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Kinetic coefficients and parallel (to the mean field) mean free paths of  the fast particles in 
large-scale anisotropic random magnetic field are obtained  with use nonlinear collision  
integral,  i.e., by taking into account  the  strong random scattering. The diffusion of the solar 
and Galactic cosmic rays in the two-dimensional turbulence is investigated.  It is shown  that  
the two-dimensional turbulence  can make a principal  contribution to the parallel mean free 
paths  of cosmic rays in the heliosphere and  interstellar medium. 
 
INTRODUCTION 
It follows from the analysis of experimental data performed by Matthaeus et al. (1990) and 
Bieber et al. (1996)     that the distribution   of   interplanetary magnetic  field   fluctuations is 
anisotropic. In the weakly disturbed inner heliosphere, the preferential direction of the 
magnetic field  fluctuations  is  perpendicular to the regular  magnetic  field.   The wave 
vectors of   the fluctuations are also mainly perpendicular to the regular magnetic field,  
which gives rise to two-dimensional fluctuations. In the interplanetary medium, the energy of 
the two-dimensional fluctuations can reach  85%  of the energy of the random magnetic field.  
   The parallel transport mean free paths of high-energy particles in the interplanetary 
magnetic field, including the anisotropy of random fluctuations, were calculated  numerically 
by Bieber et al. (1994), Teufel and Schlickeiser (2002, 2003), Teufel et al. (2003), Shalchi 
and Schlickeiser (2004) and analytically by Droge (2003). These authors used a quasi-linear 
random magnetic field  approximation and  introduced the cyclotron resonance broadening 
using a decorrelation in the correlation tensor of the random magnetic field. They showed 
that particles are scattered weakly by two-dimensional fluctuations. The calculated transport 
mean free paths of solar cosmic-ray protons exceed their observed values by several tens or 
hundreds of times. In this paper, we show that for nonlinear broadening of two-dimensional 
perturbations, the random scattering frequency increases significantly, and the transport mean 
free path decreases.  
 
TRANSFORMING THE COLLISION INTEGRAL  
We will consider the kinetic coe�cients and particle transport mean free paths over a wide 
energy range from 1 MeV to several GeV in the inner heliosphere and at energies above 10 
GeV in the outer heliosphere, including those at the energies at which R1 ∼L||, L⊥, where R1 is 
the gyroradius in the random magnetic field, and L⊥ and L|| are the perpendicular and parallel  
(relative to the regular magnetic field) correlation lengths, respectively. We use the following 
kinetic equation for the average particle distribution function  F( r , p, t)

r r ) with the nonlinear 
collision integral  (Mel’nikov 1996, 2000):  
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particle charge, c is the  speed of light, u is the velocity of the magnetic field, and G1(x,x1) is 
the one-particle Green function that is the solution of the linear kinetic equation.  
We choose the correlation tensor of the random anisotropic magnetic field H1 for a power-
law spectrum in the form ( Matthaeus et al. 1990; Toptygin 1985; Chuvilgin and Ptuskin 
1993)  
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( n )Γ − is the Gamma function.  Passing to the drift approximation, we obtain : 
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where  the coordinate  z   is along the vector координата 

0h
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,  F
ϕ

Φ = , ϑ  is the angle 
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.  The  
nonlinear average  
collision integral is   
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where the kinetic coefficient is  
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m is the particle mass, kϕ  is the azimuthal angle of the vector k

r , Ω is the gyrofrequency in 
the regular magnetic field, ω is the gyrofrequency in the random  magnetic field, r( )∆ τ

r
 is 

the  
change in the radius vector of the particle in the regular magnetic field,  0 ( )ωΓ  is a factor 
that is related to the additional Green function of the particle in the nonlinear collision 
integral and that yields the damping of the resonant wave–particle interaction.  
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KINETIC COEFFICIENTS AND TRANSPORT MEAN FREE PATHS.  
COMPARISON WITH EXPERIMENTAL DATA  
Let us first consider the limiting case of the absence of resonance broadening, ω =0 and 

0 ( )ωΓ =1. In the kinetic coe�cient (6), we expand the corresponding functions in terms of 
Bessel functions. We transform the series of Bessel functions and add the series using the 
addition formula for the Bessel functions  
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yield a kinetic coe�cient in the form  
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Let us now turn to the di�usion approximation using the formulae 
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In the case of strong  random scattering at 2 2 2 2v q v q⊥ ⊥>>� �  following  factor makes a major 
contribution to the resonance damping:  
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The integrations in (6) yield a kinetic coe�cient in the form  
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For 2 2 2 2v q v q⊥ ⊥<<� � |, the following integrand factor makes a major contribution to the 
damping function : 
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Substituting it into (6), we obtain after transformations and integrations  
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where 
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    It is convenient to combine (8), (10), (12) into a general interpolation formula for b(µ) that 
is valid at any pitch angle, we obtain 
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Using the interpolation formula for the integral in (16), we obtain the final formula for the 
parallel transport mean free path, including strong random scattering 
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In this case, Λ|| ∝p2−ν. The contribution of strong random scattering is significant at any 
strengths of the random magnetic field. The momentum dependence of Λ|| in this case is 
similar to that numerically calculated by Teufel , Schlickeiser (2002, 2003) and Shalchi, 
Schlickeiser (2004).  
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For protons with energy of 200 MeV scattered in a weakly disturbed interplanetary medium, 
substituting R =4 ⋅108 m, L|| = L⊥ =2 ⋅1010 m, ν = 1.67, and Ω2/ω2 

=8  yields Λ|| ≈0.25 AU. This 
value of Λ|| is close to the mean experimental values from Palmer (1982). The values of Λ|| 
are close to those from Shalchi, Schlickeiser (2004), in which, however, slab turbulence 
produces the main scattering. Thus, the weak momentum dependence of Λ|| for solar cosmic 
rays over a wide energy range from several MeV to several GeV can be explained in terms of 
strong (moderate) random scattering by two-dimensional turbulence in the solar wind.  

For Galactic cosmic rays with energies above 4 GeV scattered in the interstellar medium, 
when the random magnetic field has a Kolmogorov spectrum with ν≈1.7,  we obtain the 
following  order-of-magnitude estimate from formula (12):  
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Assuming that ω ≈1.8Ω, L|| ≈100 pc, and H1 ≈0.3 nT, we obtain for relativistic protons 
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where E is the particle kinetic energy in GeV. Calculated value of Λ|| is close to the 
experimental mean free path, Ptuskin 2001,1993. 
In the case of the very strong turbulence in corotating interaction region of the outer  
heliosphere 
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Calculations using (14) for ω ≈0.7Ω yield Λ|| ≈1 AU for Galactic cosmic rays with an energy 
of 10 GeV. The numerical value and  rigidity dependence of Λ|| �R matchthe experimental 
data for Galactic cosmic rays in the outer heliosphere obtained by Gerasimov et al. (1999).  
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