ICRC 2001

Chemical composition of primary cosmic rays with energies around the knee region observed at Mt. Chacaltaya

S. Ogio¹, Y. Kurashina¹, F. Kakimoto¹, H. Tokuno¹, D. Harada¹, Y. Tsunesada¹, N. Tajima³, H. Yoshii², K. Nishi³, O. Burgoa¹, E. Gotoh³, K. Kadota¹, T. Kaneko⁴, Y. Kuwata², Y. Matsubara⁵, P. Miranda⁶, Y. Mizumoto⁷, T. Morihisa¹, A. Morizawa², K. Murakami⁸, S. Nakamitsu², H. Nakatani³, K. Okamoto², S. Shimoda³, Y. Shirasaki⁹, M. Teshima¹⁰, Y. Toyoda¹¹, A. Velarde⁶, and Y. Yamada³

¹Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

²Department of Physics, Ehime University, Ehime, Japan

³Institute of Physical and Chemical Research, Saitama, Japan

⁴Department of Physics, Okayama University, Okayama, Japan

⁵Solar-Terrestrial Environment Laboratory, Nagoya University, Aichi, Japan

⁶Instituto de Investigaciones Fisicas, Universidad Mayor de San Andres, La Paz, Bolivia

⁷National Astronomical Observatory, Tokyo, Japan

⁸Nagoya University of Foreign Studies, Aichi, Japan

⁹Tsukuba Space Center, National Space Development Agency of Japan, Ibaraki, Japan

¹⁰Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan

¹¹Department of Physics, Kobe University, Hyogo, Japan

Abstract. The chemical composition of primary cosmic rays around the knee region has been investigated with an air shower array at Mt.Chacaltaya. From 1987 to 1991, we examined observed equi-intensity curves comparing those with a Monte Carlo simulation where the primary composition is assumed to be a mixture of protons and Fe nuclei, and obtained the their mixing ratio as a function of the primary energy(Ogio et al., 2001). Moreover, from 1995 to 1997, we made a measurement of arrival time distributions of air Čerenkov light. From an analysis of arrival time distributions of Čerenkov light, we obtained the composition as a mixture of proton, He, CNO, Si-Mg, Fe groups(Shirasaki et al., 2001). Both the results show that the average mass number of primary nuclei $\langle \ln A \rangle$ gradually increases up to ~ 2 around the knee region and up to ~ 3 around 10^{16} eV. In 1999, we improved our array to observe air showers with lower primary energies. Furthermore, we installed five detectors in the array to measure the lateral distribution of air Čerenkov light. Now we examine the chemical composition of primary cosmic rays above 5×10^{12} eV more precisely with air Čerenkov light data and an equi–intensity curve analysis.

References

Ogio, S., et al., Il Nuovo Cimento C, 24,2001.(to be published) Shirasaki, Y., et al., Astropart. Phys., 15,241–257, 2001.

Correspondence to: S.Ogio (sogio@cr.phys.titech.ac.jp)