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Abstract. Moli ère theory of multiple Coulomb scattering
has been far improved to take account ionization loss by use
of Kamata-Nishimura formulation of the theory. The new
formulation only introduce the scale factorν to the traversed
thickness for effects of ionization process, and is simply re-
duced to the traditional Molière-Bethe formulation by use
of our translation formula. Introducing Kamata-Nishimura
constantsΩ andK specific to the traversed substance, we
can simplify the configuration of Molière theory, so that the
sequence to derive Molière angular distributions has become
much easy. Based on the new formulation, we propose a
practical and efficient method to obtain Molière angular dis-
tributions. The method is accurate enough to apply in Monte
Carlo simulations as well as designings and analyses of ex-
periments concerning charged particles.

1 Introduction

Reconstruction of Molìere’s multiple scattering theory (Molière,
1947, 1948; Bethe, 1953) by Kamata-Nishimura formulation
(Kamata and Nishimura, 1958; Nishimura, 1967) is contin-
uing. The new formulation is equivalent to the traditional
Moli ère-Bethe formulation, both cutting off the higher terms
of Fourier component at the same order (Nakatsuka, 1999b).
We have found various superior aspects of the new formula-
tion: ionization loss is taken into account (Nakatsuka, 1999a);
properties of substance are all reflected in the Kamata-Nishimura
constants,Ω andK (Kamata and Nishimura, 1958; Nishimura,
1967; Nakatsuka, 2001a); mixed or compound substances
can easily be treated; the formulation is simple as a thor-
ough extension of the Rossi-Greisen or the Fermi-Yang the-
ory (Rossi and Greisen, 1941; Yang, 1951); the theory is eas-
ily applicable to other problems; and so on.

Although the Molìere theory has been improved by the
new formulation, a few problems still remain in actual ap-
plications. In case we take account ionization loss, the scale
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factor ν is newly introduced (Nakatsuka, 1999a). It makes
the expansion parameterB of the Molière angular distribu-
tion smaller. Namely, we should take the smaller value ofB
at theν times shallower thickness, compared with the fixed
energy condition. Under the moderate relativistic condition,
evaluation of the scale factorν requires heavy calculations
of numerical integration. In case we get the Molière angular
distribution for charged particles propagating through mixed
or compound substances, we have to carry out multiple se-
quence of evaluations according to the number of mixed sub-
stances to get the stochastic mean among substances (Nakat-
suka, 2001a). These facts will bring serious inefficiencies to
our frequent derivations of the distribution.

In this paper, we derive simple methods to avoid these
complicated sequences, and propose a practical and efficient
procedure of getting Molière angular distribution with ion-
ization applicable widely in simulations and analyses (Heck
et al., 1998).

2 Sequence to Obtain Exact Molìere Angular Distribu-
tion With Ionization

For derivations of Molìere angular distribution under the mod-
erate relativistic condition with ionization, we found it is
enough to introduce a scale factorν for the traversed thick-
ness (Nakatsuka, 2001b). If we assume ionization loss of
charged particles ofz with a constant rate as

E = E0 − z2εt, (1)

where traversed thicknesst is measured in radiation length
(Particle Data Group, 2000), then the scale factorν is derived
as

ln
ν

β′2
= ln

θ2
G

4z2t
− 4z2

θ2
G

∫ t

0

1
w2

ln
β′2

w2
dt, (2)

with (Nakatsuka, 2001a)

w = 2pv/K, (3)

β′2 =
1 + 3.34z2Z2/(137β)2

1 + 3.34Z2/1372
β2, (4)
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Fig. 1. Comparison of the exact scale factorsν (thick lines) and
their approximations (thin lines).

and the gaussian mean square angle (Nakatsuka, 1999a) with
the scattering constantK,

θ2
G =

K2

2εmc2
{mc

2

pv
− mc2

p0v0
+

1
2

ln
(E0−mc2)/(E−mc2)
(E0+mc2)/(E+mc2)

}.

(5)

Then we get the expansion parameterB and the unit of Molìere
angleθM;

B − lnB = Ω− ln Ω + ln(νz2t/β′2), (6)

θM = θG

√
B/Ω. (7)

Using the both parameters we get the Molière angular distri-
butionsf(ϑ) andfP(ϕ) for polar angleθ and projected angle
φ, respectively:

f(ϑ) = f (0)(ϑ) +B−1f (1)(ϑ) +B−2f (2)(ϑ) + . . . , (8)

fP(ϕ) = f
(0)
P (ϕ) +B−1f

(1)
P (ϕ) +B−2f

(2)
P (ϕ) + . . . , (9)

with

ϑ = θ/θM and ϕ = φ/θM. (10)

3 Approximated Expression of The Scale Factor

In case of small Born parameter,zZ/137β � 1, it satisfies
β′ ' β. Then, applying the partial integration on Eq. (2), we
get

ln ν = ln
θ2

Gp
2v2

K2z2t
− 2z2ε

θ2
G

∫ t

0

θ2
G

pv
dt. (11)

This time we obtain the value ofν up to the second order of
rest-massmc2. As

pv = E(1− m2c4

E2
), (12)

θ2
G '

K2z2t

E0E
{1 +

2
3
m2c4

E2
(1 +

E

E0
+
E2

E2
0

)}, (13)

we have

ln ν ' 2 +
E0 + E

E0 − E
ln

E

E0
− m2c4

9E2
0

(14
E2

0

E2
+ 5

E0

E

+ 5 + 12
E0

E

E0 + E

E0 − E
ln

E

E0
). (14)

The first two terms agree with the scale factor under the
extreme relativistic approximation, indicated in the formula
(11) of Nakatsuka (1999a). The third term shows the contri-
bution of the next higher term with rest-mass. The exact and
the approximated results of the scale factorν are compared
against the fraction of energy loss in Fig. 1. Both agree well
within the error of 1 percent up to the traversed thickness of
energy loss of about 70 percents.

4 Moli ère Angular Distribution in Mixed or Compound
Substance and Its Approximation Using The Constants
For Mixture

The two parametersB andθM for charged particles travers-
ing through mixed or compound substances are derived from

B − lnB =

∫ x
0

Pr[ 1
X0w2 (1− 1

Ω ln β′2

w2 )]z2dx

θ̄2
G/4Ω̄

+ ln
θ̄2

G

4Ω̄
,

(15)

θM = θ̄G

√
B/Ω̄, (16)

where we used the Kamata-Nishimura constants for mixture
(Kamata and Nishimura, 1958; Nishimura, 1967; Nakatsuka,
2001a).θ̄2

G in the formula denotes the mean square angleθ2
G

derived using the constants for mixture,K̄ andε̄,

θ̄2
G =

K̄2

2ε̄mc2
{mc

2

pv
− mc2

p0v0
+

1
2

ln
(E0−mc2)/(E−mc2)
(E0+mc2)/(E+mc2)

},

(17)

and Pr[Q] denotes the stochastic mean of the quantityQi’s
defined as the weighted mean by the fractionpi of mass:

Pr[Q] =
∑
i

piQi. (18)

Although this method gives the accurate results, it requires
multiple sequence of calculations in evaluation of the stochas-
tic mean, as many integrations as the number of mixed sub-
stances. In case it satisfiesβ′ ' β on the propagation, the
stochastic mean becomes simple andB andθM in Eqs. (15),
(16) are reduced tōB andθ̄M defined as

B̄ − ln B̄ = Ω̄− ln Ω̄ + ln(νz2t/β2), (19)

θ̄M = θ̄G

√
B̄/Ω̄. (20)
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Fig. 2. Comparison of the exact and the approximated expan-
sion parameters,B andB̄, for H2O. Unit of abscissa,̄Ωe−Ω̄,
equals nearly to the mean thickness of single scattering larger
than screening angle, and takes values of order 10−6. Four
branches of curve correspond to the incident energies byE0/ε̄

of 10, 102, 103, and 104 in unit of Ω̄e−Ω̄, from left to right.
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Fig. 3. Comparison of the exact and the approximated units of
Moli ère angle,θM and θ̄M, for H2O. Unit of abscissa,̄Ωe−Ω̄,
equals nearly to the mean thickness of single scattering larger
than screening angle, and takes values of order 10−6. Four
branches of curve correspond to the incident energies byE0/ε̄

of 10, 102, 103, and 104 in unit of Ω̄e−Ω̄, from left to right.
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Fig. 4. Comparison ofB andB̄ for Air.

100 102 104100

101

102

103

TRAVERSED THICKNESS   t/(Ωe–Ω)

U
N

IT
 O

F
 M

O
LI

E
R

E
 A

N
G

LE
  θ

M
/(

K
e–Ω

/2
/E

0)

Air
E0/mc2 = 20

exact results
approx. results

Fig. 5. Comparison ofθM andθ̄M for Air.

In practice, we have confirmed the conditionβ′ ' β is
satisfied for almost all the substances around us (Nakatsuka,
2001b). We expect the characteristic parametersB andθM

for mixed or compound substances are approximated byB̄
and θ̄M. We compare these approximated values with exact
ones for substances of H2O, Air, SiO2, and Nuclear Emul-
sion in Figs. 2 to 9. Good agreements are confirmed between
the approximated values from Eqs. (19), (20) and the exact
ones from Eqs. (15), (16) within the differences of 1 percent.

5 Practical and Efficient Method to Obtain Moli ère An-
gular Distribution With Ionization

We propose a practical method to obtain the Molière angular
distribution for charged particles of moderate relativistic en-
ergy traversing through pure substances with ionization. We

deriveB andθM from Eqs. (6), (7), replacingβ′ by β and
substitutingθG andν from Eqs. (5), (14), then we get the
spatial and projected angular distributionsf(ϑ) andfP(ϕ)
by Eqs. (8) and (9).

The distribution for charged particles traversing through
mixed or compound substances can be obtained practically in
the same way by replacing the substance by a pure substance
with the Kamata-Nishimura constants for mixture,Ω̄ andK̄.

6 Conclusions and Discussions

The scale factorν characterizing the ionization process, hav-
ing been defined by a numerical integration for charged par-
ticles of moderate relativistic energies, is approximated by
an expression expanding the exact formula up to the second
order of rest-massmc2. We find good agreements between
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Fig. 6. Comparison ofB andB̄ for SiO2.
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Fig. 7. Comparison ofθM andθ̄M for SiO2.
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Fig. 8. Comparison ofB andB̄ for Nuclear Emulsion.
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Fig. 9. Comparison ofθM andθ̄M for Nuclear Emulsion.

the exact value and the approximated one within 1 percent up
to traverse of about 70 percents of energy loss (Fig. 1).

Derivations of Molìere angular distribution in mixed or
compound substances, where multiple sequence of evalua-
tions were needed according to the number of mixed sub-
stances, are also approximated. As the conditionβ′ ' β is
satisfied for almost all substances, the characteristic parame-
tersB andθM of Moli ère distribution are easily derived from
simple stochastic means using the Kamata-Nishimura con-
stants for mixture,̄Ω andK̄. Visible discrepancies are not
found between the approximated parametersB̄ and θ̄M so
obtained and the exactB andθM, in mixtures of Air, H2O,
SiO2, and Nuclear Emulsion (Figs. 2 to 9).

Based on these investigations we have proposed a practical
and efficient method to derive the Molière angular distribu-
tion for charged particles with ionization, traversing through
pure as well as mixed or compound substances. The method
will be valuable for frequent derivations of the distribution
in Monte Carlo simulations and for rapid evaluation of the
distribution in designing and analyses of experiments con-
cerning charged particles.
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