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Abstract. Supernovae are considered as the most proba-
ble sources of Galactic cosmic rays (CR). In this analyti-
cal approach, we investigate the influence of the discrete na-
ture of this kind of CR-sources on the CR-propagation and
spectrum measured at earth. We use a diffusion model with
three independent spatial coordinates. As this is an analytical
approach, we only consider the most important interactions
with the interstellar medium: continuous and catastrophic
losses. We assume a geometry of a thin disk, filled with
gas and containing the sources, embedded in a halo, which
is assumed to contain little or no gas.

We present the solution for the Galactic disk and in the
halo for arbitrary CR source distributions in the Galactic disk,
both for the steady state and the time-dependent case. The
aim is an analytical solution for the full system in both cases.

1 Introduction

Supernovae and supernova remnants (SNR) are the most prob-
able sources of Galactic cosmic rays with energies up to some
105GeV, and recent observations (Koyama et al., 1995, 1997;
Keohane et al., 1997; Slane et al., 1999; Allen et al., 1997;
Borkowski et al., 2001) show that at least electrons are ac-
celerated at these sites. To gain a better understanding of the
processes involved in the Galactic CR propagation and the
influences of point-like sources, as are SNR, on the observed
CR spectra, we use an analytical approach of investigating
the propagation of CR in our Galaxy with three indepen-
dent spatial coordinates. These calculations are also useful
as a test for numerical simulations which consider more pro-
cesses during propagation, e.g. reacceleration and adiabatic
losses, to get a more realistic setup, as it is difficult to develop
numerical codes for five or more independent variables.

Although calculations on the propagation of cosmic rays
(CR) have been done for more than 40 years both analyti-
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cally (e.g. Jokipii (1966); Lerche and Schlickeiser (1982))
and numerically (e.g. (Strong and Moskalenko, 1998)), none
of the analytical solutions consider three independent spatial
coordinates and the geometry of the Galaxy plus halo. Also,
the work presented here is still in progress.

As this is an analytic approach, we consider only the most
important processes in CR propagation for energies between
1 GeV and some105 GeV: spatial diffusion, continuous, and
catastrophic losses. The continuity equation for the CR dif-
ferential particle densityN for particles of momentump then
reads

∂N

∂t
− S(r, p, t) = ∇(kx∇N)− ∂

∂p
(ṗN)

N

T
(1)

with S being the sources,kx the coefficient of spatial diffu-
sion, ṗ the rate of energy loss andT the timescale for catas-
trophic losses.

To solve Eq. (1) for three spatial dimensions we further
have to assume that in the region of interest the spatial diffu-
sion coefficient is independent of the spacial coordinates, but
still may depend on the particle momentump. The propaga-
tion equation (1) for this case has been solved by Syrovatskii
(1959) for an infinite medium. This solution may be used
if losses are dominant and sources are nearby, e.g. for elec-
trons. Considering sources in the whole Galaxy the geom-
etry of our Galaxy is important. As mentioned above, there
are a lot of papers dealing with cosmic ray propagation in the
Galactic disc, surrounded by a halo (e.g. LeGuet & Stanton
(1974)), but all these papers assume cylindrical symmetry of
the source distribution. To consider cosmic ray point sources
like SNR, all spatial coordinates have to be taken into ac-
count.

2 The Galactic model

To solve Eq. (1) for three spatial dimensions we have to use
a spatial diffusion coefficient not varying in space. Approx-
imately this is true on large scales for the Galactic disk and
the halo separately. We therefore assume the Galaxy to be a
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Fig. 1. We assume a simple model for our Galaxy and its souround-
ing halo. The Galactic disc is assumed to be filled with gas and
containing the sources. It is assumed the halo contains no gas, but
a weak magnetic field which means there is only diffusion in the
halo. The cosmic ray density-distribution is assumed to vanish at
the boundaries atr = R andz = ±H.

disk with radiusR and height2h containing gas, the Galactic
magnetic field and the CR sources; a halo of the same radius
and heightH on each side of it, containing no gas but a mag-
netic field. This means there are virtually no losses in the
halo (see Fig.1). At the boundaries atr = R and atz = H
the CR differential particle densityN is assumed to vanish.
Also, as there are different spatial diffusion coefficients in the
disk and the halo, we get at the boundary between disk and
halo from the condition that the particle density is continuous

ND(z = hD) = NH(z = hD) (2)

and from continuity of the flux over the surface

kH
∂NH
∂n

= kD
∂ND
∂n

(3)

∂
∂n denoting differentiation along the normal of the surface
of separation.

3 Calculation

Assumingk = k(p), ṗ = B(p), T = T (p) and, as we are
dealing with losses only,̇p = B(p) < 0, we get for the
propagation equation (1):

∂N

∂t
− S = k(p)∆N − ∂

∂p
(B(p)N)− N

T (p)
(4)

We solve (4) by transforming it into a form similar to the heat
equation.

3.1 Steady state case

We transform

−S = k(p)∆N − ∂

∂p
(B(p)N)− N

T (p)
(5)

with the ansatz

N =
exp

(
−
∫ p
p0

dp′

B(p′)T (p′)

)
φ

B(p)
(6)

and the change of coordinates

p→ p̃ =
∫ p k(p̄)

B(p̄)
dp̄ (7)

into

− exp
(∫ p dp′

T (p′)B(p′)

)
B(p̃)
k(p̃)

S = ∆φ− ∂φ

∂p̃
(8)

which is the same as a heat equation.
Using the solutions for the heat equation (Carslaw and

Jaeger, 1959), we get as a homogenous solution in the disk

N =
e−
∫ p dp′

B(p)T (p)

B(p)

∞∑
n=0

∑
αn

∫
ξ

dξe
−(α2

n+ξ2)
∫ p k(p′)

B(p′)dp
′

×n (αnr) cosn (ϕ− Cαn) sin (ξz − Eαn) (9)

with αn being a solution ofn(αnR) = 0. The constants
are determined by the boundary conditions between disk and
halo (2), (3) atz = zD andz = −zD.

As a Greens’ function, assuming the disk being an infinite
cylinder, we get :

G =
1

B(p)
e

∫ p0

p

dp′
B(p′)·T (p′) · e

− (z−z0)2

4

(∫ p
p0

k(p′)
B(p′)

dp′
)

2πR2
√
π
√∫ p

p0

k(p′)
B(p′)dp

′
(10)

×
∞∑

n=−∞
cos(n(ϕ− ϕ0)) ·Θ (p0 − p)

×
∑
αn

e
−α2

n

(∫ p
p0

k(p′)
B(p′)dp

′
)
n (αnr) n (αnr0)

(′n (αnR))2

In the halo (no losses) we are left in the steady state case
with Laplace’s equation. A solution fulfilling the boundary
conditions is given by

N =
∞∑
n=0

∑
αn

Anαnsinh (αn (z − hH)) n (αn · r) (11)

× cosm (ϕ− Fαn)

The coefficientsAαn , Fαn andCαn , Eαn in (9) are deter-
mined by the boundary conditions between halo and disk.
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3.2 Time dependent case

To transform

∂N

∂t
− S = k(p)∆N − ∂

∂p
(B(p)N)− N

T (p)
(12)

we use the ansatz

N =
exp

(
−
∫ p dp′

B(p′)T (p′)

)
φ

B(p)
(13)

and change the coordinates(t, p)→ (t′, λ)

t′(t, p) = t−
∫ p dp′

B(p′)
(14)

λ(p) =
∫ p k(p′)

B(p′)
dp′ (15)

so fork 6= 0 we get:

− exp
(∫ p dp′

B(p′)T (p′)

)
B(p)
k(p)

S = ∆ϕ− ∂ϕ

∂λ
(16)

So in the Galactic disk, we get as a homogenous solution:

N =
∞∑
n=0

∑
αn

∫
ξ

dξe
−
(
(α2
n+ξ2)

(∫ p k(p′)
B(p′)dp

′
))

× 1
B(p)

n (αnr) cos (nϕ−Aαn) (17)

× (Cαn sin (ξz) +Dαn cos (ξz))

×exp
(∫ p dp′

B(p′) · T (p′)

)
· f
(
t−
∫ p

p̄

dp′

B(p′)

)

f being an arbitrary function of
(
t−
∫ p
p̄

dp′

B(p′)

)
.

As a Greensfunction, assuming the disk being an infinite
cylinder, one gets:

G =
1

B(p)
δ

(
t− t0 +

∫ p0

p

dp′

B(p′)

)
(18)

× e

− (z−z0)2

4

(∫ p
p0

k(p′)
B(p′)

dp′
)

2πR2
√
π
√∫ p

p0

k(p′)
B(p′)dp

′

×
∞∑

n=−∞
cos(n(ϕ− ϕ0))

×
∑
αn

e
−α2

n

(∫ p
p0

k(p′)
B(p′)dp

′
)
n (αnr) n (αnr0)

(′n (αnR))2

×Θ (p0 − p) e
∫ p0

p

dp′
B(p′)·T (p′)

In the halo we get the ordinary heat equation. A solution
fulfilling the boundary conditions is given by

N =
∞∑
n=0

∑
αn

∫
ξdξe−κ(α

2
n+ξ2)tn (αnr) (19)

× cos (nϕ− Fαn) sin (ξ (z − hH))

As in the steady state case, the coefficientsFαn and in (17)
Aαn , Cαn , Dαn are determined by the boundary conditions
between halo and disk.

4 Summary

We here presented solutions for the CR propagation equa-
tion in three spatial dimensions, taking into acount diffusion,
continuous and catastrophic losses in the context of a Galac-
tic model. In this model, we assume the Galactic disk to be
a flat cylinder, containing the CR sources, the Galactic mag-
netic field and gas; a halo of the same radius and heightH
on each side of it, containing no gas. This means there are no
losses in the halo. As this calculations are still in progress,
it remains the task to fulfill the boundary conditions at the
boundary between disk and halo.
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