

Mass composition of primary cosmic rays with energy above 10 PeV derived from observation of halo events in x-ray emulsion chambers

V. S. Puchkov¹, Z. M. Guseva¹, S. E. Pyatovsky¹, A. S. Borisov¹, V. G. Denisova¹, E. A. Kanevskaya¹, V. M. Maximenko¹, R. A. Mukhamedshin², and S. A. Slavatinsky²

Abstract. New simulations of gamma-hadron families with halo indused by PCR with energy $E_0 > 10\,\mathrm{PeV}$ are performed by MC0 code of quark-gluon string model. Previously it has been proved that MC0 code satisfactorily describes experi-mental data for PCR energy $E_0 < 10\,\mathrm{PeV}$ under assumption of normal PCR composition. Analysis shows that MC0 code is close to two another versions of quark-gluon string model (MQ and QGS Jet) and comparision with

experimental data confirms that at $E0 \geq 100\,\mathrm{PeV}$ experimental ux of events with halo area $S \geq 300\,\mathrm{mm^2}$ is 5–10 times larger than calculated one. The possible reasons for observed difference are discussed.

Correspondence to: V. S. Puchkov (puchkov@sci.lebedev.ru)

¹Lebedev Physical Institute, Moscow 117924 Russia

²Institute for Nuclear Research, Moscow 117312, Russia