
Proceedings of ICRC 2001: 2939c© Copernicus Gesellschaft 2001

ICRC 2001

Selection of TeVγ-rays using the Kernel multivariate technique
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Abstract. The Kernel multivariate analysis technique is opti-
mised to selectγ-ray events fromON/OFFobservations of the
Crab Nebula recorded by the Whipple 10 m Imaging Atmo-
spheric Cherenkov Telescope in January and February 2000.
Results are compared with the conventional Supercuts anal-
ysis and with a Neural Network analysis. The technique is
also applied toON/OFF data taken on Markarian 421 during
spring of 2000. A method to estimate the energy ofγ-ray pri-
maries is examined, and a TeV spectrum of the Crab Nebula
extracted on this basis.

1 Introduction

The standard technique employed by the Whipple collabo-
ration to discriminateγ-rays from background events uses
a number of selection cuts on the standard parameters that
characterise an atmospheric Cherenkov image. This tech-
nique, known as Supercuts (Punch et al., 1991), has been
developed and improved over the past decade. Supercuts
implements the simplest method of delineating a parameter
space. In this work we examine a more complex selection al-
gorithm, the Kernel technique, and compare its performance
to that of Supercuts. We also compare the results to those ob-
tained by a Neural Network analysis (Dunlea (2001) details
this approach).

Conventional analysis techniques have classified events,
each described by a set ofn parameters, by choosing a sur-
face in parameter space. Events on one side of this surface
are classified asγ-rays, and events on the other side are clas-
sified as background. Supercuts uses a simple multidimen-
sional box constructed by placing fixed boundary limits on
each parameter. An alternative approach is to choose a sur-
face formed by the set of all points in parameter space that
share a particular value of the likelihood functionR, or its
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logarithm:

log (R (p)) = log
(
fγ (p)
fb (p)

)
, (1)

wherep represents a point in parameter space,fγ (p) is the
γ-ray probability distribution as a function of position in pa-
rameter space, andfb (p) is the background probability dis-
tribution. An event on one side of this surface (having a
likelihood greater than or equal to this critical value of the
likelihood function) is classified as aγ-ray, and an event on
the other side (with likelihood less than the critical value) is
classified as a background event. The calculation of these
probability distributions is the core of the Kernel technique.
The use of such a technique in TeVγ-ray astronomy has been
described previously by Samuelson (1999) and Moriarty and
Samuelson (2000). It has also been applied to high energy
physics for the detection of the top quark (Holmström and
Sain, 1997).

2 Kernel Analysis

Estimates of these probability distributions are derived from
a dataset of over 30000 sampleγ-ray simulations and an
equal number of real background events. Theγ-ray Monte
Carlo simulations used in this work have energies ranging
from 0.2 to 8 TeV distributed with a differential spectral in-
dex of−2.4. They are produced by the KASCADE system
as implemented at Iowa State University by Mohanty et al.
(1998), a derivative of the system described by Kertzman and
Sembroski (1994). These simulations are tailored to resem-
ble the real data acquisition process as closely as possible.
The same trigger conditions are applied to the simulated data,
and noise comparable to that in real data is added. The result-
ing γ-ray images should be accurate depictions of realγ-ray
events.

No simple function can describe the distribution of theγ-
ray images nor the distribution of background events. The
Kernel technique attempts to estimate these distributions by
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convolvingeachsample point with a point spread function to
obtain a smooth continuous approximation to the probabil-
ity distribution. This is analogous to estimating the electric
potential at some point in space due to charges at the sam-
ple points, each of which has a potential function like that of
the point spread function. The basic kernel estimator may be
written as

fγ =
1

Nγhγ

Nγ∑
i=1

K

(
p− γi
hγ

)
, (2)

wherep is again a point in parameter space,hγ is a scale
factor, andγ1, . . . , γNγ are vectors of parameters of theNγ
sampleγ-rays. The point spread, or kernel, function,K, can
be any scalar function inn-dimensional space (Hand, 1982;
Scott, 1992). In this work, a multivariate Gaussian is used as
the kernel function,

K =
1√

(2π)n |ξγ |
e−

1
2 ((p−γ)/hγ)Tξ−1

γ ((p−γ)/hγ), (3)

wheren is the number of parameters andξγ is the covari-
ance matrix of theγ-ray dataset. The background distribu-
tion can be similarly defined. Scott (1992) has shown that if
the kernel is a product of univariate Gaussians (one for each
dimension), then the scale factor that minimises the mean in-
tegrated squared error between an actual distribution and its
kernel estimator is given by

hγ =
(

4
Nγ (n+ 2)

)1/(n+4)

. (4)

Theγ-ray probability distribution may now be written as

fγ =
1

Nγhγ
√

(2π)n |ξγ |

Nγ∑
i=1

e
− 1

2h2
γ

(p−γi)Tξ−1
γ (p−γi)

. (5)

Similarly, fb can be defined for the background distribution,
so the log-likelihood function,log (R), can now be calcu-
lated using Equation 1.

2.1 Reduction of Computational Overhead

Kernel analysis is computationally intensive aseveryevent is
compared witheveryγ-ray simulation and witheveryback-
ground event. The probability distributionsfγ andfb defined
by Equation 5, represent the convolution of theγ-ray simu-
lations and background samples with a point spread (kernel)
function. Therefore, the value of the log-likelihood func-
tion, log (R), can be calculated for a lattice of points inn-
dimensional parameter space. Values between the nodes of
the lattice can be estimated using linear piecewise interpo-
lation. This process results in a factor of 1400 decrease in
the time required to analyse a typical data file. However,
while producing the required lattice requires many more cal-
culations than a typical full Kernel analysis, it need only be
carried out once per detector configuration.

3 Intercomparison of Neural Network, Kernel, and Su-
percuts selection strategies

In order to optimise the analyses described in previous sec-
tions, a database of 31ON/OFF pairs taken on the Crab Neb-
ula was established. Runs were taken during January and
February 2000, on nights with particularly clear skies. The
traditional method of testing a new technique (by optimis-
ing the significance of the detection of a signal above back-
ground) is followed here. The parameter set (length, width,
distance, alpha, log (size)), used in this work for both the
Neural Network and Kernel techniques, has proven to opti-
mise the capacity to discriminate betweenγ-rays and back-
ground events (see Moriarty et al. (1997) for definitions of
these parameters).

Table 1 shows the optimised significances obtained for the
Neural Network and Kernel techniques, along with the per-
centage of theγ-ray simulations that pass each optimised cut.
The significance and percentage of passingγ-rays for Super-
cuts 2000 is shown also for comparison.

Technique Significance Rate % sims
Neural Network 22.32σ 2.29γ min−1 29.6%
Kernel 30.13σ 2.45γ min−1 27.9%
Supercuts 2000 22.18σ 2.63γ min−1 28.8%

Table 1. Results of Crab Nebula data at self-optimised cuts

Detection significance of the Neural Network technique
performs similarly to Supercuts, while the Kernel technique
performs considerably better. This improvement does not ap-
pear to be at the expense of the rate, suggesting an improve-
ment in the rejection of background events.

Table 2 presents the results of 25ON/OFF pairs of inde-
pendent Markarian 421 data taken between January and May
2000 using the cuts optimised on the Crab Nebula data.

Technique Significance Rate
Neural Network 13.71σ 1.48γ min−1

Kernel 18.67σ 1.56γ min−1

Supercuts 15.73σ 1.98γ min−1

Table 2. Results of Markarian 421 data at optimised cuts

The relative performance of each technique is not partic-
ularly different than when applied to the Crab Nebula. The
Neural Network and Supercuts techniques result in similar
significances but the Neural Network cannot reproduce the
same rate. The Kernel technique again realises the highest
significance in theON/OFFmode, while still preserving a rea-
sonably high rate. In contrast to the Crab Nebula results, the
Markarian 421 results are independent of the optimisation
process, and so provide an unbiased comparison of the dif-
ferent techniques.

In an effort to understand the distribution of events se-
lected by each technique, 2-dimensional scatter plots show-
ing events that pass cuts were drawn. This analysis was per-
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formed upon 5000γ-ray simulations to ensure that a large
population of events would pass the cuts. As an example
Fig. 2 shows thelengthvs. log (size) distribution of all these
simulations followed by the distributions of eventspassing
the respective techniques. The complete 5-dimensional dis-
tribution cannot be represented on paper, and while the 2-
dimensional plots are adequate for the present discussion, it
should be remembered that points which coincide on these
plots may be widely separated in 5-dimensional space.

It is clear that two distinct populations exist in the dis-
tribution of log (size) for the Neural Network and Kernel
techniques. The larger events coincide with that region se-
lected by Supercuts, but a curious region of smaller events
also exists. This suggests thatγ-ray events with an interme-
diatesizeare difficult to distinguish from background events.
Thus, few events in this region will pass the optimised cut.
The close resemblance of the selection regions of the Neural
Network and Kernel techniques endorses the merit of such
a selection. The sharp boundaries seen in the Supercuts se-
lection region are evidence of the empirical cut on each pa-
rameter, rather than the more elegant single cut of the other
techniques.

4 Energy estimation and Spectral analysis

To train a Neural Network to estimate the energy of selected
γ-ray events, the standard parameter set of theγ-ray simula-
tions was used as the input to the network. The target output
was chosen to be the base-ten logarithm of the energy.

To obtain theγ-ray probability distribution using the Ker-
nel analysis, each event must be compared with everyγ-ray
simulation. In effect Equation 5 quantifies how similar each
γ-ray simulation is to the event and calculates the average.
This process naturally lends itself to the estimation of the
energy of selected events. The energy of a simulatedγ-ray
can be used to weight the calculation of its contribution to
the probability distribution. Thus, the new weighted proba-
bility distribution should be the convolution of the estimated
energy of the event with the probability distribution. The es-
timated energy may then be extracted by dividing this result
with the original probability distribution,

Ẽ =

∑Nγ
i=1Ei exp

(
− 1

2h2
γ

(p− γi)T
ξ−1
γ (p− γi)

)
∑Nγ
i=1 exp

(
− 1

2h2
γ

(p− γi)T
ξ−1
γ (p− γi)

) , (6)

whereEi is the energy of the simulatedγ-ray eventγi. Ap-
plying this formula to theγ-ray simulations themselves gives
good energy reconstruction if the energy estimate,Ẽ, is mod-
ified to Ẽ′ = 1.02Ẽ1.12.

Once an energy has been estimated for each candidateγ-
ray, the energy spectrum can be derived using the method
prescribed by Mohanty et al. (1998). For spectral analyses it
is desirable to have as large a population of candidateγ-rays
as possible, while still maintaining a very significant detec-
tion. Thus, a cut which is optimised purely on the basis of
significance is often too restrictive. In this work we use a

less restrictive cut based upon theγ-ray simulations, such
that 95% of the simulated events that trigger the detector are
accepted. Table 3 shows the significance and rate obtained
from the 31 Crab Nebula pairs using the 95% cut for both the
Neural Network and Kernel techniques. Referring to Table 1,

Technique Significance Rate
Neural Network 10.59σ 4.49γ min−1

Kernel 11.60σ 4.28γ min−1

Table 3. Results of the Crab NebulaON/OFF data at the 95% cut
used for spectral analysis

it is clear that this looser cut has almost doubled the accepted
γ-ray rate. Although the significance has been severely re-
duced by the same cut, it is still appreciably high.

Fig. 1 shows the differential spectra of the Crab Nebula,
obtained using the Neural Network and Kernel methods with
the 95% cut. Table 4 lists the coefficients of the least-squares
power law fits as indicated on both plots along with the re-
sults derived previously by Hillas et al. (1998).

Technique Spectral Index Flux Constant (α)
(γ) (m−2 s−1 TeV−1)

Neural Network 2.29± 0.18 (2.30± 0.36)× 10−7

Kernel 2.31± 0.15 (2.31± 0.32)× 10−7

Hillas et al. (1998) 2.49± 0.06 (3.20± 0.17)× 10−7

Table 4. Differential Spectrum of the Crab Nebula – Quoted errors
are statistical only

5 Conclusion

The results in Tables 1 and 2 show that the Kernel technique
enables sensitive discrimination betweenγ-rays and back-
ground events. However, both these sources are very strong
emitters ofγ-rays. The discovery of weakerγ-ray sources
is at the heart of much current research in TeVγ-ray astron-
omy. For the Kernel technique to become a standard tool for
γ-ray astrophysics, it must be demonstrated that it also out-
performs the standard techniques for sources on the thresh-
old of detectability. The paucity of confirmed TeV sources
makes this a non-trivial task.

The energy spectra of the Crab Nebula derived by the Ker-
nel spectral technique are in close agreement with the in-
dependent Neural Network analysis and also with previous
results. All spectral techniques rely heavily onγ-ray simu-
lations, and their accuracy is thus closely tied to the accu-
racy and breadth of the simulations. The range of energies
simulated clearly constrains the calculated energies of real
showers. Therefore, flux values calculated for energies close
to the energy limits of the simulations must be treated with
caution. The Kernel spectral analysis requires a correction
factor to extract the known input spectrum from theγ-ray
simulations. While this is not unusual in spectral analyses, it
emphasises the inherent empiricism of such techniques.
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Fig. 1. Crab Spectrum– Differential Spectrum of the Crab Nebula
determined with the Neural Network and Kernel techniques
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Fig. 2. lengthvs.log (size) – Distribution ofsimulatedγ-rayspass-
ing the optimised cut in the 2-dimensional parameter space defined
by lengthandlog (size)


