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Abstract. The ambitions to bridge the energy gap between
ground based and satellite borne detectors requires to de-
crease the threshold of Cherenkov telescopes down to sev-
eral tens of GeV. The images corresponding to such low en-
ergies and registered with high angular resolution will lead
to rather complicated disconnected images. The standard
second-momentum analysis will not be so effective as for im-
ages detected with less angular resolution and/or more com-
pact mirrors and high incident energies above 300 GeV. Since
the trigger rate at low thresholds can reach 1 MHz, the main
tasks for an intelligent” trigger are signal pattern recogni-
tion and background rejection. We propose to use the hard-
ware neurochip SAND/1 (Simple Applicable Neural Device)
as fast "intelligent” Pattern Recognition Trigger (PRT). In
addition to decrease the registered event rate down to several
kHz, the PRT will reject muon and hadron backgrounds on-
line at present only possible off-line. Using a special board of
hardware neural accelerators and evolutionary network train-
ing strategies we construct a PRT which meets both timing
and pattern recognition requirements.

1 Introduction

The Atmospheric Cherenkov Telescopes (ACT) register the
light images of Extensive Air Showers (EAS) during moon-
less dark nights. The goal is to detect the v-ray "point sources”,
usually very distant Active Galactic Nucleus emitted inten-
sive fluxes of TeV gammas.

The new generation of ACTs have huge light receivers,
formed of up to 500 sensitive elements (pixels). The useful
”signal” events (v initiated EAS), are contaminated by dif-
ferent background images. The sources of fake signals are:
the night sky light, local muons, EAS initiated by hadrons
(the latter became essential because of very low threshold of
new telescopes, which equals to few tenths of GeV).

Therefore the background rejection problem will require
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intelligent” on-line trigger and sophisticated off-line image
builder and recognizer.

The first level trigger rate for the second generation ACT’s
like MAGIC Telescope (Martinez M. et al., 1999) at low
thresholds (~ 4 photoelectrons) can reach 1 MHz for each
channel. This huge amount of data has to be reduced down
to a few kHz by the second and third level triggers. For more
than 100-fold reduction we investigate the possibility to use
the MiND PCI board (with 4 SAND/1 chips installed and
processing in parallel)(Fischer T., et al., 1996) as a fast ”in-
telligent” trigger.

In order to be able to implement such a specialized device
for v-astronomy it is necessary to design combined software-
hardware system for net training, to find the optimal method
of generalization from examples. This involves specializa-
tion of network architecture, objective function and learning
strategy.

We can’t expect that the common techniques of pedestal
extraction and image reduction to second order moments will
provide the necessary level of the background rejection. The
use of all distinctive information contained in the pixels will
provide the possibility to enlarge signal-to-noise ratio. Work-
ing with such huge inputs (as compared with previous anal-
ysis of Whipple telescope data, when only 4-5 Hillas param-
eters were used (Chilingaryan A. A., 1994, 1995)), requires
adequate network training algorithms and powerful training
accelerators.

In this paper we’ll demonstrate that the MiND board meets
well tight timing requirements.

2 The SAND/1 chip and MiND PCI board

The SAND/1 chip designed for accelerating various neural
net applications is a digital hardware realization (built with
0.8um CMOS technology) of NN models based upon the
principle of systolic array.

For the stand alone operation it requires only a few exter-
nal components, such as:
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— Look Up Table LUT - for non-linear transfer function
calculation

— Memory (WRAM) - for storing NN weights and inter-
mediate data,

— Sequencer - for the overall memory management as well
as the control of SAND/1 itself.

Table 1. The principal features of SAND/1
Maximum Operation Clock - 40MHz

Calculation of scalar product and vector distance
Extreme value search (minimum and maximum)
CUT-function with over/underflow recognition
On-line adaptation of arithmetic precision
Activation function as look-up table external to chip
Parallel processing support
The following neural networks are supported:

— Multilayered Perceptron (MLP)

— Radial Basis Function (RBF)

— Self Organizing Maps (SOM)

Cascadable architecture:

16 bit weights and input activities
— 40 bit internal precision

Processing of packets consisting of 4 data words
— Max. 65K weights for any configuration of NN

Data I/0:

— Input activities normalized to the range -1.0 ... +1.0

— 8 fixed-point formats available for the weights (0.25 ...
128)

— 2 scalable output formats: linear output or any transfer
function

— Continuous data flow on the weight and activity busses
(max. 100Mb/s)

At a maximum clock frequency the single SAND/1 chip
achieves a performance of 200 MCPS (Mega Connections
Per Second).

To take the advantage of such a specialized neuro-chip and
to use it in real-time applications such as Pattern Recogni-
tion, Image Processing, Control Engineering, Fast Intelligent
Triggers for High Energy Physics Experiments, the MiND
(Multipurpose integrated Neural Device) was designed to in-
tegrate the SAND/1 on a PCI bus based device to be compati-
ble with todays advanced architectures and to provide an easy
to use design via SAND/1 to PC connection and hardware
control via soft routines. Another great advantage of MiND
board is that it integrates four SAND/1 chips connected in
parallel and attains a further increase of performance up to
800 MCPS.

3 Neural Net Technique for Background Rejection
The inverse problem to be solved can be represented as fol-

lows:

Simulated data

Agp(N;) =

Experimental data

?(N;)

where the A, is the particle type (A - y("signal”), A,
- hadron(”background”)) inducing the extensive air shower
in the atmosphere, IV; is the image registered by Photomulti-
player (PM) matrix. This is a data classification problem and
for its solution we propose to use a Neural Network classifier.

Neural Networks (NN) represent very simple structures
composed of processing elements (nodes) and connections
(weights). NN belongs to the general class of non-parametric
methods that do not require any assumption about the para-
metric form of the statistical model they use. The use of NN
classifier is justified by the following reasons:

— NN is non-parametric technique appropriate for classi-
fication and background rejection problems

— NN is able to treat multidimensional input data (e.g.400
pixel information).

— all distinctive information contained in the pixels will
provide a possibility to achieve higher level of back-
ground rejection as compared to the common technique
of image reduction to second order moments

— NN is very fast in application phase (possibility of on-
line data analysis)

The central issue of Neural Networks is the bounded map-
ping of n-dimensional input to the m-dimensional(for classi-
fication or background rejection tasks one dimensional class
assignments) output:

fw(N;) — AL

The functional form of f is tuned by iteratively changing W
- NN parameters(weights) during NN training process, A%,
is the decision on primary particle type made by trained NN.

— The NN training consists in iterative processing of sim-
ulated examples

— The goal of the NN training is to find W that provides
the minimum of the Error(Quality) Function:

Mey.
(OUT,,(N;) = TRUE,)? % Vi
m=1

Q(W,Nj) = M.

where M., is number of simulated events; V,,,- event weight,
OUT,, is the actual output of NN; TRUE,, is the corre-
sponding goal value of m-th input vector from training set
and V,,, is the event weight.

For classification purposes this mapping takes a special
form with aim to “shift” different classes of training samples
from each other as much as possible. For different classes
we use one output variable. Therefore the “goal” output
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TRUE(k) for events of the k-th category could be chosen
as: TRUE(k) = £=%, k=1, K, where K istotal number
of classes.

In the case of two classes, i.e. signa and background
events, the ”goal” outputs, as one can easily see, are equal
to 0 and 1. The actual events classification is performed by
comparing the obtained output value with the ”goal” one. We
expect, that the data flow passing through the trained net will
be divided in two clusters concentrated in the opposite re-
gions of the (0, 1) interval. Choosing an appropriate point in
thisinterval (the so-called decision point c), controls the re-
lation between two kinds of misclassification committed by
decision rule), the classification procedure can be defined as
follows:

<c

OUT(N;) { s , N, isclassified as signal, }

, N is classified as background,

where OUT(IV;) is the output node response for a partic-
ular experimental measurement IV ;.
4 Simulation Model

For the test of our method we construct very simple signa
(showers initiated by the y-quanta) and background (show-

ersinitiated by hadrons and ”Night Sky Background™) model.
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Fig. 3.

3
Fig. 4. An Example of simulated ”’Background”” event

The cameraconsist of 400 pixels (20x20) arranged in square.
The images are generated by means of Gaussian distribu-
tions.

Briefly we use the following specifications for our test
computation experiment:

— 77 induced showers” (signal): random numbers from
2-dimensional Gaussian population with o=1 (Fig. 1).

— "hadroninduced showers” (background): random num-
bers from 3 different 2-dimensional Gaussian popula-
tionswith 0=2 (Fig. 2).

— ”Night Sky Background”: random numbers uniformly
distributed on 20x20 matrix.

— 1000 random points for each Gaussian were generated,
1000 events per class were simulated.

— number of overall points (hits) from al distributionsin
each pixel was calculated (Figures 3 and 4).

— information from all 400 pixels was used for the NN
input.

For the "background” images the variance of the Gaussian
was taken larger than for the signal” images, mimicking
longer and broader hadron shower Cherenkov images (see
figures 1, 2, 3, 4,). So, only shape information of images
was used for the discrimination. 1000 simulated events for
”signal” and "background” were generated and used for net
training.
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5 Resultsand Conclusion

Using such simplified simulation and each pixel information
as NN input we demonstrate that SAND/1 gives reasonable
background rejection. Data processing is fast enough for on-
line implementation.

The table 2 demonstrates that the MiND board is capa-
ble to process the single event with the NN configuration of
400x64x1 approximately in 1 milisecond, which means that
the MiND board is ableto treat with trigger rates up to 1kHz.

Table 2. Processing time for single event, with net configuration:
400x64x1, for SAND chip and Pentium 1| 450MHz CPU

SAND/1 Pentim 11 450MHz
0.97 milliseconds | 8.8 milliseconds

Even using fastest modern serial CPU it is very hard to
train very big networks for recognition of the pattern of ex-
tensive air showersinitiated by v—quantaor hadrons of pri-
mary cosmic ray flux. To train such a huge networkswith big
amount of MC data to have a sufficient generalization capa-
bilities, days and ever weeks of calculationswill be required.
S0, the performanceis neccessary not only for on-lineimple-
mentation, but for acceleration of the training as well.

The special mode of ANI (Chilingarian A. A., 1998) pack-
age was developed for substitution of the Neural Network
artificial simulator by the hardware realization. Incorpora-
tion of such a specialized device in the learning agorithm,
gives a significant benefit in time of large amount of events
processing. Taking into account that the learning is an it-
erative process (sometimes hundred thousands of iterations
are required in order to achieve the required level of gen-
eralization), the advantage of combined software-hardware
implementation of learning is obvious.

The figure 6 demonstrates the efficiency of using such a
specialized device. In this figure the single event processing
time ratio is plotted for Pentium Il CPU at 450 MHz and
SAND/1 chip. As one can see the SAND/1 chip processes
5 to 30 times faster depending on the total number of NN
weights (reaching the peak performance at most important
case of very large NN).

To achieve the "signal” and "background discrimination
level as shown on figure 5 (~ 95% of correct classifications
demonstrates the adequateness of used net training methods
for such huge amount of network weights.) 108000 itera-
tions were required to train the network. Using MiND board
8 hours were spent to perform the training, the Pentium I1
450MHz CPU spent more then 5 days to do the job. Of
course, more realistic ssimulations are necessary for definite
conclusions and performance estimates.
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