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Abstract. Relativistic blastwaves accelerate particles which
are scattered by a highly disordered magnetic field. These
particles are then advected downstream of the shock where
they emit synchrotron radiation in the ambient magnetic field.
We have developed a numerical code to study the hydrody-
namics of a strong relativistic blastwave with a general equa-
tion of state. We study the acceleration of particles by the
forward and reverse shocks and solve for their emission. Im-
plications for the fireball model of gamma ray bursts are dis-
cussed.

1 Introduction

Relativistic shock fronts in sources such as Active Galac-
tic Nuclei (AGNs) and fireball models of gamma rays bursts
(GRBs) are associated with highly energetic particles inferred
through non-thermal emission processes. In this paper we
present a one-dimensional, spherically symmetric simulation
of a relativistic blastwave propagating into an external medium
at rest where both forward and reverse shocks are present.
First order Fermi acceleration occurs at such shocks and we
model this process and the subsequent synchrotron and adi-
abatic losses in order to produce light curves which can be
expected from such the detailed hydrodynamics. This work
is based on recent work contained in Downes, Duffy and
Komissarov 2001 (@) (DDK) which contains a more detailed
discussion of the model and results.

2 Hydrodynamics

The conservation equations for relativistic hydrodynamics in
spherical symmetry are
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whereΓ is the fluid Lorentz factor,ρ is the proper density,
β is the velocity inc = 1 units,w is the enthalpy andp is
the proper pressure. Time,t, and distance,r, refer to the
coordinates measured in the observer’s frame. We can relate
the enthalpy, density and pressure by

w = ρ+
γ∗

γ∗ − 1
p (4)

We employ a second order finite volume Godunov-type
scheme on a hierarchical grid to solve the equations 1 to 3.
Assuming that the grid cells are defined so that celli occupies
the space[ri−1/2, ri+1/2] then the scheme can be written as
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where superscripts refer to the time index and subscripts refer
to the spatial index. Also,
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The code has been rigorously tested successfully against
various shock-tube problems.

In studies of the fireball model of gamma-ray bursts, the
parameters used are the total ,M , and the initial radius,R0.
In general,E, the total energy, is thought to lie somewhere in
the region1051-1054 ergs. The ratio between the rest-mass
energy in the blast (i.e. the mass of the baryonic component),
and the total energy determines two critical radii. These
are the radius at which the baryons have been accelerated
up to their maximum velocity,Rc, and the radius at which
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Fig. 1.
Plots of density, 4-velocity and pressure (top to bottom) for a time
of 7 × 106 seconds after the initial blast. We can see the original
and reflected rarefaction, as well as the forward and reverse shocks.

the shell of ejected baryons have swept up their own mass
in interstellar material,Rd. This latter radius is the radius
at which the baryonic shell begins to decelerate. The for-
mer also depends onR0, the initial radius of the blast. This
initial radius is thought to be quite small, withR0 ∼ 1012

cm. The hydrodynamic results presented in figure (1) are
for the caseE = 1051 ergs. The ratio of energy to mass is
η = E

Mc2 = 580 while the initial radius isR0 = 1.2 × 1014

cm. The presence of forward and reverse shocks is clearly
seen in figure (1) and these are the sites of particle accel-
eration. The qualitative evolution of a spherical relativistic
blastwave is discussed thoroughly in DDK.

3 Particle acceleration and losses

Relativistic shocks can accelerate particles by the diffusive
shock mechanism under the presence of magnetic fluctua-
tions which enable multiple shock crossings. It has been
shown recently (Kirk et al. 2000 (@)) that ultra-relativistic
shocks produce a power law distribution of particles with in-
dex 2.23, i.e. N(E) ∝ E−2.23. Therefore, over hydrody-
namical timescales we can treat acceleration as an impulsive
injection of energetic particles, with this universal power law,
into each fluid element which passes through a relativistic
shock. Once an electron is injected at the shock it will be
scattered in the local fluid frame and suffer both synchrotron
and adiabatic losses. If the length scale over which the elec-
trons are isotropised is much shorter than any other length
scale of interest then the relativistic electrons will respond
adiabatically to the expansion or contraction of the flow. Adi-
abatic losses, or indeed gains, are then described by the fact
thatp/ρ1/3 is constant wherep andρ are the particle momen-
tum and fluid density in the local fluid frame. WithE = pc
for ultra-relativistic particles the combined synchrotron and
adiabatic losses are described in the comoving frame by

Ė = −αB2E2 +
1
3
ρ̇

ρ
E (9)

whereα is a constant andB the magnetic field strength in
the local fluid frame. Consider now a fluid element which
is shocked at timêt0 when a power law distribution of ener-
getic particles is injected and wheret̂ is time measured in the
comoving frame. This population then evolves according to
the equation
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whereN(E, t̂) is the differential number of particles of en-
ergyE at time t̂. The losses,Ė, are given by equation (9)
while the injection term isQ(E, t̂) = Q0δ(t̂ − t̂0)H(E −
Emin)E−q which describes injection of a power law spec-
trum at timet̂0 with a minimum particle energyEmin. We
can solve equation (10) by finding the characteristic curves
along whichN(E, t̂)dE = N(E0, t̂0)dE0 where a particle
with energyE0 at t̂0 cools to an energyE at time t̂. From
equation (9) we have
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which can be solved to show that along a characteristic curve
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N is conserved so that
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and the solution to (10) becomes
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In order to calculate the particle spectrum we therefore
evaluate the integral in equation (14) for each fluid element
which has passed through a shock at some point.

We approximate the emission of a single particle to be a
delta function in frequency with a single particle emissivity
in the fluid frame given byjν̂(γ) = a0γ

2B2δ(ν̂ − a1γ
2B)

whereγ is the Lorentz factor of the electron in the fluid
frame,a0 = σT c/6π anda1 = e/2πmec with σT the Thom-
son cross section. With the local electron spectrum given by
14, the emissivity in the local fluid frame is then

Êν̂ =
∫
jν̂(γ)N(γ, t̂) dγ (15)

The emissivity in the observer’s frame is related to that in
the fluid frame byEν = D2Êν̂ . The Doppler factor,D, for
the fluid element with a three velocityβ making an angleθ
to the line of sight isD = [Γ(1 − µβ)]−1 whereµ = cos θ.
The observed frequency is related to the photon frequency in
the fluid frame byν = Dν̂. The observed flux density flux
density is obtained by integrating the intensity over the entire
source,

Fν(t0) =
∫

Ω

∫ ∞
0

Eν(s, φ, t) ds dΩ (16)

wheret0 is the time of observation andt = t0 − s/c is the
time of emission in the observer’s frame a distances away
from the observer

In the simple case where the fluid is assumed to move
directly towards the observer with a constant velocity we
have succesfully compared our method with the exact re-
sults of Sari and Piran 1997 (@). In this instance we succes-
fully reproduce all the relevant regimes. In particular from
those particles which have not radiated away a significant
fraction of their energy we get theuncooledspectrum of
Fν ∝ ν−(p−1)/2 while the higher energy particles have a
steeper,cooledspectrum ofFν ∝ ν−p/2. Below the mini-
mum observed frequency the flux scales asFν ∝ ν1/3 as a
result of synchrotron self absorption.

4 Spectra and Light Curves

We introduce three parameters in order to implement the par-
ticle acceleration model. They are the ratio,εb, between the
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Fig. 2.
The spectrum observed at 1 hr after the inital blast observation for
the case ofεb = 0.01 (“Low B-fields”) and εb = 0.1 (“High B-
fields”)

magnetic field energy density and the thermal energy den-
sity. Secondly, the fraction,εe, of the downstream thermal
energy density which is converted into high energy electrons
as a fluid cell is shocked and finally the energy,Emin, of the
lowest energy particle which is produced at the shock. The
differential energy spectrum is a power law in energy of in-
dex2.23 fromEmin. The results presented below refer to two
different simulations, each using the hydrodynamical results
described above. In each case we also haveεe = 0.01. The
magnetic field strength isεb = 0.01 in one simulation, and
εb = 0.1 in the other. This is the only way in which the two
simulations differ.

Figure 2 shows a plot of the spectrum observed 24 hours
after the initial blast could have been observed for the case
whereεb = 0.1 (hereafter referred to as the highεb case) and
for εb = 0.01 (hereafter referred to as the lowεb case). In
both cases the spectrum is a broken power-law. In the first
section of the spectra, the flux goes asν1/3, as expected for
synchrotron radiation below the peak frequency of the low-
est energy electron. The second part of the spectrum is, in
both cases, the power lawν−0.615 indicating that this part of
the spectrum is dominated by emission from electrons, with
a distribution ofE−2.23, which have not suffered significant
adiabatic or synchrotron cooling. The break from this part
of the spectrum to the final, steeper, part occurs in different
places in the spectra plotted. For the highεb case, the break
occurs at a lower frequency than for the lowεb case as would
be expected since, in higher magnetic fields, the losses suf-
fered are correspondingly higher. However, while in the final
part of the spectrum the exponent predicted from simple the-
ory would be−p/2 = −1.115 we find the spectrum to be
slightly harder. In the highεb case, we haveFν ∝ ν−1.019,
and in the lowεb case,Fν ∝ ν−0.981. The reason for the
slightly harder spectra at high frequencies is the non-uniform
velocity distribution in the “shell” of ejected material (see,
e.g. Figure 1). where material moving at high velocity to-
wards the observer will be more heavily weighted in the spec-
tra than material moving at lower velocity, due to relativistic
beaming. The temporal behavious of the break frequencis is
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Fig. 3.
Light curves calculated at low, intermediate, and high frequencies.

discussed in DDK.

Figure 3 shows plots of the light curves at low, medium
and high frequencies. These frequencies are chosen so that
the points are always in the regime whereFν ∝ ν1/3 (low
frequencies),Fν ∝ ν

1−p
2 (medium frequencies) and, for high

frequencies, the frequency is always in the third section of
the spectrum. Initially we see an increase in all the light
curves shown, with the exception of the high frequency, high
εb case, where the emission is roughly constant over the first
couple of hours. The medium frequency light curves initially
increase and then fall off dramatically. Ags with the high fre-
quency light curves, it is difficult to see any point at which
the behaviour of the light curve is a true power-law. The high
frequency light curves also begin to fall off very steeply, and
again, it is difficult to see any sign of a power-law behaviour
in the curves. The lack of a clear power-law behaviour in the
light curves may well be due to the restricted time-scale over
which the curves are calculated (from 1 hour to 1 day). How-

ever, it is clear that, if there is a broken power-law behaviour
then the breaks are smeared out, and, in addition, the final
fall-off of the light-curve would seem to be much faster than
previously predicted. Both of these facts, certainly at high
frequencies, are likely to arise from the inclusion of adia-
batic cooling in the model. This cooling affects the way the
critical frequencies behave, and hence the behaviour of the
light curves. Since the second (upper) break frequency de-
creases faster in the presence of adiabatic cooling, we would
expect the high frequency light curve to fall off more rapidly.

5 Conclusions

We have presented a model for the synchrotron emission of
energetic particles downstream of relativistic, spherical shock
waves. The hydrodynamical part of the problem has been
solved numerically with the simpler simulations agreeing with
results published elsewhere. On the other hand the particle
acceleration aspect has been treated as aninjection process
with relativistic shocks leaving a population of energetic par-
ticles immediately downstream. The spectral index is known
from semi-analytic work so that we need only specify the
fraction of the downstream thermal energy which is con-
verted into energetic particles and a lower cut-off energy. The
particles subsequently lose energy by synchrotron cooling
and adiabatic losses. The hydrodynamical results have cap-
tured the evolution of both the forward and reverse shocks
which are of principal interest for particle acceleration and
radiative emission as well as the rarefaction waves. The spec-
tra emitted from our system largely agree with the simple
predictions for the low energy, uncooled part of the spectrum.
However, at the higher, cooled part of the electron popula-
tion the relativistic boosting of the material coming straight
towards the observer hardens the spectrum from the pure un-
cooled value which comes from material further downstream
and from material which is not moving driectly towards the
observer. Further non-trivial behaviour has been found for
the temporal variation of both the break frequencies and the
light curves.
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