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Practical and efficient derivations of Moliere angular distribution
with ionization
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Abstract. Moliere theory of multiple Coulomb scattering factor v is newly introduced (Nakatsuka, 1999a). It makes
has been far improved to take account ionization loss by us¢he expansion parameté& of the Moliere angular distribu-

of Kamata-Nishimura formulation of the theory. The new tion smaller. Namely, we should take the smaller valu&of
formulation only introduce the scale factoto the traversed at ther times shallower thickness, compared with the fixed
thickness for effects of ionization process, and is simply re-energy condition. Under the moderate relativistic condition,
duced to the traditional Matre-Bethe formulation by use evaluation of the scale facter requires heavy calculations

of our translation formula. Introducing Kamata-Nishimura of numerical integration. In case we get the Mo angular
constants2 and K specific to the traversed substance, we distribution for charged particles propagating through mixed
can simplify the configuration of Mddre theory, so that the or compound substances, we have to carry out multiple se-
sequence to derive Mdre angular distributions has become quence of evaluations according to the number of mixed sub-
much easy. Based on the new formulation, we propose &tances to get the stochastic mean among substances (Nakat-
practical and efficient method to obtain Made angular dis-  suka, 2001a). These facts will bring serious inefficiencies to
tributions. The method is accurate enough to apply in Monteour frequent derivations of the distribution.

Carlo simulations as well as designings and analyses of ex- In this paper, we derive simple methods to avoid these
periments concerning charged particles. complicated sequences, and propose a practical and efficient
procedure of getting Madire angular distribution with ion-
ization applicable widely in simulations and analyses (Heck
et al., 1998).

1 Introduction

Reconstruction of Moére’s multiple scattering theory (Mélie, 2 Sequence to Obtain Exact Mokre Angular Distribu-
1947, 1948; Bethe, 1953) by Kamata-Nishimura formulation  tion With lonization
(Kamata and Nishimura, 1958; Nishimura, 1967) is contin-
uing. The new formulation is equivalent to the traditional For derivations of Mokre angular distribution under the mod-
Moli ére-Bethe formulation, both cutting off the higher terms erate relativistic condition with ionization, we found it is
of Fourier component at the same order (Nakatsuka, 1999bgnough to introduce a scale factofor the traversed thick-
We have found various superior aspects of the new formulahess (Nakatsuka, 2001b). If we assume ionization loss of
tion: ionization loss is taken into account (Nakatsuka, 1999a)¢harged particles of with a constant rate as
properties of substance are all reflected in the Kamata-Nishimpita g — .24, (1)
constants(2 andK (Kamata and Nishimura, 1958; Nishimura, . . . .

here traversed thicknegds measured in radiation length

1967; Nakatsuka, 2001a); mixed or compound substance%/:> ) . .
can easily be treated; the formulation is simple as a thor- article Data Group, 2000), then the scale fagtisrderived

ough extension of the Rossi-Greisen or the Fermi-Yang the®S ) o "
ory (Rossi and Greisen, 1941; Yang, 1951); the theory is easp, » _ 1, % 4i/ I @)
ily applicable to other problems; and so on. B2 4z 275 0, 2 ’

Although the Molére theory has been improved by the with (Nakatsuka, 2001a)
new formulation, a few problems still remain in actual ap- w = 2pv/ K 3)
plications. In case we take account ionization loss, the scale 1+ 37342222/(1375)2

2
Correspondence tol. Nakatsuka (nakatuka@osu.ac.jp) g = 1+ 3.3422/1372 e )




287

This time we obtain the value of up to the second order of
rest-massnc®. As

m264
| pv=E(1- ?)7

K222 2 m2ct F E?

(12)

(13)
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SCALE FACTOR v

o~ FoF {1+3 2 (1+E70+E73)},
we have
. N Eov+E., E m** E?
lnv ~ 2+E0_E1 o 9E2(14E2+5
s +541pf0 Bt By E) (14)
T EO/mC2 =10 ‘.‘.\\ \ A E EO - F Eo
| o Eolmc2 =20 \ The first two't('arr.ns agree wnh thg sgale faf:tor under the
e~ EJmc=50 W extreme relativistic apprOX|mat|0n,_ indicated in the formula_l
- 0 F) (11) of Nakatsuka (1999a). The third term shows the contri-
L Elo . = °° L \ ‘ bution of the next higher term with rest-mass. The exact and
00 05 1 the approximated results of the scale fagtare compared
against the fraction of energy loss in Fig. 1. Both agree well
FRACTIONAL DISSIPATION AE/E, within the error of 1 percent up to the traversed thickness of
energy loss of about 70 percents.
Fig. 1. Comparison of the exact scale factergthick lines) and

their approximations (thin lines).
PP ( ) 4 Moliere Angular Distribution in Mixed or Compound

Substance and Its Approximation Using The Constants

and the gaussian mean square angle (Nakatsuka, 1999a) with For Mixture

the scattering constai, .
9 The two parameter8 anddy; for charged particles travers-

) K2 me® mé® 1, (Eg—mc?)/(E—mc?) ing through mixed or compound substances are derived from
ST 2eme2 pu povo + 2 (Eo—i—ch)/(E—i-mc?)}' p _ 1l ,6_ 24 72
(5) B—lnB*‘[ Nxz(l-g 7)|z x+ln9—
B 02,/4Q 49
Then we get the expansion paraméseand the unit of Mokere (15)
anglefyr; _ -
Om = 0/ B/Q, (16)
B-InB=Q-InQ+In(vz"t/57), (6)  where we used the Kamata-Nishimura constants for mixture
O = 0/ B/Q. @) (Kamata and Nishimura, 1958; Nishimura, 1967; Nakatsuka,

2001a).0% in the formula denotes the mean square atigle
Using the both parameters we get the Madi angular distri-  derived using the constants for mixtui€,andz,
butionsf (1) and for polar angle? and projected angle _
utl Sf( ) fP(SO) p g p l g K2 mC2 mc2 1 1 (Eo_mcg)/(E_mcg)
—1n

, respectively: 92, — =
@, resp Y b 28me? " pv pove 2 (Eo+mc?)/(E+mc?) b
) =00+ B OO+ B2 D@+, (8) (17)
fel@) = 1) + B (0) + B2 (@) + ..., (9 and Prfp] denotes the stochastic mean of the quantis

ith defined as the weighted mean by the fractipof mass:
wi

= pQs. (18)

9=0/0p and ¢ = ¢/0\. (10) i

Although this method gives the accurate results, it requires
multiple sequence of calculations in evaluation of the stochas-
tic mean, as many integrations as the number of mixed sub-
stances. In case it satisfi@s ~ 3 on the propagation, the
stochastic mean becomes simple @edndd),; in Egs. (15),

(16) are reduced t& andf,; defined as

B—InB=0Q-InQ+In(vz*t/3%), (19)
Iy —1 03,p°v* 22 € eGd (11) _ R
Wy =M= K222t o GMZQG\/B/Q. (20)

3 Approximated Expression of The Scale Factor

In case of small Born parameterZ /1373 < 1, it satisfies
B’ ~ . Then, applying the partial integration on Eq. (2), we
get
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Fig. 2. Comparison of the exact and the approximated expan-+ig. 3. Comparison of the exact and the approximated units of
sion parameters3 and B, for HO. Unit of abscissaQe ™}, Moliére anglefy andfy, for HoO. Unit of abscissaie %,
equals nearly to the mean thickness of single scattering largegquals nearly to the mean thickness of single scattering larger
than screening angle, and takes values of orde®10Four  than screening angle, and takes values of ordet®10Four
branches of curve correspond to the incident energieBd¢ branches of curve correspond to the incident energieBde

of 10, 1¢, 10%, and 10 in unit of Qe~**, from left to right. of 10, 1¢, 10%, and 10 in unit of Qe~?, from left to right.
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Fig. 4. Comparison of3 and 5 for Air. Fig. 5. Comparison oy andfy for Air.

In practice, we have confirmed the conditi6h ~ 3 is derive B and#y; from Egs. (6), (7), replacing’ by 8 and
satisfied for almost all the substances around us (Nakatsukaubstitutingdg and v from Egs. (5), (14), then we get the
2001b). We expect the characteristic paramefe@nd 0y, spatial and projected angular distributiofig}) and fr(¢)
for mixed or compound substances are approximatedby by Egs. (8) and (9).
andfy;. We compare these approximated values with exact The distribution for charged particles traversing through
ones for substances of,B, Air, SiO,, and Nuclear Emul-  mixed or compound substances can be obtained practically in
sion in Figs. 2 to 9. Good agreements are confirmed betweethe same way by replacing the substance by a pure substance
the approximated values from Egs. (19), (20) and the exactvith the Kamata-Nishimura constants for mixtuteand k.
ones from Eqs. (15), (16) within the differences of 1 percent.

6 Conclusions and Discussions

5 Practical and Efficient Method to Obtain Moli ere An-
gular Distribution With lonization The scale factor characterizing the ionization process, hav-

ing been defined by a numerical integration for charged par-
We propose a practical method to obtain the Mdiangular  ticles of moderate relativistic energies, is approximated by
distribution for charged particles of moderate relativistic en-an expression expanding the exact formula up to the second
ergy traversing through pure substances with ionization. Weorder of rest-masswc?. We find good agreements between
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the exact value and the approximated one within 1 percent ufreferences

to traverse of about 70 percents of energy loss (Fig. 1).
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