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Primary proton spectrum in the energy range 	�

����� TeV is reconstructed from the sea level muon spectrum
with the use of QGSJET01 and SYBILL2.1 interaction models. Heavier nuclei are taken in accordance with
the direct measurements data, 100% uncertainty in helium flux is accounted for. The obtained proton intensity
strongly contradicts to the available data of balloon experiments, exceeding them at the least by 100% for
QGSJET01. This discrepancy is due to the combined effect of primary nucleon flux underestimation in the
direct measurements and incorrect description of extensive air shower development. In the latter case it is
required earlier shower development and harder spectra of secondary pions and kaons in comparison with
QGSJET01. This conclusion is in agreement with the obtained by the KASCADE group on the basis of events
rate study.

Primary proton spectrum from the different EAS observables

Recently it was shown [1, 2], that the use of direct data on primary cosmic rays (PCR) spectra and hadronic
interaction models, included in CORSIKA, leads to significantly underrated, in comparison with the measure-
ments, sea level muon flux for ����������� GeV. The discrepancy takes place already for energies well below
the “knee” ( � PCR � ����� TeV), where behavior of primary nucleon flux and hadronic interaction cross-sections
seems to be rather reliably established. Attempts to explain the lack of high-energy muons by errors in EAS
simulation [2,3] touch only one side of the problem, since direct data on PCR spectra are far from being consid-
ered as reference values. The emulsion chamber (EC) technique, applied in balloon experiments, is extremely
labor consuming and sophisticated [4–6], and final results (PCR fluxes) are sensitive to many factors: from
purely instrumental to the choice of hadronic generator. As a consequence, these experiments have limited
energy resolution and disagree on the fluxes of nuclei with ����� .
The fact, that SIBYLL2.1 provides better, than QGSJET01, description of muon flux data up to several hun-
dred GeVs [2] is not a basis to reduce all the problem to correct or incorrect choice of the EAS model. Our
calculations show, that this model produces more positive, than negative, muons for small � primary  � threshold

ratio values both in showers from protons and neutrons, while for QGSJET01 and VENUS ! �#"  ! ��$ is less,
than unity, in showers from primary neutrons. We also found, that 20% difference between SIBYLL2.1 and
QGSJET01 in total muon flux is almost entirely due to the difference in the flux of positive muons. This causes
overestimation of muon charge ratio when one applies SIBYLL2.1 [2]. As one can see, none of the current
EAS models reproduces the data on muons, problems with description of the data on other EAS observables
are briefly discussed in [7]. By now, there remain large discrepancies between results on PCR energy spectra,
extracted from the different EAS characteristics, indicating on disbalance in description of electromagnetic and
hadronic components properties. It is necessary to add, that more definite conclusions on drawbacks of inter-
action models may be obtained if to apply them as well for processing of direct PCR spectra measurements [1].

Returning to the muon deficit problem one should not overlook existing uncertainties in the experimental data
on muon intensity for �%�&�'����� GeV. They do not allow to give more precise estimates of discrepancy between
calculated and measured fluxes. Fortunately, underground experiments provide the needed information for
higher energies �%��()�*
+��� TeV. Reconstruction of muon spectrum at sea level from these data requires
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Figure 1. Primary proton spectrum (complete list of references may be found in [1, 8]). See explanation in text.

accurate description of muon transport in a dense medium. For this purpose we have applied a numerical
method of adjoint equation solution and obtained muon intensities at large depths of rock and water with
account of fluctuations in all muon interaction processes [9]. Our results are in good agreement with the results
of Monte-Carlo codes MUM [10] and MUSIC [11]. It is important to note, that our calculations give upper
estimate of muon fluxes at large depths in comparison with MUM and MUSIC. This happens for the fact,
that we used 1% lower muon energy losses. From comparison of computed absorption curves with the data
of underground installations we came to conclusion, that they are adequately described by the well-known
muon spectrum [12]. It provides good agreement with the data of LVD, KGF, Frejus collaborations and even
underestimates data of MACRO, Soudan and BNO for depths up to 8 km w.e., corresponding to 56��� TeV
median muon energy at sea level. Let us note, that muon intensity from [12] exceeds intensity, obtained from
direct data on PCR spectra with QGSJET01 [1] by 5�78	 % in the energy range 1–10 TeV. In order to reproduce
behavior of the spectrum [12] for the given energies, we used interaction models SIBYLL2.1 and QGSJET01
with CORSIKA as EAS simulation code (for calculation procedure, see [1]). As input information we applied
PCR spectra parameterizations, proposed in [13]. Since primary protons on 5:9#� % determine muon flux
at sea level, we have tuned their spectrum to match behavior of muon spectrum from [12] within ;<	 % for� � (=�-
>��� TeV (corresponding primary energies are 	?
>���8� GeV). Formulae for heavier nuclei [13]
were taken without changes. The results, in comparison with available experimental data, are presented in
Fig. 1. The upper shaded band is for QGSJET01: @�AB(DCE�GF H���
JIKF I�I�LNM����#1O�BPQ0SR 4T1 , and the lower one is for
SIBYLL2.1: @UAV(WCX��F 7��-
Y��F Z89#L%M[��� 1 � PQ0SR 4T\ (units are C m 0<] sr ] s ] GeV L P_^ ). Spread in proton intensity
for particular model reflects the uncertainty in the helium flux data according to [13]. Before discussing
reasons of the disagreement with the directly measured fluxes we should note, that obtained here proton spectra
are not considered as the “final” versions: muon spectrum from [12] may be reproduced by proton spectra
with slightly different set of coefficients and power indexes (including energy depending ones) and possible
underestimation of heavier nuclei fluxes cannot be excluded. The relevant to this situation result was recently
presented by EAS-TOP/MACRO [14]. In this experiment primary p+He flux was derived with QGSJET01
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from Cherenkov light integral spectra and radial distributions. Subtraction of proton component from the total
p+He intensity gave twice larger, than obtained by JACEE, helium flux at the energy of 80 TeV (note, however,
rather large systematic errors). The given result and the muon deficit problem provide enough evidences
in favor of hypothesis, that light nuclei fluxes are systematically underestimated in the direct experiments.
Discussion of methodical errors, which can be responsible for this, may be found elsewhere [1,4,6]. Additional
information on this subject gives recent paper [15], devoted to the galactic diffuse gamma-ray “GeV excess”
problem. In this work it is shown, that account for Feynman scaling violation and diffractive interactions
leads to 30–80% increase of `a\ ’s, produced in b�bc
 collisions, and the spectrum of incident protons is softer,
than that of secondary de
 rays. Regarding the procedure, applied in the EC experiments, such effects would
rather lead even to reduction of reconstructed PCR intensities (see, e.g. [1,6], for more details). To make correct
deduction on this question, first, it is necessary to evaluate the given effects for proton-nucleus, nucleus-nucleus
collisions and their influence on cascade development in EC. Second, it should be accounted, that the scaling
violation does not allow any more to get PCR spectrum from the electromagnetic cascades one with simple
constant energy shift: at the least, the shift coefficient becomes energy dependent. And the third, it is necessary
to estimate size of systematic errors, inevitably introduced in EC data by the use of semi-empirical models,
relying on the validity of scaling hypothesis in extrapolation of low-energy and incomplete accelerator data to
high-energy region.

Though the modern EAS models incorporate scaling violation and diffractive interactions, none of them does
it properly. This was demonstrated by KASCADE experiment on the basis of electromagnetic and hadronic
events rate study [16]. In particular, it was shown, that in QGSJET01 the fraction of diffractive dissociation in
the total p-Air inelastic cross-section must be diminished by 6.5% (i.e. halved). This is required to match the
data on the observed hadronic events rate, which is 70% lower, than calculated with QGSJET01 [16]. Such
model modification would influence on the other KASCADE result [17]: primary proton spectrum, recon-
structed from flux of single hadrons, reaching the ground (full squares in Fig. 1). Qualitatively it is clear, that
larger primary b flux would be needed to reproduce hadron spectrum, already not so perfectly conforming to
the direct experiments data. The use for this purpose of SIBYLL2.1, where fraction of diffractive dissocia-
tion amounts to 5f	�g at ����1 GeV and rapidly decreases to 2% at ����4 GeV [18], can possibly lead even to
larger increase of primary b flux. Reduction of diffractive part of inelastic cross-section has another conse-
quence for the muon deficit problem. It leads to the earlier shower development, hence, to higher probability
of `ihTj[
 decays and to increase of muon number in EAS. For high-energy thresholds competitive process of
muon decay can be neglected. Let us, however, note, that beside this factor, very important role in muon spec-
trum formation plays fraction of `ih/jJ
 mesons, carrying the most part of primary particle energy. So, for high
portion of diffractive events and high charged particle multiplicity, number of pions and kaons, falling into
region �%k8. l  � primary �
�KFm� , is smaller in QGSJET01, than in SIBYLL2.1. As a consequence, the latter model
gives larger muon flux. Basing on the same arguments from available information on QGSJETII [3] one may
assume, that its use would bring to the intermediate, between SIBYLL2.1 and QGSJET01, values of muon
flux. Finally, it can be concluded, that hardening of `ih/jJ
 spectra and decrease of diffraction dissociation
cross-section in QGSJET01 should result in better mutual agreement of primary proton spectra, reconstructed
from hadron and muon fluxes. Notice also, that deduction on the need in harder, than in QGSJET01, spectra of
secondary pions and kaons was also obtained in [16] on the basis of hadron multiplicities examination.

Another evidence of disbalance in description of hadronic and electromagnetic components also comes from
KASCADE experiment [19]. In the given paper, PCR energy spectra were reconstructed from electron-vs-
muon number distribution. Proton spectra, taken by us from figures in [19], are shown in Fig. 1 with pentagons
(error bars are omitted). It can be stated, that if to take into account QGSJET01 modifications, proposed above,
then all three spectra, derived from EAS observables (muons, hadrons, muons-vs-electrons) with this model,
will be in satisfactory agreement. The use of SIBYLL2.1 leads to larger inconsistencies: it is evident, that
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application of b flux from [19] (full pentagons in Fig. 1) will enhance muon deficit. Let us note methodical
aspect of this paper results: PCR energy spectra reconstruction procedure shows high sensitivity to the choice
of hadronic generator, that is why it is required to perform such analysis in relation to the data, obtained in
direct measurements.

Concluding remarks

Analysis of different kinds of EAS observations, performed in this paper, gave us evidences about possible
underestimation of primary nucleon flux in direct experiments and information on drawbacks of QGSJET01
model (too soft `ih/jJ
 spectra and high fraction of diffractive events). These conclusions hold rather qualita-
tive character. We can not definitely say, that “true” primary proton spectrum lies between SIBYLL2.1 and
QGSJET01 predictions, derived from the muon flux data. One cannot exclude, that significant part of primary
nucleon flux underestimation is due to underestimation of nuclei fluxes with �)�n� , which are subject to
large systematic uncertainties. Correct energy dependence of diffraction cross-section and specific shape of
secondary `ihTj[
 spectra in reggeon models also can hardly be given. It cannot be pointed out, which portion
of the model modification relates to simple parameters tuning, and which to conceptual changes. To settle
this questions, consistency of the interaction models must be checked together against data of direct and in-
direct (EAS) measurements, that suggests investigation of EC data sensitivity to variations of hadron–nucleus
interaction characteristics.
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