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The space-temporal distribution of the EAS Cherenkov light initiated by p, O and Fe nuclei in the energy region
10–200 TeV per nucleus is described by 11 parameters. The ALTAI Monte-Carlo code has been used to perform
simulations of the hadronic and electromagnetic interactions and detector’s responses for real conditions. We
applied analog complexing recognition method with optimization in relation to reference size for classification
of primary nuclei with “event by event” method. Some results of these researches are given. Particularly, for
some energies and distances the probability of true recognition of primary nuclei reaches value of 85%.

1. Introduction

At present, the elemental composition of primary cosmic rays above
�������

eV is studied by ground based ex-
periments, generally equipped with a system of atmospheric Cherenkov telescopes (ACTs). Some parameters
of the space-temporal distribution of Cherenkov light depend essentially on the atomic number of the primary
nucleus [1]. The possibility of effective rejection of protons with the use of the same parameters set and � � cri-
terion also was shown in [1]. Such approach can be applied in gamma-astronomical experiments (see e.g. [2]),
but for classification of three and more groups of nuclei it is not suitable.
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Figure 1. The installation geometry

Neural nets, evolution and genetic algorithms may
be used for classification of complex multiparamet-
ric objects. In our work we applied one of the
GMDH (Group Method of Data Handling) algo-
rithms, namely, the analog complexing method.

2. Simulation

In our calculations we used the data on photoelec-
trons time registration, obtained with Monte-Carlo
code ALTAI. The detailed description of the com-
puting program can be found in [3].

For the data simulation we have chosen the installa-
tion geometry in the form of the square lattice ( �
	�� )
with the distance between adjacent telescopes equal
to 50 m. The placement scheme of the telescopes is
presented in Fig. 1. The position of the shower axis
was simulated in the central quadrate of size 150 m
	 150 m.

The radius of each telescope mirror is taken equal to
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Table 1. Structure of energy bins for different primary nuclei

Primary � , TeV
nucleus 1 2 3 4 5 6

 10 � 15 15 � 20 20 � 30 30 � 50 50 � 70 70 � 100
O 15 � 20 20 � 30 30 � 50 50 � 70 70 � 100 100 � 150
Fe 20 � 30 30 � 50 50 � 70 70 � 100 100 � 150 150 � 200

1 m
�
, focus distance ��� ��� � m, sight angle of a telescope ��� ����� . The threshold of the detector was set

equal to � Tresh � ����� ph. e. and for the trigger condition the 16 telescopes must be fired simultaneously. Only
the vertical showers were simulated for the observation level of 2200 m a.s.l. (800 g/cm

�
). It is necessary to

note that the experimental setup, described above, does not represent a model of any real ACT array. However,
for example AIROBICC [4], PACT [5] and TUNKA [6] installations have the similar technical characteristics
and regular placement of ACTs.

We used three groups of primary nuclei: H, O and Fe. The sample sets were arranged by the following rules.
EAS were simulated in energy range

��� ��� ��� TeV per primary nucleus. This energy range was divided into 6
intervals, with numbers of simulated events for every particle type varying from 1500 to 100 for the lowest and
the highest energy bins correspondingly. The initial energy was picked with the equal probability inside the
energy bin. The bins borders for the different types of nuclei do not coincide (see Table 1). They were chosen
from condition, that the primary nuclei from the bins with the same numbers must produce approximately the
same average numbers of Cherenkov photons.

In the prospective experiment simulation the number of energy bin for particular nucleus was estimated from
average number of Cherenkov � -quants at the distance of � �!� m.
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Figure 2. The basic parameters of the temporal distribution

In the simulation of such experiment the additional
errors are brought in the calculations not only by the
evaluation of the incident particle energy, but also by
the definition of the shower axis position. We used a
simple method to define the coordinates 0%132,465 of the
shower axis in the installation plane. For this pur-
pose the coordinates of 9 telescopes with maximum
amplitudes were used to get 07132,4�5 in the following
way:

18�
9 ):,; �<1 : � :9 ):,; � � : and 4=�

9 ):,; �<4 : � :9 ):,; � � : 2

where 1?> , 4�> — coordinates of the @ -th telescope, and
�*> — full number of the photoelectrons in the @ -th
telescope.

The space-temporal distribution was reconstructed
with time step ACBD� �6� ��� ns and step by distance
from an axis AFE=����� m. In Fig. 2 the form of tem-
poral pulse and the basic parameters of temporal dis-
tribution are shown: ' d — the arrival time of the first
photon (in our calculations for all events is equal to 0); ' max — the position of the pulse maximum; ' � + , '*- + ,
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' )G+ — the arrival times of 10%, 50% and 90% of photons correspondingly; ' � + f, '�- + f, ' ),+ f — the arrival times
of 10%, 50% and 90% of photons on the pulse falling side correspondingly; ' �,./� — the FWHM time; ' r, ' f —
the pulse rise and fall times; ' width — the width of the pulse at 10% level.

3. Analog complexing algorithm

The principles of GMDH were developed by A. G. Ivakhnenko in 1967 [7]. The general idea — selection —
was borrowed from nature. There are many GMDH algorithms and one of them is analog complexing [8].
The aim of this algorithm is to choose from the basic sample the objects, lying at the closest distance in
the multidimension space to the investigated unknown object (the basic sample consists of the great number of
known objects). This method is very often used for the linked objects (e.g. consecutive in time) in a forecasting
tasks. However, when the size of pattern equals to unity the data can not be linked and ordered. Then the task
becomes the task of classification.
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Figure 3. Dependence of the average calculation time for one
event and of the classification efficacy for the primary oxygen
nuclei on the basic set size

The characteristic property of the analog complex-
ing is an absence of models, corresponding to every
class of objects. This property is the advantage be-
cause of absence of the time waste for the building
of models for objects (this is the most essential when
the basic set frequently changes). On the other hand,
this property is drawback because the full calculation
procedure must be executed for the every checked
object and the time of this calculations essentially
depends on the size of the basic set (reference size)
(see Fig. 3). We decided to reduce the influence of
this drawback and therefore we had to solve the op-
timization task in relation to the basic set size. In
the solving of this task not only the calculation time,
but also the classification efficacy (see below) were
taken into account. It is important, that the classi-
fication efficacy will be always higher for the 
 and
Fe nuclei initiated EAS, than for EAS, initiated by
oxygen nuclei.

Hence, the classification efficacy for the oxygen nuclei initiated EAS was chosen as the main factor. In result of
the optimization we determined the size of the basic set to be equal to 200 of the most characteristic events for
every type of primary particle (i.e. 600 in total). The most characteristic events correspond to the least value
of HI� 9 �/�> ; �KJ > 0 ' >3LNM' > 5 � , where ' > and M' > — the parameters of temporal distribution, described above (see
Fig. 2), J > — the weight of corresponding parameter. The values of the weights were taken from our results
in [1] and were confirmed with the tests of the neural network model. If the number of the events ( O a) for
some type of the primary particles (a) is less than 200 and less than for the other types of the primary particles,
we take ( O a) events for all particle types.

4. Results of the classification

For the basic set construction the temporal parameters (type and energy of a primary particle and coordinates
of a shower axis) for known events were used. We have performed the classification of the air showers gen-
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Figure 4. Probability of true classification: a) — distance from shower axis; b) — energy bin

erated by the different nuclei with the use of the analog complexing, as described above. Some results of the
classification are given in Fig. 4.

Probabilities of true classification for every primary nucleus type for EP� ����� are represented in Fig. 4 a); for
the fifth bin energies ( �RQF�S� � �T� � TeV, � O �S� � � ����� TeV, � Fe � ����� � � � � TeV) are given in Fig. 4 b).
Recognition at the edges ( EF� � �U��� m and EF�N� ��� �V����� m) is not provided with enough statistics and can
not be used for any conclusions in our simulation.

We have introduced classification efficacy W nucl for a primary type nucl as W nucl �
X

nucl� L X nucl
2 where

X
nucl —

the probability of true classification. So, the classification efficacy for the 5-th energy bin at 100 m from the
axis is W QDY � � � , W O Y ��� Z , W Fe Y � � � . This approach may be recommended for reliable classification for
distances EP���!�[� � ��� m. The average values of the efficacy for these distances for energies 10-200 TeV are
W Q � ��� �[��� , W O � � � ��� \ , W Fe � ��� �]� \�� \ . The classification efficacy slowly increases with the energy.
This behavior agrees with results of [9], obtained with neural networks on the basis of data on O_^%`a and O=b for
PeV-region.

We recommend to use the given “event by event” method of primary particle type determination in analysis of
space-temporal characteristics of Cherenkov light from EAS.

References
[1] O. V. Zhurenkov and A. V. Plyasheshnikov, Nuclear Physics B 75A, 296 (1999).
[2] V. R. Chitnis and P. N. Bhat, 26-th ICRC, Salt Lake City (1999), 5, 251.
[3] A. K. Konopelko and A. V. Plyasheshnikov, J. Phys. G: Nucl. Part. Phys. 26, 183 (2000).
[4] V. Fonseca, F. Arqueros, S. Bradbury et al., 24-th ICRC, Roma (1995), 1, 470.
[5] P. N. Bhat, B. S. Acharya, V. R. Chitnis et al., 26-th ICRC, Salt Lake City (1999), 5, 191.
[6] N. Budnev, D. Chernov, V. Galkin et al., 27-th ICRC, Hamburg (2001), 1, 581.
[7] A. G. Ivakhnenko, IEEE Transactions on Systems, Man, and Cybernetics (1971), SMC-1, 4, 364.
[8] Johann-Adolf Mueller and Frank Lemke, Self-Organising Data Mining. An Intelligent Approach To

Extract Knowledge From Data (Berlin, Dresden, 1999), 1. Edition.
[9] M. Roth, T. Antoni, W.D. Apel et al., 27-th ICRC, Hamburg (2001), 1, 88.


