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Abstract. Under the Kamata-Nishimura formulation of
Moli ère theory, properties of substance were all reflected in
two constants,Ω andK. It made the theory very simple
and easy to apply to other problems. In the original for-
mulation, the theory was described under the extreme rel-
ativistic condition. We have devised the theory also valu-
able under the moderate relativistic condition with ionization
and defined the constants valid in both the extreme and the
moderate relativistic conditions. Evaluations of the Kamata-
Nishimura constants are made consistent with the values tab-
ulated by the Particle Data Group, together with the Kamata-
Nishimura constants for mixture applicable to mixed or com-
pound substances. Dependences on representative screening
models are also discussed.

1 Introduction

Moli ère theory of multiple Coulomb scattering (Molière,
1947, 1948; Bethe, 1953) is improved by use of
Kamata-Nishimura formulation of the theory (Kamata and
Nishimura, 1958; Nishimura, 1967); ionization loss through
the passage is taken into account in the theory (Nakatsuka,
1999a) and the mechanism of depth-variation of Molière an-
gular distribution is made clear (Nakatsuka, 1999b). Another
superior aspect of the new formulation is that the properties
of substance through which charged particles penetrate are
all reflected in the Kamata-Nishimura constants,Ω andK
(Kamata and Nishimura, 1958; Nishimura, 1967). By use of
the constants, the diffusion equation has become very simple
in the Fourier space and the derivation of angular distribution
has become very easy obeying an algorithm of plain flow.

As the original formulation by Kamata and Nishimura was
described only for the relativistic electrons and the Kamata-
Nishimura constants were indicated only for a few sub-
stances, so we intended to describe the Kamata-Nishimura
formulation even valid for charged particles of moderate rel-
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ativistic energy and to evaluate the Kamata-Nishimura con-
stants for more substances than the original paper.

The method to obtain Molière angular distribution for
charged particles traversing through mixed or compound
substances is also investigated under the Kamata-Nishimura
formulation. It is proved that under some conditions or some
screening models, the method has become as simple as that
for pure substances by use of the Kamata-Nishimura con-
stants for mixture,̄Ω andK̄.

2 Derivation of Kamata-Nishimura Formulation and
Definition of Kamata-Nishimura Constants

We take the single scattering formula as

σ(θ)2πθdθ =
4z2Z(Z + 1)e4

p2v2
θ−42πθdθ, θ >

√
eχa, (1)

under the small angle approximation (Scott, 1963).χa is
called the characteristic screening angle (Bethe, 1953). Then
the probability density to predict deflection angleθ after an
infinitesimal passage ofdx measured in g/cm2 is

N

A
σ(θ)2πθdθdx =

4N
A

z2Z(Z + 1)e4

p2v2
θ−42πθdθdx

=
1

4πL
E2

s

p2v2
θ−42πθdθ

z2dx

X0
, (2)

whereX0 denotes the radiation length (Particle Data Group,
2000) andL the so-called radiation logarithm with its correc-
tion term (Dovzhenko and Pomanskii, 1964; Linsley, 1985).

Let f(θ, x)dθ be the angular distribution of charged parti-
cles having traversed through substances of thicknessx. The
diffusion equation for the angular distribution becomes (Ka-
mata and Nishimura, 1958; Nishimura, 1967)

df =
N

A
dx

∫∫
{f(θ − θ′)− f(θ)}σ(θ′)dθ′, (3)

where we assume continuous dissipations of energy along
the traversed thickness without fluctuation. Under the az-
imuthally symmetrical condition, Fourier transforms of the
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Table 1. Screening potentials adopted by representative authors. Bohr radius and the Born parameter,a0 = h̄2/me2 andα = zZ/137β,
are used in the table.

Author Screening Potential Atomic Radius Born Screening Angle The Characteristic Screening Angle
V (r) a χ0 χa

Goudsmit-Saunderson Ze2

r
exp(−r/a) a0Z

−1/3 h̄/(ap) χ0

Snyder-Scott Ze2

r
exp(−r/a) a0Z

−1/3 h̄/(ap) χ0

Moli ère zZe2

r
ω(r/a) 0.885a0Z

−1/3 h̄/(ap)
√

1.13 + 3.76α2χ0

probability density is reduced to the Hankel transforms,

f̃(ζ, x) ≡ 1
2π

∫∫
eiζθf(θ, x)dθ

=
∫ ∞

0

J0(ζθ)f(θ, x)θdθ, (4)

f(θ, x) ≡ 1
2π

∫∫
e−iθζ f̃(ζ, x)dζ

=
∫ ∞

0

J0(θζ)f̃(ζ, x)ζdζ, (5)

so that the equation in the Fourier space is got as

df̃ = −2π
N

A
f̃dx

∫ ∞
0

[1− J0(ζθ)]σ(θ)θdθ

= −E
2
s

2L
z2dt

p2v2
f̃

∫ ∞
√
eχa

[1− J0(ζθ)]θ−3dθ, (6)

wheret denotes the traversed thickness measured in radiation
length:

t ≡ x/X0. (7)

Evaluating the integration using the Eq. (14) of Bethe (1953),
we get the following differential equation

− d

z2dt
ln f̃ =

E2
s

8L
ζ2

p2v2
[1 + ln 2− C − ln(

√
eχaζ)]

=
E2

s

4L
ζ2

4p2v2
[1− 2C + ln

β2E2
s /(4Lp

2v2χ2
0)

[χ2
a/χ

2
0]rel

− ln
β2χ2

a/χ
2
0

[χ2
a/χ

2
0]rel

− ln(
E2

s

4L
ζ2

4p2v2
)], (8)

where we introduced the angular constantχ0 (Bethe, 1953)
called as the Born screening angle (Scott, 1963),

χ0 = h̄/(ap), (9)

and [χ2
a/χ

2
0]rel denotes the value ofχ2

a/χ
2
0 for electrons of

high energy limit.
Now we define the Kamata-Nishimura constants as

Ω− ln Ω = 1− 2C + ln
E2

s /(4Lp
2c2χ2

0)
[χ2

a/χ
2
0]rel

, (10)

K2 =
E2

s

4L
Ω, (11)

thenΩ andK are constants specific to the substance. It can
be easily confirmed that these definitions agree with (A.3.26)

and (A.3.28) of Nishimura (1967) defined in the extreme rel-
ativistic condition. We also introduce the factor

β′2 =
χ2

a/χ
2
0

[χ2
a/χ

2
0]rel

β2, (12)

reflecting the velocity of penetrating particle and the dif-
ference of the characteristic screening angle from the Born
screening angle. Then the diffusion equation becomes

− d

z2dt
ln f̃ =

K2

Ω
ζ2

4p2v2
[Ω− ln Ω− ln(

K2

Ω
β′2ζ2

4p2v2
)]. (13)

So, introducing the variable

w = 2pv/K, (14)

we get the fundamental differential equation of the Molière
angular distribution under the Kamata-Nishimura formula-
tion:

d

z2dt
f̃ = − ζ

2

w2
[1− 1

Ω
ln
β′2ζ2

w2
]f̃ . (15)

3 Kamata-Nishimura Constants for Molière Screening
Model

Many authors evaluatedχa andχ0 respectively in their mul-
tiple scattering theories (Goudsmit and Saunderson, 1940;
Snyder and Scott, 1949) as listed in Table 1, depending on
their models of screening potential. If we adopt the Molière
screening model (Molière, 1947), we get the equations forΩ
andK as

Ω− ln Ω = 1− 2C + ln
1373π(0.885Z−1/3)2

(1.13 + 3.76Z2/1372)L
, (16)

K2 =
E2

s Ω
4L

. (17)

Using the value of radiation lengthX0 (Tsai, 1974)

1
X0

=
4N

137A
Z(Z + 1)r2

eL (18)

instead ofL, we can determineΩ andK consistent with
widely-used table of material constants indicated by Particle
Data Group (2000):

Ω− ln Ω = ln
6680(Z + 1)Z1/3X0

(1 + 3.34Z2/1372)A
, (19)

K2 = 3.49× 10−4Z(Z + 1)
A

X0ΩE2
s . (20)
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Table 2. Kamata-Nishimura constantsΩ andK for pure substances
derived under the Molière screening model.

Substance Z A X0 Ω K
g/cm2 MeV

H 1 1.008 61.28 16.40 17.69
He 2 4.003 94.32 16.07 18.88
Li 3 6.941 82.76 15.80 18.83
C 6 12.011 42.70 15.34 18.96
N 7 14.007 37.99 15.25 19.06
O 8 15.999 34.24 15.17 19.15
Al 13 26.982 24.01 14.85 19.43
Si 14 28.086 21.82 14.80 19.47
S 16 32.066 19.50 14.71 19.54
Ar 18 39.948 19.55 14.63 19.60
Fe 26 55.845 13.84 14.34 19.79
Cu 29 63.546 12.86 14.25 19.84
Br 35 79.904 11.42 14.08 19.94
Ag 47 107.868 8.97 13.77 20.13
I 53 126.904 8.48 13.62 20.22
W 74 183.840 6.76 13.15 20.52
Pb 82 207.200 6.37 12.99 20.65

In this case Kamata-Nishimura equation becomes Eq. (15),
with

β′2 =
1 + 3.34z2Z2/(137β)2

1 + 3.34Z2/1372
β2. (21)

Kamata-Nishimura constants under the Molière screening
model, so obtained, are listed in Table 2.

4 Angular Distribution of Charged Particles Traversing
Through Mixed or Compound Substance

We will derive the method to obtain the Molière angular
distribution for charged particles, traversing through mixed
or compound substances with ionization. The increase of
Fourier component of the angular distribution is expressed
as

df̃ = − ζ
2

w2
f̃(1− 1

Ω
ln
β′2ζ2

w2
)z2dt. (22)

Separating the terms by independent Fourier component, we
have

−d ln f̃ =
1

X0w2
(1− 1

Ω
ln
β′2

w2
)ζ2z2dx

− 1
X0w2Ω

(ζ2 ln ζ2)z2dx. (23)

In case of traversing through mixed or compound substance,
the coefficients appearing in the right-hand side changes dis-
continuously corresponding to the atoms they encounter. So
we take the value of coefficient as the stochastic mean of it,
then we have

− ln 2πf̃ = ζ2

∫ x

0

Pr[
1

X0w2
(1− 1

Ω
ln
β′2

w2
)]z2dx

− ζ2 ln ζ2

∫ x

0

Pr[
1

X0Ωw2
]z2dx, (24)

where the stochastic mean is evaluated as the weighted mean
value by the fractionspi of mass:

Pr[Q] ≡
∑
i

piQi. (25)

Thus we get the solution,

f̃ =
1

2π
exp{−ζ2

∫ x

0

Pr[
1

X0w2
(1− 1

Ω
ln
β′2

w2
)]z2dx

+ ζ2 ln ζ2

∫ x

0

Pr[
1

X0Ωw2
]z2dx}. (26)

The Molière angular distribution is got by applying Han-
kel transforms on the solution. Using the translation formula
indicated in Nakatsuka (1999b), we get the characteristic pa-
rameters of the Molìere angular distribution, as are the ex-
pansion parameterB and the unit of Molìere angleθM:

B − lnB =

∫ x
0

Pr[ 1
X0w2 (1− 1

Ω ln β′2

w2 )]z2dx∫ x
0

Pr[ 1
X0Ωw2 ]z2dx

+ ln
∫ x

0

Pr[
1

X0Ωw2
]z2dx, (27)

θM = 2

√
B

∫ x

0

Pr[
1

X0Ωw2
]z2dx. (28)

In homogeneous mixture of substances, integration of the
stochastic mean along the thickness becomes∫ x

0

Pr[f(x)]dx = X̄RPr[
∫ x/X̄R

0

f(XRu)du], (29)

whereXR denote the respective ranges of particle in mixed
substances, and̄XR denotes their stochastic mean, measured
in g/cm2:

XR ≡ E0/
dE

dx
, (30)

X̄R ≡ E0/Pr[
dE

dx
]. (31)

In case we adopt the screening model where the charac-
teristic screening angleχa is proportional to the Born angle
χ0 (Born-type screening angle), it satisfiesβ′ = β. Or in
case we adopt the Molière screening model with the small
Born parameter,zZ � 137β, it satisfies the similar relation,
β′ ≈ β. Then we have

−d ln f̃ = {K
2

X0
(1− 1

Ω
lnK2)

ζ2

4p2v2

− K2

X0Ω
ζ2

4p2v2
ln

β2ζ2

4p2v2
}dx, (32)

thus

− ln 2πf̃ =
∫ x

0

Pr[
K2

X0
(1− 1

Ω
lnK2)]

ζ2

4p2v2
dx

−
∫ x

0

Pr[
K2

X0Ω
]
ζ2

4p2v2
ln

β2ζ2

4p2v2
dx. (33)
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Table 3. The Kamata-Nishimura constants for mixture,Ω̄ andK̄,
for mixed or compound substances derived from the Molière screen-
ing model.

Substance X̄0 ε̄ Ω̄ K̄
g/cm2 MeV MeV

Air 36.61 66.5 15.21 19.10
SiO2 27.04 47.0 14.95 19.34
H2O 36.02 74.2 15.23 19.06
LiH 79.24 154.6 15.88 18.65
Emulsion 11.32 16.5 13.94 20.01

If we introduce the Kamata-Nishimura constants for mixture
for mixed or compound substance,Ω̄ andK̄, by the equations

K̄2

X̄0
(1− 1

Ω̄
ln K̄2) = Pr[

K2

X0
(1− 1

Ω
lnK2)], (34)

K̄2

X̄0Ω̄
= Pr[

K2

X0Ω
], (35)

or, takingX̄0 as the radiation length for the compound sub-
stance (Particle Data Group, 2000),

Ω̄− ln Ω̄ =
Pr[K

2

X0
(1− 1

Ω lnK2)]

Pr[ K2

X0Ω ]
+ ln{X̄0Pr[

K2

X0Ω
]},

(36)

K̄ =

√
X̄0Ω̄Pr[

K2

X0Ω
], (37)

then we can get the Molière angular distribution for mixed or
compound substances by regarding as if they are pure sub-
stances with the Kamata-Nishimura constants for mixture,Ω̄
andK̄. So that the Molìere angular distribution is determined
by the characteristic parametersB andθM derived from

B − lnB = Ω̄− ln Ω̄ + ln(νz2t/β2), (38)

θM = θ̄G

√
B/Ω̄, (39)

where

θ̄2
G =

K̄2

2ε̄mc2
{mc

2

pv
− mc2

p0v0
+

1
2

ln
(E0−mc2)/(E−mc2)
(E0+mc2)/(E+mc2)

},

(40)

The Kamata-Nishimura constants for mixture,Ω̄ andK̄, for
mixed or compound substance are tabulated in Table 3.

It should be reminded that we can slightly simplify Eqs.
(27) and (28) for the exact characteristic parameters,B and
θM, by using the constants for mixture:

B − lnB =

∫ x
0

Pr[ 1
X0w2 (1− 1

Ω ln β′2

w2 )]z2dx

θ̄2
G/4Ω̄

+ ln
θ̄2

G

4Ω̄
,

(41)

θM = θ̄G

√
B/Ω̄. (42)

5 Conclusions and Discussions

Definition of the Kamata-Nishimura constantsΩ andK for
Moli ère scattering theory is devised to be valid for both the
extreme and the moderate relativistic conditions of charged
particle. The results for various substances are evaluated con-
sistent with the widely used constant table of Particle Data
Group (2000) and are tabulated in Table 2.

Method to get the Molìere angular distribution for charged
particles traversing through mixed or compound substances
is described under the Kamata-Nishimura formulation. The
description will be clearer than that under the Molière-Bethe
formulation reviewed in Scott (1963). Representative screen-
ing models applied to the scattering theory are listed in Table
1. In case we adopt the Born-type screening angle or the
Moli ère screening angle with the negligible Born parameter,
the Molière angular distribution through the mixture can be
obtained as simply as that through the pure substance (Nakat-
suka and Nishimura, 2001) by using the Kamata-Nishimura
constants for mixturēΩ andK̄, indicated in Table 3.

Both for propagations through pure and mixed or com-
pound substances, the method to derive Molière angular
distribution has been far simplified by use of the Kamata-
Nishimura constants.
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