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Abstract.
We consider the propagation of galactic cosmic rays in the

fractal interstellar medium. Steady state solution of the frac-
tional diffusion equation, describing cosmic ray propagation,
is found. We show that the exponent of the steady state spec-
trum turns out to be equal to the exponent of the cosmic ray
spectrum above the “knee”, that isη ≈ 3.1.

1 Introduction

The steady state diffusion equation is frequently used for in-
terpretation of the cosmic ray phenomena (see, for exam-
ple,Ginzburg and Syrovatskii (1964); Berezinsky et al. (1990);
Blumen et al. (1991); Zirakashvili et al. (1991); Ptuskin et
al. (1993); Kalmykov et al (1999)). Without energy losses
and nuclear interactions this equation for concentration of the
cosmic rays with energyE generated by sources distribution
with density functionS(r, E) has the form:

D(E)4N(r, E) + S(r, E) = 0, (1)

whereD(E) is a diffusivity. The equation (1) describes the
cosmic ray propagation under the assumption that nonho-
mogeneities of medium have small-scale character. If the
medium has a fractal structure, the normal diffusion equa-
tion (1) is not a proper one. A generalization of this equation
leads to an anomalous diffusion (see the reviews by Bouchaud
and Georges (1990); Isichenko (1992); West end Deering
(1994); Uchaikin and Zolotarev (1999) and paper Lagutin
and Uchaikin (2001)). In recent papers (Lagutin et al., 2000,
2001; Lagutin and Uchaikin, 2001) the anomalous diffusion
equations under the different approximations were formu-
lated and the solutions for point instantaneous and impulse
sources were found.

The main goal of this paper is to find the steady state so-
lution of the fractional diffusion equation and to evaluate the
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exponent of steady state energy spectrum.

2 Fractional diffusion equation

The fractional diffusion equation formulated in (Lagutin and
Uchaikin, 2001) has the form :

∂N(r, E, t)
∂t

= −D(E,α, β)D1−β
0+ (−4)α/2N(r, E, t)

+ S(r, E, t), (2)

hereD(E,α, β) = D0(α, β)Eδ is the anomalous diffusivity,
α, β are determined by the fractal structure of the medium
and by trapping mechanism, correspondingly.Dµ

0+ means
fractional derivative of Rieman-Liouville by time (Samko et
al., 1987):

Dµ
0+f ≡

1
Γ(1− µ)

d

dt

t∫
0

(t− τ)−µf(τ)dτ, µ < 1,

(−4)α/2 is fractional Laplacian (called “Riss’ operator”) (Samko
et al., 1987):

(−4)α/2f(x) =
1

dm,l(ν)

∫
Rm

4lyf(x)
|y|m+ν

dy,

wherel > α, x ∈ Rm, y ∈ Rm,

∆l
yf(x) =

l∑
k=0

(−1)k
(
l

k

)
f(x− ky)

dm,l(ν) =
∫

Rm

(1− eiy)l|y|−m−νdy,

If α = 2 andβ = 1, the equation (2) is the normal dif-
fusion equation. Ifα < 2, β = 1, we have from (2) the
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superdiffusion equation:

∂N(r, E, t)
∂t

= −D(E,α)(−4)α/2N(r, E, t)

+ S(r, E, t), (3)

discussed in Lagutin et al. (2001).

3 Steady state solution of superdiffusion equation

In steady state case the equation (3) takes the form:

D(−4)α/2N(r, E) = S(r, E). (4)

The Green’s functionG(r, E;E0) satisfies the equation:

D(−4)α/2G(r, E;E0) = δ(E − E0)δ(r). (5)

The solution of the equation (5) can be found by means of
Fourier transformation:

f̃(k) = F̂ f(r) =
∫
R3

eikrf(r)dr.

Taking into account that the Fourier transform of fractional
Laplacian is (Samko et al., 1987)

F̂ (−4)α/2G(r, E;E0) = |k|αG̃(k, E;E0),

it’s easy to find:

G̃(k, E;E0) =
δ(E − E0)
D|k|α

= δ(E − E0)

∞∫
0

dye−D|k|
αy.

Applying the inverse Fourier transformation, we obtain:

G(r, E;E0) =
δ(E − E0)

(2π)3

∞∫
0

dy

∫
R3

dke−ikr−D|k|
αy.

Since

g
(α)
3 (r) =

1
(2π)3

∫
R3

dke−ikr−|k|
α

is density of three-dimensional spherically-symmetrical sta-
ble law, for Green’s function we have:

G(r, E;E0) =
δ(E − E0)

(D)3/α

∞∫
0

dyy−3/αg
(α)
3

(
|r|

(Dy)1/α

)
.

(6)

Using Green’s function (6) we can find the solution of
equation (4) for a interesting for astrophysics source. Thus,
for point source with inverse power spectrum relating to su-
pernova burstS(r, E) = S0E

−pδ(r), the solution of the
equation has the form:

N(r, E) =
S0E

−p

(D)3/α

∞∫
0

dyy−3/αg
(α)
3

(
|r|

(Dy)1/α

)
(7)

Taking into account Mellin transform of spherically-symmetrical
three-dimensional stable laws (Uchaikin and Zolotarev, 1999):

g(α)
m (s) =

∞∫
0

g(α)
m (r)rs−1dr =

2sΓ
(
s
2

)
Γ
(
m−s
α

)
α(4π)m/2Γ

(
m−s

2

) , (8)

we have

N(r, E) =
2−αS0

π3/2D0r3−α
Γ
(

3−α
2

)
Γ
(
α
2

) E−p−δ. (9)

To evaluate numerically the value of spectral exponentη =
p+ δ, let’s consider in details a passage from non-stationary
solution to steady state one in a special caseα = 1. This
choice is due to the fact thatg(1)

3 has the analytical represen-
tation. It’s three-dimensional Cauchy’s density:

g
(1)
3 =

1
π2(1 + r2)2

.

Based on the results obtained in Lagutin et al. (2001) for
points impulse source

S(r, t, E) = S0E
−pδ(r)Θ(T − t)Θ(t),

in our case we have

N(r, T, E) =
S0E

−p−δ

2πD0r2T

[
1− 1

D2
0T

2

r2 E2δ + 1

]
. (10)

Using the representationN(r, E) = N0E
−η from (10), one

can easily find the spectral exponent:

η(T ) = p+ δ − 2δ(
TD0Eδ

r + 1
) (11)

It should be noted that the solution (10) has the “knee” at

E0(T ) =
(

r
TD0

)1/δ

. At the “knee” energyE0 the spec-

tral exponent for observed particlesη is equal to the spectral
exponent for particles generated by the sources:

η = p.

One can also see from (11) that atE � E0 andE � E0, we
have correspondingly:

ηE�E0 ≈ p− δ,

ηE�E0 ≈ p+ δ, (12)

that is the spectrum steepening on2δ. The steady state so-
lution is connected withN(r, T, E) by means of passage to
the limit:

N(r, E) = lim
T→∞

N(r, T, E). (13)

So, we have

η = lim
T→∞

η(T ) = p+ δ. (14)
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Fig. 1. Modification of the energy spectrum versusT (T6 → ∞).
Square-position of the “knee”

E0 = lim
T→∞

E0(T )→ 0. (15)

Thus, the analysis presented above shows that the exponent
of the steady state spectrum turns out to be equal to the spec-
tral exponent above the “knee”, that isp + δ ≈ 3.1. This
conclusion is illustrated by (fig.1).

4 Steady state solution of fractional
diffusion equation(α < 2, β < 1)

It has been shown in (Lagutin and Uchaikin, 2001) that the
solution of equation (2) for the point impulse source has the
form:

N(r, t, E) =
S0E

−p

D(E,α, β)3/α

t∫
max[0,t−T ]

τ−3β/α

×Ψ(α,β)
3

(
|r|(D(E,α, β)τβ)−1/α

)
, (16)

where the scaling functionΨ(α,β)
3 (r),

Ψ(α,β)
3 (r) =

∞∫
0

q
(α)
3 (rτβ)q(1,β)

1 (τ)τ3β/αdτ, (17)

is determined by three-dimensional spherically-symmetrical
stable distributionq(α)

3 (r) and one-sided stable distribution

q
(1,β)
1 (t) with characteristic exponentβ < 1 (Uchaikin and

Zolotarev, 1999):

q
(β,1)
1 (t) = (2πi)−1

γ+i∞∫
γ−i∞

e(λt−λβ)dλ. (18)

As the integral diverges ifT → ∞, the spectral exponent
has been evaluated forT ∼ 1010y. We foundη ≈ p+ δ

β .

5 Conclusion

We have considered the propagation of galactic cosmic rays
in the fractal interstellar medium. Steady state solution of the
fractional diffusion equations describing cosmic ray propa-
gation have been found. We have shown that the exponent of
the steady state spectrum turns out to be equal to the exponent
of cosmic ray spectrum above the “knee”, that isη ≈ 3.1.
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