

Injection and acceleration of He⁺ and He⁺⁺ at quasi-parallel interplanetary shocks

C. Kato^{1,3}, H. Kucharek¹, M. Scholer^{1,2}, and B. Klecker¹

Abstract. In the energy range of 85-280 keV the abundance ratio of He $^+$ to He $^{++}$ shows large enhancements from ~ 0.1 to 1 related to the passage of ME driven in-terplanetary travelling shocks (Klecker et. al., this Conference). In events with large enhancements the energy spectrum of He $^+$ exhibits a super-thermal tail. A possible source for the super-thermal population are pickup He $^+$ ions, accel-erated at the interplanetary shock. Furthermore, the super-thermal He $^+$ /He $^{++}$ ratio at shock associated events is found to be anticorrelated with both, solar wind velocity and solar wind temperature. This apparent anti-correlation could be caused by

several effects. Firstly, the ux of pickup He⁺, being regarded as a source of super-thermal He⁺, could decrease with increasing solar wind ve-locity. Or, secondly, the injection and acceleration efficiency of both, He⁺ and He⁺⁺ depend on the solar wind velocity and/or solar wind thermal velocity. We performed 1D hybrid simulations of quasi-parallel shocks where solar wind He⁺⁺ and pickup He⁺ ions are included self-consistently. The dependence of the injection and acceleration efficiency on solar wind velocity is investigated.

¹Max-Planck Institut für extraterrestriche Physik, Garching, Germany

²Centre for Interdisciplinary Plasma Science, Garching, Germany

³Faculty of Science, Shinto University, Japan