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The observed energy spectrum of SEP and its change with time are determined by the energy spectrum in 
the source, by the time of SEP ejection into the solar wind and by the parameters of SEP propagation in the 
interplanetary space in dependence of particle energy. Here we will try to solve the inverse problem: on the 
basis of cosmic ray (CR) observations by the ground base detectors and detectors in the space to determine 
the energy spectrum of SEP in the source, the time of SEP ejection into the solar wind and the parameters of 
SEP propagation in the interplanetary space in dependence of particle energy. In general this inverse 
problem is very complicated, and we suppose to solve it approximately step by step. In this paper we present 
the solution of the inverse problem in the frame of the simple model of isotropic diffusion (the first step). 
We suppose that after start of SEP event, the energy spectrum of SEP at different moments of time is 
determined with a good accuracy in a broad interval of energies by the method of coupling functions. We 
show that after this can be determined the time of ejection, diffusion coefficient in the interplanetary space 
and energy spectrum in source of SEP. This information, obtained on line on the basis of real-time scale 
data, may be useful also for radiation hazard forecasting.  

 
1. Introduction 
 
It is well known that Solar Energetic Particle (SEP) events in the beginning stage are very anisotropic, 
especially during great events as in February 1956, July 1959, August 1972, September-October 1989, July 
2000, January 2005, and many others. To determine on the basis of experimental data the properties of the 
SEP source and parameters of propagation, i.e. to solve the inverse problem, is very difficult, and it needs 
data from many CR stations. By the procedure developed in [1], for each CR station can be automatically 
determined the moment of SEP event start and then for different moments of time by the method of coupling 
functions to determine the energy spectrum of SEP out of the atmosphere over the individual CR station. As 
result we may obtain the planetary distribution of SEP intensity over the atmosphere and then by taking into 
account the influence of geomagnetic field on particles trajectories – the SEP angle distribution out of the 
Earth’s magnetosphere. By this way by using of the planetary net of CR stations with on-line registration in 
real time scale can be organized the continue on-line monitoring of great ground observed SEP events [2, 3].  
In this paper we practically base on the two well established facts: 1) the time of particle acceleration on the 
Sun and injection into solar wind is very short in comparison with time of propagation, so it can be 
considered as delta-function from time; 2) the very anisotropic distribution of SEP with developing of the 
event in time after few scattering of energetic particles became near isotropic (well known examples of 
February 1956, September 1989 and many others). Our paper is the first step for solution of inverse problem 
by using only one on-line detector on the ground for high energy particles and one on-line detector on 
satellite for small energies. Therefore we will base here on the simplest model of generation (delta function 
in time and in space) and on the simplest model of propagation (isotropic diffusion). The second step will be  
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based on anisotropic diffusion, and the third – on kinetic description of SEP propagation in the interplanetary 
space.  
 
 
2. The inverse problem for the case when diffusion coefficient K = K(R) 
 
In this case the solution of isotropic diffusion from the pointing instantaneous source described by function 
( ) ( ) ( ) ( )trRNtrRQ o δδ=,,  at the distance r from the Sun and at the time t after ejection will be 
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where ( )RNo  is the rigidity spectrum of total number of SEP at the source, and ( )RK is the diffusion 
coefficient in the interplanetary space during SEP event. Let us suppose that at distance from the Sun 

11 == rr AU and at several moments of time ,...)3,2,1( =iti  after SEP ejection into solar wind the observed 
rigidity spectrum out of the Earth’s atmosphere ( ) ( )RNtrRN ii ≡,, 1  are determined in high energy range on 
the basis of ground CR measurements by neutron monitors and muon telescopes (by using method of 
coupling functions, spectrographic and global spectrographic methods, see review in [4]) as well as 
determined directly in low energy range on the basis of satellite CR measurements. Let us suppose also that 
the UT time of ejection eT  as well as the diffusion coefficient ( )RK  and the SEP rigidity spectrum in source 

( )RNo  are unknown. To solve the inverse problem, i.e. to determine these three unknown parameters, we 
need information on SEP rigidity spectrum ( )RNi  at least at three different moments of time 1T , 2T  and 3T

 
(in UT). In this case for moments of time after SEP ejection into solar wind we obtain: 

xTTTTtxTTTTtxTTt eee +−=−=+−=−==−= 1333122211 ,, ,                                    (2) 
where 2T - 1T  and 3T - 1T  are known values and eTTx −= 1  is unknown value to be determined. From three 
equations for 1t , 2t  and 3t  

of the type of Eq. (1), by taking into account Eq. (2) and dividing one equation 
on other for excluding unknown parameter ( )RNo , we obtain two equations for determining unknown two 
parameters x and ( )RK :  
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To exclude unknown parameter ( )RK  let us divide Eq. (3) by Eq. (4); in this case we obtain equation for 
determining unknown eTTx −= 1 : 

( ) ( )[ ] ( )Ψ−−−Ψ−= 11312 TTTTx ,                                                          (5) 
where 

( ) ( )[ ] ( ) ( )( ) ( )[ ] ( ) ( )( ) ( )[ ]{ }RNxTTxRNRNxTTxRNTTTT 3
23

1312
23

1211213 lnln +−+−×−−=Ψ .    (6) 
Eq. (5) can be solved by the iteration method: as a first approximation, we can use sec50011 ≈−= eTTx  
which is the minimum time propagation of relativistic particles from the Sun to the Earth’s orbit. Then, by 
Eq. (6) we determine ( )1xΨ  and by Eq. (5) we determine the second approximation 2x . To put 2x  in Eq. 
(5) we compute ( )2xΨ , and then by Eq. (6) we determine the third approximation 3x , and so on. After  
solving Eq. (5) and determining the time of ejection, we can compute very easily diffusion coefficient from 
Eq. (3) or Eq. (4): 
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After determining the time of ejection and diffusion coefficient, it is easy to determine the source SEP 
spectrum:  
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3. The inverse problem for the case when diffusion coefficient K = K(R,r) 
 
Let us suppose, according to [5], that the diffusion coefficient  

( ) ( ) ( )β11, rrRKrRK ×= .                                                                 (9) 
In this case 
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where t is the time after SEP ejection into solar wind. So now we have four unknown parameters: time of 
SEP ejection into solar wind eT , β , ( )RK1 , and ( )RNo . Let us assume that according to ground and 
satellite measurements at the distance 11 == rr  AU from the Sun we know ( ) ( ) ( ) ( )RNRNRNRN 4321 ,,,  at 
UT times 4321 ,,, TTTT . In this case 

xTTTTtxTTTTtxTTTTtxTTt eeee +−=−=+−=−=+−=−==−= 14441333122211 ,,, ,       (11) 
For each ( )ii TrrRN ,, 1=  we obtain from Eq. (10) and Eq. (11) 
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where i = 1, 2, 3, and 4. To determine x let us step by step exclude unknown parameters ( )RNo , ( )RK1 , and 
then β . In the first we exclude ( )RNo  by forming from four Eq. (12) three equations for ratios 
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where i = 2, 3, and 4. To exclude ( )RK1  let us take logarithm from both parts of Eq. (13) and then divide 
one equation on another; as result we obtain following two equations:  
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After excluding from Eq. 14 and Eq. 15 unknown parameter β , we obtain equation for determining x:  

( ) ( ) ( ) 04321
2
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2 =−+−−++− bbbbdabbaabbaxdaaaax ,                              (16) 

where 
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As it can be seen from Eq. (17), coefficients 4242 ,,, bbaa very weekly (as logarithm) depend from x. 
Therefore Eq. (17) we solve by iteration method, as above we solved Eq. (5): as a first approximation, we 
use sec50011 ≈−= eTTx  (which is the minimum time propagation of relativistic particles from the Sun to 
the Earth’s orbit). Then, by Eq. (17) we determine ( ) ( ) ( ) ( )14121412 ,,, xbxbxaxa  and by Eq. (16) we 
determine the second approximation 2x , and so on. After determining x, i.e. according Eq. 11 determining 

4321 ,,, tttt , the final solutions for β , ( )RK1 , and ( )RNo  can be found. Unknown parameter β  in Eq. (9) 
we determine from Eq. (14) and Eq. (15): 
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Then we determine unknown parameter ( )RK1  in Eq. (9) from Eq. (13): 
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After determining parameters β  and ( )RK1  we can determine the last parameter ( )RNo  from Eq. (12): 
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where index k = 1, 2 or 3. 
 
4. Discussion  
 
Above we show that for some simple model of SEP propagation is possible to solve inverse problem and on 
the basis of ground and satellite measurements at the beginning of the event. It is important that in each case 
the obtained results may be checked by data in the next moments of time by comparison of predicted SEP 
time variation in different energy ranges with observed data. Let us note that described solutions of inverse 
problem may be partly useful for solving more complicated inverse problems in case of SEP propagation 
described by anisotropic diffusion and by kinetic equation [6, 7]. Obtained results we used in the method of 
great radiation hazard forecasting based on on-line CR one-minute ground and satellite data [8]. 
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