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The small pitch angle scattering
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Abstract. The diffusive particle propagation and its pitch an-
gle scattering is studied using kinetic equation of the Fokker
- Planck form. Due to existence of the strong regular mag-
netic field (MF) the particles are preferable propagated along
the mean MF direction and undergo the pitch angle scatter-
ing with respect to it. The paper deals with solution of the
equation for particle distribution function in the second or-
der approximation in the pitch angle. The exact analytical
solution is obtained in an integral form. The well known
solution in the first order pitch angle approximation can be
restored performing the small time limit in the result. Unlike
the first order solution the obtained solution in the second
approximation rightly shows that the pitch angle diffusion is
closely connected with the particle transport along the mean
MF. The expression for particle density for the point instan-
taneous unidirectional source also has been obtained.

1 Introduction

Study of multiple charged particle scattering in magnetic field
with random inhomogeneities as scattering centers is impor-
tant in turbulent theory plasma (Shkarofski et.al., 1966), in
problems of cosmic ray particle propagation through cosmic
media (Jokipii, 1966; Dorman and Kats, 1977), and many
other problems of particle transport (Case and Zweifel, 1967).
If the magnetic field is sufficiently strong that the Larmor ra-
dius of particleRL � λ (λ - the particle mean free path with
respect to its scattering in magnetic field inhomogeneities),
the averaging over particle spiral motion around the mag-
netic field can be performed, and one can restrict himself to
a simple rectilinear system.

The diffusive particle propagation and its pitch angle scat-
tering along the mean magnetic field is governed by kinetic
equation of the Fokker - Planck form, and the particle distri-
bution function,f̃ , depends only on location,x, the pitch
angle, θ, and time,t. (In the following the tilde denotes
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the function of dimension variables.) Therefore, the kinetic
equation reduces to (Gleeson and Axford, 1967; Galperin
et.al., 1971):

∂tf̃ + v cos θ ∂xf̃ (1)

=
v

λ sin θ
∂θ sin θ ∂θf̃ + δ(x) δ(t)

δ(θ − θ0)
sin θ0

.

Herev is the particle velocity. Introducing the dimensionless
variables,y = x/λ, τ = vt/λ, andµ = cos θ, one obtain the
equivalent equation forf(y, τ, µ):

∂τf+µ ∂yf = ∂µf(1−µ2) ∂µf+
1
λ
δ(y) δ(τ) δ(µ−µ0) .(2)

Note that cross-field transport (i.e. perpendicular diffusion
and drift, energy change, or adiabatic focusing) is not in-
cluded into the model.

The paper deals only with an exact solution of this equa-
tion. The obtaining of analytical solution of this type equa-
tion without any approximation is problematic and its sim-
plification depends on concrete model. The approximation
of large pitch angle (i.e.µ � 1) has been studied by Earl
(1996). Here the model is considered, when particle pitch
angle,θ, is small, i.e.θ � 1 .

2 The first order pitch angle approximation

Using the Fourier transform in the space variable,y, and the
Laplace transform in the time,τ , the Eq. (2) gives the ordi-
nary differential equation

d

dµ
(1− µ2)

d

dµ
f − ikµ f − s f = − 1

λ
δ(µ− µ0) . (3)

The equation is similar to known one generating the Coulomb
spheroidal functions (see on p. 146 of Komarov et.al., 1976),
which reads

d

dµ
(1− µ2)

d

dµ
u(µ) (4)

+
[
−p2(1− µ2)− m2

1− µ2
+ b µ+ λ

]
u(µ) = 0 .
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Herem = 0, 1, 2, ...; 0 ≤ p < ∞, and,b, λ are param-
eters. In our case,m = p = 0, b = −ik, λ = s . In
this limit case, solutions of (5) does not lead to known spe-
cial functions (Komarov et.al., 1976, pp.141-146), therefore,
some approximation of the Eq. (2) is necessary.

The simplest approximation correspond to very small pitch
angle,θ, when one can putsin θ → θ andcos θ → 1. In other
words, the equalitysin2 θ + cos2 θ = 1 is fulfilled up only
to the first order inθ, i.e. θ2 → 0. In this case the function
f1(y, τ, θ) in the first order approximation,

∂τf1 + ∂yf1 =
1
θ
∂θ θ ∂θf1 +

1
λ
δ(y) δ(τ)

δ(θ − θ0)
θ0

. (5)

Analogous stationary equation for the small pitch angle in-
cluding the focusing term has been investigated by Galperin
et. al. (1971) for the case of particle injection along the mag-
netic field, θ0 = 0 . Then Dorman and Kats (1974) have
obtained the solution of the stationary equation for the small
non-zeroθ0 � 1 . The non-stationary case has been studied
by the same authors (Dorman and Kats, 1977) in the first ap-
proximation of smallθ andθ0. The solutionf1(y, τ, θ, θ0) of
(5) in the first approximation is

f1 =
1

2λτ
exp

[
−θ

2 + θ2
0

4τ

]
I0

(
θθ0

2τ

)
δ(y − τ) , (6)

whereI0(x) is the zeroth order Bessel function of imaginary
argument (the hyperbolic Bessel function). The last equation
rewritten into the variables{x, t} reads

f̃1 =
λ

2vt
exp

[
−λθ

2 + θ2
0

4vt

]
I0

(
λ
θθ0

2vt

)
δ(x− vt) . (7)

The δ-function in Eq. (6) expresses the particle free propa-
gation along the axisy. All particles are located in the plane
of y = τ , and, the angular distribution is rather wide already
at a small time past the particle injection (see in Fig. 1).
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Fig. 1. The pitch angle distributionf1(θ, τ) for θ0 = 0 in the range
of 0 < θ < 1 , and0.1 < τ < 0.5.

3 The second order pitch angle approximation

In the second order pitch angle approximation one must hold
also term ofO(θ2). It means thatsin θ → θ andcos θ →
(1 − θ2/2). The equalitysin2 θ + cos2 θ = 1 is fulfilled up
to the second order ofθ, i.e. θ4 → 0, and Eq. (2) forf2 in
the second order approximation reads

∂tf2 + v

(
1− θ2

2

)
∂xf2 (8)

=
v

λθ
∂θ θ ∂θf2 + δ(x) δ(t)

δ(θ − θ0)
θ0

.

After the Laplace - Fourier transform (in the units of{τ, y})
one obtains the equation forf2(s, k, η, η0) :

d

dη
η
d

dη
f2 + 2ikη f2 − (s+ ik) f2 = − 1

2λ
δ(η − η0) , (9)

whereη = θ2/4. Solution of Eq. (9) can be expected in the
generalized form of the previous solution (6), (7). For this
purpose the solution is searched in the form

f2 =
1

2λ

∫ ∞
0

exp[−α(η + η0) cosh ξ]
(

coth
ξ

2

)β
(10)

× I0(2α
√
ηη0 sinh ξ) dξ

with unknown parametersα, β. These are determined by
putting function (11) into Eq. (9):

α =
√
−2ik, β = − s+ ik√

−2ik
. (11)

Conditions for convergence of the integral (11) are the fol-
lowing: Re α > 0, Re β < 0 . Thenα = (1 − i)

√
k for

k > 0 andα = (1 + i)
√
k for k < 0, respectively. The

inverse Laplace transform exists under conditionRe s > 0,
therefore, the conditionRe β < 0 is fulfilled for thoseα and
one obtains

f2(k, τ, η, η0) =
1

2λ
exp [−ikτ − α(η + η0) coth(ατ )]

× I0

(
2α
√
ηη0

sinh(ατ )

)
2α

sinh(ατ )
. (12)

The function of the argumentk in Eq. (12) is regular relative
the complex value ofk, so, one can apply the inverse Fourier
transform of (12). The resultingf2(y, τ, η, η0) is

f2 =
1

8πλ

∫ ∞
0

{
exp

[
−ik(y − τ)− (1 + i)

√
k(η + η0)

× coth
(

(1 + i)
√
kτ
)]
I0

 (1 + i)
√
k
√
ηη0

2 sinh
[
(1 + i)

√
kτ
]


× 2(1 + i)
√
k

sinh
[
(1 + i)

√
kτ
] + C.C.

dk , (13)

whereC.C. denotes the complex conjugate term. This ex-
pression can be easily rewritten into real arguments, but it is
not included here (Shakhov and Stehlik, 2001).



3354

4 The particle density

Let particles are emitted by the point instantaneous source
into direction ofθ0 = 0. Then a simple exact expression
for the particle density,̃N(x, t) or n(y, τ) can be obtained.
Generally, the particle density was defined by the equation

N(y, τ) =
∫ 1

−1

dµ f(y, τ, µ, µ0) (14)

=
∫ π

0

dθ sin θ f(y, τ, θ, θ0) .

Here in the small angle approximation one has the Fokker -
Planck scattering operator in the form of

θ−1 ∂θ θ ∂θ ,

which produces solution quickly decreasing forθ → ∞, so,
the integration limits can be expanded to infinity. Then the
densityN(y, τ ; θ0 = 0) is approximately

N(y, τ ; 0) =
∫ ∞

0

dθ θ f2(y, τ, θ, 0) . (15)

Substitutingf2(x, t, θ, 0) from Eq. (13) in case of zeroθ0 (or
η0) into (15), one obtains the expression for particle density,
N(y, τ),

N =
1

2πλ

∫ ∞
0

dk

 exp [−ik(y − τ)]

cosh
[
(1 + i)

√
kτ
] + C.C.

 . (16)

Numerical calculation shows that densityN(y, τ) tends to
zero for ally = τ , i.e. on the position which the particles can
achieve without scattering.
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Fig. 2. The particle densityN(y, τ) for θ0 = 0.

5 Discussion and conclusion

Let one examine the obtained solution in detail. First, the
simple solution of the first approximation, (6) or (7), does not

correctly involves the scattering together with convection. In
fact, all particles freely propagate alongx with velocity v,
although the pitch angle distribution becomes rather wide.
Note here that integral over all anglesθ,

∫
dθ θ f(y, τ, θ, θ0)

is equal toδ(y− τ) in units of1/λ independently ony (or τ )
or θ0.

On Fig. 1 the pitch angle distribution,f1(θ) was illustrated
at y = τ = 0.1 − 0.5 (in dimensionless units) forθ0 = 0 .
The distribution becomes almost flat already at instantτ ≈
0.2 and one very weakly depends onθ0 = 0.

Unlike the first approximation, the functionf2(θ) describes
the initially anisotropic stream during a larger time past the
particle injection, and one has low level aty ≈ τ , especially
for y � 1. The space distribution,f2(y), is demonstrated on
Fig. 3, where the pitch angleθ is fixed,θ = 0. The picture
is similar for non-zeroθ. Particles no more form a group at
y = τ , but the space distribution possess rather wide ’tail’
behind the front of first particles aty = τ . Its width increase
with increasing time, and maximum decreases in amplitude
and becomes later with increasing time. Temporal develop-
ment off2(y, τ) can be seen on Fig.4 for forθ = 0.1 , θ0 = 0
Note that the shape off2(y, τ) very weakly depends on value
of θ and, it is equal to zero fory > τ .
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Fig. 3. The space distributionf2(y) at timeτ = 1, 1.5, 2, 2.5 and3
for θ = θ0 = 0.

The particle density (16) is demonstrated on Fig. 2 in the
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case of particle injection direction ofθ0 = 0.
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Fig. 4. The space distributionf2(y, τ) in the intervalτ = 0.3−1.3
for θ = 0.1 , θ0 = 0.

We conclude that unlike the first approximation in pitch
angle the derived expressions for the particle distribution func-
tion in the second approximation as well as the particle den-
sity gives more realistic picture of the pitch angle distribution

after an unidirectional immediately particle injection.
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