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Atmospheric muon background in the ANTARES detector
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An evaluation of the background due to atmospheric muons in the ANTARES high energy cosmic neutrino
detector is presented. Two different codes for atmospheric shower simulation have been used. Results from
comparisons between these codes at sea level and detector level are presented. The first results on the capability
of ANTARES to reject this class of background are given.

1. Introduction

The detection of neutrinos from galactic/extragalactic sources has enormous potential for the understanding of
astrophysical processes and for an improved exploration of the far Universe. Neutrino astronomy is assuming
an overwhelming role in experimental physics research. The principle of detection in an underwater neutrino
telescope is based on the emission of Cherenkov light by muons emerging from neutrino interactions inside
and around the detector.
The ANTARES Collaboration [1] is building an undersea neutrino telescope off the French coast at a depth
of 2500 m. This will consist of 900 photomultipliers (PMTs) arranged in 12 strings. The arrival times of
Cherenkov photons on the PMTs will be registered with an accuracy of about 1 ns, which will result in an
angular resolution of a few tenths of a degree for the reconstruction of a high energy muon track. In principle,
selecting upward going muons would discriminate the muon tracks induced by neutrinos (both atmospheric and
astrophysical). In practice, however, hits due to Cherenkov light emitted by the downward going atmospheric
muons can be erroneously reconstructed as upgoing tracks.
A complete Monte Carlo simulation has been performed to study the response of the detector to atmospheric
muons and to estimate the possible contamination from misreconstructed tracks, starting from the production
of cosmic ray induced atmospheric showers, propagating the surviving muons through water to the detector,
simulating the Cherenkov light production and the hits on the PMTs and, finally, reconstructing muon tracks.
Atmospheric shower production and propagation through the atmosphere has been performed using two dif-
ferent codes and the results have been compared.

2. Atmospheric muon simulation.

The first step of the simulation is the production of the atmospheric showers induced by primary cosmic rays.
Two different programs have been used: HEMAS [2] and CORSIKA v.6014 [3].
The HEMAS code was developed for the simulation of the atmospheric muon flux in the MACRO [4] un-
derground detector, at the Laboratory Nazionali del Gran Sasso. It takes into account all the main physical
processes occurring in the atmosphere: it computes the first interaction point of primary cosmic rays on the ba-
sis of the input cross sections, propagates the electromagnetic and hadronic components of the showers, takes
into account the deflection of charged particles due to the geomagnetic field and the Earth’s curvature, allowing



102 S. Cecchini et al.

the calculations at large zenith angle. Each hadronic interaction in the atmosphere is handled with the hadronic
interaction code DPMJET v.II [5]. Some approximations in the particle transport along the atmosphere restrict
the application of the code to particle energies greater than 500 GeV.
The CORSIKA package is the most widely used tool to model extensive air showers (EAS). It performs a
detailed simulation of the evolution in the atmosphere of an EAS initiated by various cosmic ray particles up
to energies of some �����
	 eV. Single particles are tracked, accounting for energy losses, deflection due to mul-
tiple scattering and the Earth’s magnetic field, decays of unstable particles and electromagnetic and hadronic
interactions. The CORSIKA code provides the option to choose one of several hadronic interaction models. In
this work the QGSJET [6] model has been chosen to treat high energy hadronic interactions.
To represent the primary energy spectrum, a simplified version of the composition model described in [7]
has been adopted. All the elements heavier than iron have been neglected and the remaining ones have been
grouped in five mass groups: i) protons; ii) helium; iii) CNO; iv) Mg; v) Fe and heavy nuclei. For each nucleus,
the production has been subdivided into several energy intervals ranging from 1 to �������� TeV and 2 zenith
intervals: i) ��������������� ; ii) ����������������� . The total number of simulated showers is about � �����"! for
HEMAS and �#�$����! for CORSIKA. The corresponding detector livetime varies depending on the energy and
zenith intervals chosen going from some hours in the lower energy range to years in the higher.

Figure 1. Atmospheric muon flux arriving at the detector surface. Left: Muon energy spectrum. Right: muon angular
distribution. The continuous line corresponds to the HEMAS simulation, the dotted line to the CORSIKA simulation

Muon propagation through water is performed with the MUSIC (MUon Simulation Code) program [8]. MUSIC
is a 3D muon propagation code that takes into account energy losses due to bremsstrahlung, pair production,
inelastic scattering and ionization. It simulates also the angular and lateral deflections due to multiple scatter-
ing. In order to sample the showers on the detector surface, a cylindrical volume, surrounding the sensitive
volume of the detector, is defined around the PMT array, the can. Its dimensions are obtained adding ��% �&�('*),+.-
to the maximum distance of PMTs from the centre of gravity of the PMT array, where '/),+.-102���43 is the
water absorption length at the ANTARES site. The dimensions of the can used in this work are : radius 5��76��
m; height 5��98�� m.
For each shower a random point is generated on the surface of a cylinder that is larger than the can, in order to
take into account the lateral extension of the shower. Starting from this impact point, all the possible intersec-
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tion points of each muon with the can surface are evaluated. Each particle is then propagated along the path
between the sea level and the detector using the MUSIC code, requiring a minimum residual energy of 20 GeV
at the surface of the can.
Figure 1 shows the energy spectrum and the angular distribution, normalised to one day of live time, of the
muons reaching the total can surface. The continuous line, corresponding to the HEMAS simulation, and the
dotted line, relative to the CORSIKA simulation, are almost perfectly coincident. The total number of muons
is about ��%:���;����! with a difference smaller than 6"< between the two productions.
The third step of the simulation concerns the detector response and is performed using a Geant3 [9] based
Monte Carlo code. An optical background rate of 60 kHz per PMT has been added. This is the rate expected
from the presence of =>	@? in sea water and has been measured in situ [10].

3. Track reconstruction.

Finally, the hits registered on the PMTs have been processed in order to reconstruct the track direction. Several
strategies have been developed in ANTARES for track reconstruction. In this work two approaches have

Figure 2. Angular distribution of reconstructed muon tracks with the [11] strategy for: HEMAS sample (left); CORSIKA
sample (right). The continuous lines refer to the reconstructed angles, the dotted lines to the original direction of events.

been considered, both of them based on the calculation of a likelihood function, starting from the recorded
information of the arrival time and of the amplitude of hits on each PMT. Its maximum is used to obtain an
estimate of the muon track parameters.
The first strategy is described in detail in [11]. The results obtained when applied to the muon atmospheric
samples from the HEMAS and CORSIKA simulations are shown in figure 2. The continuous lines refer to
the reconstructed angles, the dotted lines to the original direction of events. About �A% ���$�@�"= downward going
muon tracks per day are reconstructed. Also some fake upward going events are reconstructed: �CB�� per day
for HEMAS and ���DB�� for CORSIKA. About 6���< of them correspond to muons arriving in a bundle.
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The other strategy used for reconstruction is described in [12]. It is optimized to reconstruct upward going
tracks and its efficiency in reconstructing downward going atmospheric muons is poor with respect to the first
strategy. On the other hand, it has a better capability to reject misreconstructed upward going muons (no
upward going tracks have been reconstructed, when applied both to the HEMAS and the CORSIKA samples).

4. Conclusions

A full simulation of the atmospheric downward-going muon flux has been performed using two atmospheric
shower simulation programs, HEMAS and CORSIKA. No significant differences have been found at the de-
tector level (see fig. 1) between the two samples.
An evaluation of the contamination due to the atmospheric downward-going muons erroneously reconstructed
as upward going is presented, using two reconstruction strategies available in the ANTARES Collaboration.
An excellent agreement between the two samples is obtained also after the reconstruction step. One of them
[11] shows a better efficiency in downward track reconstruction, while the other one [12] rejects all upward
going reconstructed tracks. The choice of the most appropriate strategy for reconstruction strongly depends on
the characteristics of the analysis to be performed (diffuse neutrinos, pointlike neutrino sources, atmospheric
muons etc.).
The results are very encouraging. Work is in progress to improve their statistical significance, increasing the
number of simulated events.

References
[1] E. Aslanides et al., astro-ph/9907432.

E. Falchini, These proceedings, (2005).
[2] C. Forti et al., Phys. Rev. D 42, 3668 (1990).

E. Scapparone, physics/9902043 (1999).
[3] D. Heck et al., Report FZKA 6019 (1998), Forschungszentrum Karlsruhe; http://www-

ik3.fzk.de/˜heck/corsika/physics description/corsika phys.html.
D. Heck and J. Knapp, Report FZKA 6097 (1998), Forschungszentrum Karlsruhe.

[4] M. Ambrosio et al., NIM A486, 663 (2002); Phys. Rev. D60, 032001 (1999).
[5] J. Ranft, Phys. Rev. D51,64 (1995); hep-ph/0002137 (2000).
[6] N. N. Kalmykov et al., Nucl. Phys. B (Proc. Suppl.) 52B, 17 (1997).
[7] J. Horandel, Astrop. Phys. 19, 193 (2003).
[8] P. Antonioli et al., Astrop. Phys. 7, 357 (1997); hep-ph/9705408.
[9] htpp://wwwinfo.cern.ch/asd/geant/index.html

[10] P. Amram et al., Astrop. Phys. 13, 127 (2000).
[11] A. Heijboer, ”Track reconstruction and point source searches with ANTARES”, Ph.D. Thesis, NIKHEF,

Amsterdam, 2004, available at http://antares.in2p3.fr/Publications/index.html#thesis.
[12] E. Carmona, ”Study of the event reconstruction and expected performances for the point like sources

of the future ANTARES neutrino telescope”, Ph.D. Thesis, Universitat de Valencia, 2003, available at
http://antares.in2p3.fr/Publications/index.html#thesis.;
J. Zornoza, ”Sensitivity to diffuse fluxes and energy spectrum reconstruction in the
ANTARES neutrino telescope”, Ph.D. Thesis, Universitat de Valencia, 2005, available at
http://antares.in2p3.fr/Publications/index.html#thesis.


