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Calculating the particle-field correlation in a flowing plasma
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Abstract. This paper presents a quasi-linear derivation of the The method of characteristics returns the formal solution
correlation between the fluctuations in the magnetic field andor the fluctuating component of the phase space density,

the phase space density,B¢ f), applicable to an infinitely t

conducting, moving plasma; that is, the derivation includesd f(x,p,t) = 6 f(0) — 5Fl(t’)8p1<f(t’)> dt’, 3)
the effect of the electric fielde = —V /¢ x B, whereV is 0

the plasma velocity. where

z'(t') = 2"(0) —|—/O ' (") dt"”

, (4)
. t
1 Introduction pH(t") = p'(0) +/ <F1(:zc ”,p”,t”)> dt”.
0
The relativistic Vlasov equation, written in three-vector no- For brevity, we suppress the coordinate dependendd of
tation, equals and(f) in Eq. 3; it should be understood that quantities in the

integrand depend on the positiat{¢’), momentump(¢’),
and coordinate time, .
In terms of the Lorentz force, the expressiondgrequals

of , Of ,0f
EH’ 8x1+F ap*

=0, (1)

t
where the phase space coordinatésandp’, as well as the  §f(t) = 6 f(0) — e/ SE'(t") 8pz<f(t’)> dt’
particle velocity,v”, and the forcef™, are all three-vectors, . 0
andt is the coordinate time. Plasma turbulence consists of € Y / Kyt / /
highly dynamic and variable fluctuations and other depar- ¢ /0 et v (E) OBt )8pl<f(t )> dt’, ©)
tures from the large-scale leading order behavior in the magwheres*,), is the third-rank Levi-Civita tensor.
netic and electric fields; this in turn causes fluctuations and
variability in the particle momentum and distribution func-
tion. In addition, exact knowledge of the physical quantities,2 The Particle-Field Correlation
F* and f, does not exist. Consequently, statistical methods
must be used in the study of solar wind turbulence. With this
motivation, let

Bieber (1987) focuses on the correlation between fluctua-
tions of the magnetic field and fluctuations of the particle
distribution function(§ B¢ f), a quantity that plays a role in

F' = (FY) 4 §F quasi-linear theory. This measurable quantity affords an op-
’ (2) portunity to test quasi-linear theory at a fundamental level;
f={f+df, moreover, it can provide unique information on the detailed

nature of interplanetary magnetic turbulence.
where the angle bracket§,- -), represents an ensemble av- To obtain (§B§ f), multiply Eq. 5 by§BX (z,p,t) and
erage and thé terms represent the fluctuating component. ensemble average. This returns
By definition, the ensemble average of the fluctuating com- "
ponent equals zero identically; that {§F") = (5f) = 0. <5BK5 f>(t) = e / <5BK(t)5El(t’)> By < f(t’)>dt’ 6)
0
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ggk(t/)vﬂ(t’)<5BK(t)5Bk(t')> Dy <f(t’)>dt’
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where hand, fort > max(7T.,TY), thenT¢y = max(T.,T7) can
<6BK(t) 5 f(0)> = 5£(0) <6BK(t)> —0. @)

replacet as the upper limit of the integrals in Eq. 9; that is,
Note thats BX is evaluated at time, nott’; therefore § B

may be placed inside the integrand. e [Tom

Because experiments readily measure the two-point cor-  — — / et v (t") REK(T) ap1<f(t/)> dr
relation tensor, various turbulence models describe turbulent 0
fluctuations in terms of a two-point correlation tensor. In  Equation 12 assumes a simple form in an infinitely con-
spatially homogeneous and time stationary turbulence, buliglucting, moving plasma, such as the solar wind, whgre
translation of the measurement apparatus does not affect theV sw/c x B. Consequently,
statistical properties of the turbulence; that is, the statistical Vew B 6B Vsw -
properties do not depend on the observation point, they only £ = — (VSW B + % B)
depend on the spatial and temporal separation between two W
measurement po|nt§{ andT, respective]y_ Matthaeus and Observations indicate théVSW is of the order of the Alfén
Goldstein (1982b) have shown that the solar wind satisfie$Peed~ 30 km/s, and that the average solar wind speed is
the conditions of weak stationarity if the effects of solar rota- ~ 400 km/s, while6B/B ~ 1; therefore, the second term
tion are included; weak stationarity exists if the first and sec-can be neglected. Under these conditions, Eq. 12 equals
ond moments of the probability distribution are themselves Teoum
time stationary. By definition, the magnetic correlation ten- 5BK5f>(t) = ——/ (') %
sor and the mixed electric-magnetic correlation tensor equals €Jo
[07() = Va ()] REKT) 0 (£(0) ) aT (14)

(8) The remainder of this discussion will focus on Eq. 14.
R?EZ(X, T)= <5BK(33, t)oE (z + X, t + T)>. More specifically, consider a moving plasma with a homo-

geneous magnetic field. Orient the coordinate system such
An additional change of variabl¢, — ¢ — T, results in  that(B) = Byz andV sy = Vsw siny & + Vs cos v 2,
REKT) = RFE(-T). where is the garden-hose field angle. It is customary to

Torecast Eq. 6 in terms of the two-point correlation tensor,express the momentum gradief¥, (f), in spherical coor-

use the change of variabté = ¢t — T". With this change of dinates. Orient the spherical coordinate system such that
variable, Eq. 6 equals p = pe'. ThenV gy, expressed in terms of a coordinate
basis, instead of the usual orthonormal basis, equals

Tem

<5BK5f>(t):—e i R;ﬁ(T)sz<f(t’)>dT (12)

(13)

Ré(Bk(X7 T)= <5BK(.’B, t)0BNx + X, t + T)>,

t
<5BK5f>(t) = _e/o R(T) apl<f(t/)> ar Vi = VSW(sin¢sin0cos¢ + cos 1 cos 6),

t
€ K3
- E/o s]k(t’)vj(t’)R;ff(T) 8p1<f(t/)>dT- ) Viw = VSTW(sinwcosﬁcowb—coswsinﬁ), (15)
Note that the change of variable also affects Eq. 4; with thISV3 _ Vsw sing sin ¢
change of variable*(¢") andp*(¢') transform to p sinf ’
t t—T wheref is the particle pitch angle, anglis the particle gy-
' (t") = 2*(0) +/ vt (t")dt” +/ o' (") dt” rophase. The non-zero elements of the Levi-Civita tensor
0 t equal
= z'(t) + AL (10)
¢ T ely3 = r?sinf = —e's,
p*(t") = p*(0) +/ <Fl(t")> dt” +/ <F1(t”)> dt” g% = sinf = —e%3, (16)
0 t 3 1 3
= p'(t) + AL 27 simg

When the correlation tensorB,kK( ) andRzK( ), sat- For a homogeneous magnetic field, it can be shown that

isfy the conditions of a Lanczos-type function (Matthaeusp DI {1 + ﬁH(l)} (17)
and Goldstein, 1982a),

to first-order inG = Bgw sin vy, where
RFE(TY  |T|<T.

kK
RBB(T) = { BB ;

~0 T| > 1T, 1) — _ _
P T (11) H, p— — sinf; [cos (Ga — ¢r) — cos gﬁ]} (18)
RSy < { BT T < R _
~ 0 IT| > T* Byddef|n|t|on,GQ = Ot — ky(x — x1), wherek, = 5Q/c
an
then(§ BEX§f)(t) contains two important time domains. For ecB
t < max(T,,T*), (§BXSf) is given by Eq. 9. On the other = . ( + 5— sin 07 cos </51) (19)
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to first-order ing. In the above equationsis the total par-  where 3, is the normalized particle speed. The order of
ticle energy, including the rest energy, and the subsdript magnitude of the term containirél ( f) is similar to Eq. 23.
indicates the initial conditions of the particle motion. Hence, the order of magnitude of the integrand in Eq. 14 goes
Express the particle density as a sum of anisotropic contri-as
butions, fo, and isotropic contributiong(4), ,
Bfo(ff )

1)

<f(:c7p, t)> = fo(x,p, 1) {1 + ZE(A) (x,p, t)} (20) p(t")

A As previously stated, the coordinate dependengg 1),
where the isotropic particle density equals = kp~. In  fo(t'), and¢()(¢') is suppressed; it should be understood,
generalj = k(z,t) andy = y(x, p,t). The spectral index, for example, thag()(¢') = ¢(M[a(t')], where Eq. 10 con-
~, is momentum dependent because the primary cosmic raains expressions fdrx, p) in terms oft’. Keeping this in
flux can not be described by a single power law. But, accord-mind,
ing to Eq. 17, the change in momentum equals 0.1-10%, de- A
pending on the particle’s initial momentum; therefore, for a ¢ (t') = €W (z* + A*) = W (z ){1 + g_y} (25)
given particle momentum, the momentum dependence of the
spectral index can be neglected. Furthermore, the time variwhere A%, = z*(t') — 2*(t) and 1/ = (9,,6™))/eA)
ation of k and, as well as(), slowly occurs over time pe- by def|n|t|on Observations (see, for example Zank et al.,
riods from a year to a solar cycle; because these time period$998), coupled with Fick's Law, indicate that~ 10 AU.
are much, much longer théfi-y,, the time dependence of Clearly, the Taylor series expansionéf! is only possible if
k, v, and¢(4) can also be neglected. Bieber and PomerantzA? 1 /07 < 1. This condition is fulfilled, becausal ~ A2 ~
(1983) have calculated that the diurnal anisotr@®y), has R, whereR,, is the particle Larmor radius. Over the range
an amplitude of 0.714%, the semi-diurnal anisotroffy), of spacecraft and neutron monitor energiBs, < 0.1 AU.
has an amplitude of 0.051%, and the tridiurnal anisotropy,in addition, during the time-frame of interesf, = 0 —
¢®), has an amplitude of 0.018%. The anisotropic terms, Ty, A3 ~ Ac, whereAe = 0.024 AU is the magnetic
¢4 are frequently expressed in terms of the real sphericatorrelation length of the solar wind.

VBsw + (7 +2)Bsw &P (t)+28,6M (¢ ] .(24)

harmonics. In the same vein as Eq. 25,
From Eq. 20, the momentum gradient of the particle den- / ()
sity equals fo(t/ ) _ fo(®) {1 N Af} {1 N ﬁ] 7 (26)
(1S S e PORON SN | R0
Ol =~fo [ p ( " ZA:f ) ZA: b } whereA, = p(t') — p(t) and1/L* = (0, fo)/ fo by defini-
B (4) tion. Webber and Lockwood (1999) report tHat> 20 AU
= fo Z 0o, (21) for >70 MeV cosmic rays observed by IMP, Voyager, and Pi-
4 oneer spacecraft between 1978 and 1996. Chen and Bieber
= fo Z%f“”. (1993) report that, > 100 AU based on neutron monitor
A data. Clearly, the Taylor series expansiork @& possible be-

causeA! /L' <« 1. Substituting Eqg. 17 into Eq. 26 returns,

. . . . ) . . _
Observations indicate that the anisotrogy,), is indepen to first-order in3,

dent of momentump. For example, Ahluwalia and Fikani
(1996a,b) and el-Borie et al. (1996) show that there is nof(t')  fy(t) A L
systematic rigidity dependence in the anisotropy over awidep(t/) = p(t) { + Iz } {1 = By + 1)AH1(7 )} ) (27)
range of neutron monitor cutoff rigidities, from 0 to 20 GV.

Hence,) 9,¢(4) = 0 above. whereAHY = HY (') — 1V (#). A cursory analysis of
Eqg. 17 indicates that the order of magnitudekifl,(,l) goes as
3 Order of Magnitude Analysis ~ 2/(,. Consequently, whef ~ 3, the order of magnitude

of Eq. 27 goes as
Further progress depends on an order of magnitude analys?
0 _h <1+8ﬁsw A, xﬁSW)

of the integrand in Eg. 14. The order of magnitude of the + — +8—

(28)
term containing, ( f) goes as By L L By
fo(t!) Now substitute Eq. 25 and Eq. 28 into Eq. 24; a careful
0B Bswy—; [1 + Z §(A)(t’)} ; (22)  order of magnitude analysis of all the terms involved, paying
p(t’) - - e
particular attention to the energy dependence of the terms, in
whereBgy is the normalized solar wind. The order of mag- dicates that the order of magnitude of the integrand in Eq. 14

nitude of the term containingy (f) goes as goes as

5B [ﬁp + ﬂsw} J;g,/)) > e, (23) 6B’ °(< )) [vﬁsW + 28,6 (¢t )} (29)
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