2 are given to illustrate this.
Table 2

ti(g/cm?) 210 261 325 395 465 538
N(t;)/10"° 230 570 1.50 3.70 7.80 10.8
ApprN(t;)/10'° 210 533 141 3.28 6.32 105
to be continued
624 714 802 892 983 1070
147 195 23.1 205 180 149
159 203 221 211 180 14.0

(By the way, one of the simulated showers of energy 320 EeV
and angle 44° 24’ has as its parameters those rather close to
the above obtained ones, though the mean values for this en-
ergy differ from the obtained ones by somewhat 1o.) This
concrete example illustrates just the idea of the application of
the method proposed. The results themselves are rather rough
requiring more precise determination as the experimental er-
rors are disregarded at all and the values of N(¢;) themselves
(the second line in the table) can be insufficiently correct.

The method and results were noted above to spread over
the case of detection of particle density. For example Fig.5
shows the approximation of depth dependence p,(600), the
muon density in an individual shower with energy of 100 eV
and zenith angle of § = 44°24'. The relative error of this
approximation is also given here, similar to this in Fig.2, but
in per cent.

257
]
]
] o
1N /1010 o
3 \
20 o \
] / B
] / \
15 / \
- o
] e \
] / \
] / \
9 d \
10 / \
] / \
] D/ \
1 / \
1 / \
5_" / \
1 % h
A P AN
4 / N
] o N
B o
O"TTIV]‘I‘T“_[ 11r|(flflllf1llr"[ 1[]][Il|ll\||[ll|f|’[| ll‘\"lrr‘lmm
0 0 400 éﬁ 00 1200 1400
2
t  g/em

Fig.4. Approximation of the Fly’s-Eye shower (October 15,
1991) disregarding errors of the initial data.
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The mean relative error for the total number of model
cascades of the above noted energy and angle (statistics of
500) is > |o| <= 1.25% and the mean maximal deviation is
> |mazo| <= 5.2%. A comparison with Figs.2 and 3 shows
the same properties of density approximation as that of the
particle number.

In the case of small zenith angles the cascade variability
decreases and the depth range narrows that enhances the con-
ditions of fitting, making the approximation more accurate.
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Fig.5. An example of approximation (the dashed line) of the
muon density p,(600) in an individual shower (circles) and
this approximation relative error (stars, the solid line), the
relative error is given in per cent.

6. Summary

An analysis of the simulation results shows that the presented
approximation describes the individual cascades with relative
error of ~ 0.1% in the maximum region and ~ 1 — 2% at ¢t >
%tm. The informative region ¢t < %tm requires special study.
The above consideration shows the approximation parameters
to be interpreted.

The product Ny, - Vb is the less fluctuating and the most
regular and can be considered as a candidate to be an invariant
in a methodics of primary energy determination.

The proposed method of constructing the approximation
is convenient for introducing (e.g. through (2)) a weigh coef-
ficients method to take into account a spread in accuracy of
the initial data.

more precise fit can be obtained (especially in a nar-
rower region) considering the above used parameters as inde-
pendent ones, and their values as initial for the best fit.

7. Discussion
Physical results revealed with this approximation can be
treated as presumable, since the model independence of these
results is uncertain. However a general methodical idea can
be presented. Individual cascade is usually compared with a
mean one as a pattern deviations from the mean being treated
as fluctuations. However, for N(t) there is obvious difference
between typical individual cascade and the traditional mean
cascade: the curve N(t) for the individual cascade should be
higher and more narrow than that for this mean cascade. Us-
ing a mean individual cascade (a cascade which parameters
are the mean values of parameters of the cascades under con-
sideration) as a pattern of a cascade for comparison means
elimination of a constructive error of the pattern itself. The

fluctuations (as a difference from the mean individual cascade)
are just described by the used theoretical-probability distri-
bution functions with unshifted means. It was always unex-
plicitely assumed that the usually used mean cascade has the
same property with the some accuracy, but for giant showers
their fluctuations can be shadowed by this systematic error of
the mean, therefore the mean and individual cascades should
be described more accurately. The curve N(t) of a mean in-
dividual cascade (as of an individual cascade in general) is
higher and more narrow than that of a usual mean. These
means differ in maximum by ~ 2%, intersect at ~ t,, + itm,
but at t ~ %tm and 2t,, differ by 10-20%, then the difference
increases as t, is being left behind. The approximation pro-
posed enables seeing this difference and investigation of the

fluctuations. . o .
Preliminary analysis of the distribution functions of the

parameters showed a narrow peak shape in the region of their
means and a very wide (~ 100) region of their variation.
Thus, more than 90% of the cascades are described by fluctu-
ations of a mean individual cascade though there exist some
strongly deviating cases which can be of interest. Therefore
it is impossible to conclude, using one parameter, about be-
longing of a concrete cascade to a definite class (e.g., energy
range). To solve this type problems, a methodics is needed
which takes into account the overall variation of the param-
eters describing the individual cascade more accurately than
the known fluctuations which could be neglected.
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