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Abstract. Possibility of a description of the photonuclear
interactions of high energy muons using generalized vector
dominance model (GVDM) is discussed. It is shown that the
consistent GVDM scheme (i.e., the scheme which operates
with more or less realistic vector mesons rather than with
effective ones) alone is not able to describe the photonuclear
interactions at very high energies of muons. Two-component
picture of photonuclear interaction (GVDM + perturbative
QCD) is proposed.

1 Introduction

According to GVDM the imaginary part of the transverse for-
ward Compton scattering amplitude (or the transverse photon
absorption cross section) can be expressed in a form of the
mass dispersion relation,

σT (Q2, s) =
∫

ρT (m2,m′2, s)m2m′2

(m2 +Q2)(m′2 +Q2)
dm2dm′2. (1.1)

The spectral weight functionρT is given by the formula of
GVDM (in zero-width approximation):

ρT (m2,m′2, s) =

=
∑
n,n′

δ(m2−m2
n)δ(m′2−m2

n′)
e

fn

e

fn′

ImTnn′(s)
s

. (1.2)

Here,mn is the vector meson mass,fn is the meson-photon
coupling constant,Tnn′(s) is an amplitude for the forward
meson-nucleon scattering,

Vn +N −→ Vn′ +N. (1.3)

The main problem is the description ofρT (m2,m′2, s) in a
region of large vector meson masses(mn >> mρ,mω,mϕ).
A correct treatment of the heavy masses would provide, in
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particular, the convergence of the integral (1.1). The infor-
mation about vector meson properties in the heavy mass re-
gion is rather scarce, therefore in pre-QCD era for the proper
choice of the mass dependence ofρT the motivation based
on parton models was used. It was shown that, in general,
ρT can be chosen in the form compatible with Bjorken scal-
ing. In particular, in diagonal approximation, when

ρT (m2,m′2, s) = δ(m2 −m′2)ρT (m2, s), (1.4)

one needs, for this compatibility, the hadronic state contin-
uum term inρT (m2, s). If the ρT -function is nondiagonal,
the scaling behavior ofQ2σT is possible in the more realis-
tic case of isolated hadronic states as well. If, e.g., theρT -
function contains large negative off-diagonal contributions,
scaling can be achieved through the destructive interference
effects, i.e. through the strong cancellations of diagonal and
off-diagonal contributions in the integral (1.1) (such a picture
was confirmed by the direct calculation ofρT (m2,m′2, s)) in
a framework of the covariant parton model). The nondiago-
nal GVDM based on this picture was really very successful
in a description of the nucleon structure functions at small
Q2, besides, the qualitatively correctQ2-dependence of the
nuclear shadowing was obtained. It was shown recently that
this model even predicts, similarly to the parton model, the
color transparency effects. One should note, however, that
the choice of the nondiagonal elements ofTnn′ -matrix in
this model has in fact no connection with the predictions
of hadronic models. In this sense nondiagonal GVDM uses
some fictitious vector mesons. But the original GVDM’s idea
is that a photon transforms virtually just into the genuine
hadron states (those observed ine+e−-annihilation) which
subsequently scatter from the target nucleon. Correspond-
ingly, thefn-constants in Eq.(1.2) are expressed through the
leptonic widths of these states. The logic of GVDM should
be such that the hadronic physics is a starting point and the
scaling behavior ofQ2σT is the (nonnecessary, in principle)
consequence.

The consistent carrying out of nondiagonal GVDM calcu-
lations using the physically well-grounded conceptions of the



1022

meson-nucleon scattering amplitudes and structures of vector
mesons (it is the main topic of this paper) gives the following
results: i)the convergence of GVDM sums can be obtained
only by introduction of some cut-off factors andii)an agree-
ment with data on structure functions is unattainable in the
region of very low x even atQ2 ∼few Gev2. It means that
the process of cutting is sufficient: the GVDM describes only
the part of the Compton amplitude. Evidently, the remainder
should be described by pertubative QCD. It leads to a two-
component picture (the idea of two-component description
of virtual photon absorption is, actually, very old).

2 The model of the hadronic amplitudes

For a calculation of vector meson-nucleon scattering ampli-
tudes we used an aproach based on constituent quark model
of vector mesons and two -gluon exchange approximation for
hadron-hadron elastic scattering amplitudes (see, e.g. Niko-
laev and Zakharov, 1991). Starting point is the general ex-
pression forVnN amplitude:

Fnn(s, t) =
∫
d2r⊥dyF→r⊥

(s, t)Φ2
n(
→
r⊥, y) ≡

≡< n | F→
r⊥

(s, t) | n >, (2.1)

Here,F→
r⊥

is ”eigenamplitude” , i.e. , an amplitude for the

scattering of the
−
qq -pair with a fixed transverse size

→
r⊥ on

the nucleon,Φn(
→
r⊥, y) is a quark-antiquark wave function of

the vector meson ,y is the light-cone variable connected with
longitudial momentum partition of quarks inside of the vec-
tor meson. The concrete expression forF→

r⊥
is determined

by the two-gluon exchange diagrams:

F→
r⊥

(s, t) = i
16
3
α2
ss

∫
d2k⊥V (

→
k⊥,

→
Q)

(
→
Q
2 −

→
k⊥)2(

→
Q
2 +

→
k⊥)2

×

×{e−i
→
Q
2
→
r⊥ − e−i

→ →
k⊥r⊥}. (2.2)

Here, t = −
→
Q

2

,
→
k⊥ is a transverse momentum of the

meson‘s quark, and the V-factor describes theggNN-vertex.
Approximately, this factor is given by the expression

V (
→
k⊥,

→
Q) ' e−

<r2
N
>

6

→
Q

2

− e−
<r2
N
>

6 (

→
Q

2

4 +3
→
k⊥

2
). (2.3)

where< r2
N > is the mean square radius of the nucleon.

Integrating over asimutal angles in Eq.(2.1) we reduce the
problem to calculation ofF →

|r⊥|
≡ Fr⊥ . This amplitude de-

pends only on two parameters,αs andµg, effective gluon
mass (omitted in Eq.(2.2) for brevity’s sake). Going into im-
pact parameter space, we introduce the opaque function

Ωr⊥(s, b) =
1

2πi

∫
1

4πs
Fr⊥(s, t) e

→→
iQb d2Q. (2.4)

The numerical calculation shows thatΩr⊥ can be
parametrized with a large accuracy by the Regge-type ex-
pression:

Ωr⊥(s, b) =
σ(r⊥)
4πBr⊥

exp(− b2

2Br⊥
), (2.5)

where

σ(r⊥) =
1
s
ImFr⊥(s, 0); Br⊥ =

σ(r⊥)
4πΩr⊥(s, 0)

. (2.6)

We took in this analysisµg = µπ and normalizedσ(r⊥)
on the pion data at medium energies(

√
s = 10 Gev), in

accordance with the additive quark model relation

σρp =
1
2

(σπ+p + σπ−p). (2.7)

For this normalization we used the unitarized scattering am-
plitude

Tρρ(s, 0) =
∫
< ρ | 1− e−Ωr⊥ (s,b) | ρ > d2b. (2.8)

Up to now in our modelFr⊥ ∼ s so thatΩr⊥ does not
depend on the energy. To take into account this dependence
we modify Eq.(2.5) adding a new Regge-type term:

Ωr⊥(s, b) =
σ(r⊥)

4π
×

×
{

1
Br⊥

e
− b2

2Br⊥ +
1
R

1
Br⊥ + 2α′F ξ

e∆F ξe
− b2

2(Br⊥+2α′
F
ξ)

}
,

(2.9)

ξ = ln
s

s0
− iπ

2
; ∆F = αF − 1 > 0; α′F 6= 0.

Writing Eq.(2.9) we suppose a two-pole Regge parametriza-
tion (Kopeliovich at al ,1989) of the opaque function; by as-
sumption, both trajectories give at smallξ the same diffrac-
tion slopes and R does not depend onr⊥. Three new parame-
ters(R,∆F , α

′
F ) are determined from data on s-dependence

of hadronic total amplitudes.
Nondiagonal amplitudes are given by a simple generaliza-

tion of Eq. (2.1):

Fnn′(s, t) =< n | F→
r⊥

(s, t) | n′ > . (2.10)

For a calculation of the amplitudesFnn′ we need also ex-
pression for wave functions of vector mesons and meson’s
mass spectrum. We obtained the wave functions and mass
spectrum using the quasipotential formalism in a light-front
form (Bugaev, Mangazeev, 1999; Bugaev, Mangazeev and
Shlepin, 1999). The resulting wave functions are of oscilla-
tor type: e.g., for the first term inρ-family (ρ−meson) one
has

Φ0(
→
r⊥, y) = N0exp[−r2

⊥β
2/2]exp[−m2

ρy
2/2β2]. (2.11)

Here,β2 = 0.094 Gev2. The mass spectrum for theρ-
family is

m2
n
∼= m2

ρ(1 + 2.55n) ; n = 0, 1, 2, ... . (2.12)
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3 Cut-off factors

The first stage of the photoabsorption is theγ → qq transi-
tion. The differential probability of this transition is

dP −
qq
∼= C

1
M2
−
qq

[x2 + (1− x)2]dxdM2
−
qq
, (3.1)

wherex is the fraction of the photon 3-momentum carried by

the quark,M −
qq

is an invariant mass of the
−
qq-pair,

M2
−
qq

= (p2
⊥ +m2

q)/x(1− x). (3.2)

Our basic assumption is the following: an interaction of the
−
qq-pair with the nucleon is meson-dominanted if (and only

if) this pair is wide enough (i.e. if
−
r⊥> r0

⊥, wherer0
⊥ is some

parameter); only in this case confinement forces are effective
and pull the pair’s particles together. The corresponding re-
striction of pair’s phase volume for a fixedM −

qq
leads, evi-

dently, to appearing of some cut-off factors in GVDM’s sums
over meson states. These cut-off factors are determined from
the expression for an average transverse size of the

−
qq-pair,

−
r⊥= υ⊥,relative · τfe ∼=

p⊥
p2
⊥ +m2

q

(1 +
Q2

M2
−
qq

)−1 (3.3)

and from expressions (3.1-3.2). As a result, in our GVDM
formulas the followings substitutions must be done:

e

f n
−→ e

f n

√
ηn ≡

e
∼
fn

. (3.4)

Here
√
η
n

is the cut-off factor (determinated using the addi-
tional approximationM −

qq
∼Mn ).

4 Structure functions

Electromagnetic structure functions are calculated using the
usual GVDM formulas, following from ( 1.1 - 1.2 ) and mod-
ified by introducing the cut-off factors. In particular, the
transverse cross section is given by the expression

σT (Q2, x) =
∑
n,n′

e2

fnf ′n

√
ηnηn′

ImTnn′

s
. (4.1)

The resulting formulas for ImTnn′ are very complicate. If
we keep only the linear term in an expansion of the exponent
in Eq.(2.8), we have

ImTnn′ ∼ σnn′(1 +
1
R

(
s

s0
)∆F cos

π

2
∆F ). (4.2)

Here, eachσnn′ is expressed through integrals of the type∫ ∫
r⊥dr⊥dyσ(r⊥)f(r⊥, y),

Fig. 1. The proton structure functionF2(Q2, x).The solid curves
are our results. The data are due to H1, ZEUS, BCDMC, E665,
NMC. A constantc(x) = 0.6(ix − 0.4) is added toF2, where
ix is the number of thex bin ranging from 1 (x = 0.32) to 21
(x = 0.000032).

wheref(r⊥, y)’s are cumbersome functions ofr⊥, y which
depend on the wave functions of vector mesons. The connec-
tion of s with Q2 andx is

s =
Q2

x
+m2

p −Q2. (4.3)

The formula for longitudinal cross sectionσL differs from
(4.1) only by the amplitude factors:

ImTLnn′ =
Q2

mnmn′
ξ(K)ImTnn′ , (4.4)

K =
s

2Mp
.

For the ratio of the longitudinalV N -amplitude to the
transverse one we used the parametrization

ξ = 1− e−
K
K0 , K0 = 103. (4.5)

In Figs. 1-3 the results of our calculations are shown, to-
gether with available data on structure functions. For the cal-
culation the following values of parameters have been used:

R = 22, ∆F = 0.25, (r0
⊥)−1 = 0.4Gev, mq = 0.



1024

������� �	�
�
�

������

�

���

�����

�����

���! 

"�#!$

%�&(' )�*(+ ,�-(. /�021 3�465798;:=<!>@?BADC

s

E FGgHI J
K m

LMN OP
QR S
TM

UWV@XZY�[]\^\`_ba!ced`f`g

hjilknmporq�sut�v@v@w xjy�zn{|{~}B�D�������@� ���@�@��j�����^�����
g� ����|���W�D�����@�@��j �¡n¢¤£�¥@¥�¦ §©¨Bª¬«

g ®
¯!°±³²�´¶µ¸·@¹�º

»9¼;½=¾!¿@ÀBÁDÂ

s

Ã ÄÅgÆÇ È
É m

ÊËÌ ÍÎ
ÏÐ Ñ
ÒË

ÓWÔ@ÕZÖ�×]Ø;ÙrÚbÛÝÜ^Þ^ß

à9á;â=ã!ä@åBæDç

s

è éêgëì í
î m

ïðñ òó
ôõ ö
÷ð

øWù@úZû�ü ýþûrÿ��������

�
	�����������

s

� ��g�
� �
� m

�� !
"#$ %
&�

')(�*,+.- /�021�354�687

9
:�;�<�=�>�?�@

s

A BCgD
E F
G m

HIJ K
LMN O
PI

Q)R�S,T.U VWT2X�Y[Z8\

]
^�_�`�a�b�c�d

s

e fggh
i j
k m

lmn o
pqr s
tm

u)v�w,x.y z8x2{�|~}��

�
�������������

s

� ��g�
� �
� m

��� �
��� �
��

�)���,�.� �8�2���¡ W¢

£
¤�¥�¦�§�¨�©�ª

s

« ¬g®
¯ °
± m

²³´ µ
¶·¸ ¹
º³

»)¼�½,¾.¿ À8Á2Â�ÃÅÄÇÆ

È
É�Ê�Ë�Ì�Í�Î�Ï

s

Ð ÑÒgÓ
Ô Õ
Ö m

×ØÙ Ú
ÛÜÝ Þ
ßØ

à)á�â,ã.ä å8ã2æ�ç�è�éëêWì

í
î�ï�ð�ñ�ò�ó�ô

s

õ ö÷gø
ù ú
û m

üýþ ÿ
��� �
�ý

���	��
� ���������������

���! �"�#	$&%('

s

) *+g,
- .
/ m

012 3
456 7
81

9�:	;�<= >@?�A�B�C�DFE@G

H�I!J�K�L	M&N(O

s

P QRgS
T U
V m

WXY Z
[\] ^
_X

`�a	bdcfe g@h�i�j�k�lmk!n@o

p�q!r�s�t	u&v(w

s

x yzg{
| }
~ m

��� �
��� �
��

���	����� �@���������������

���!�����	�& (¡

s

¢ £¤g¥
¦ §
¨ m

©ª« ¬
®¯ °
±ª

²�³	´¶µ¸· ¹@º�»�¼�½�¾¸¿@À@Á

Â�Ã	Ä¶Å¸Æ Å@Å�Ç�ÈÊÉË@Ì@Í

Î

Ï

Ð

Ñ

Ò

Fig. 2. Transverse cross sectionσT (W 2, Q2). The solid curves are
predictions of the present paper.

5 Conclusion

The numerical results obtained in the present model lead to
the following conclusions.

1. If no cut-offs are introduced, GVDM is not able to de-
scribe photoabsorption data. Even the simplest variant of the
GVDM containing onlyρ andρ′ give too large value ofσγN .
Nondiagonal contributions are not negligibly small. Destruc-
tive interference effects proposed in earlier works on nondi-
agonal GVDM are not large (in particular, the largest nondi-
agonal term(ρρ′) is positive).

2. The introduction of the cut-off factors motivated by
QCD can give the correct predictions. This is reached with-
out nonnatural break of the meson mass spectrum (the value
of the heaviest mass in GVDM expressions is determined
solely by the condition that the longitudinal size of the fluc-
tuation must exceed the target size). In the scheme with the
cut-offs the nondiagonal contributions have the same order
of magnitude as neighbouring diagonal ones, so GVDM de-
veloped in the present paper is an essentially nondiagonal
model.

Fig. 3. Longitudinal-to-transverse ratio,R = σL/σT .

3. The GVDM alone is not able to describe correctly
the electromagnetic structure functions in the region of very
smallx(even atQ2 ∼ 1 Gev2). For a full description of the
structure functions one needs a two-component model. Evi-
dently, the second component must be based on perturbative
QCD.
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