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                                                           ABSTRACT 
The theoretical momentum dependence of a mean free path, obtained by solving the nonlinear 
kinetic equation taking into account nonlinear damping of a resonant interaction of particles 
with   isotropic  random  magnetic  field,  and  the  experimental  data  on  the  momentum 
dependence of a  mean free paths of cosmic rays in the interplanetary magnetic field (IMF) in 
a wide energy interval are analyzed and compared. The conditions of applicability of strong 
large-scale scattering are considered. As a result, basic correlation scales of a random 
interplanetary magnetic field, which are consistent with its multifractal topology, are found. 
 1.INTRODUCTION 
   The IMF spatial structure is directly experimentally determine by using data from one or 
several satellites and parameters of the magnetosphere [Veselovsky, 1996; Zelenyi and 
Milovanov, 1993, 1997; Ivanov, 1996; Ivanov and Kharshiladze, 1998; Burlaga and Klein, 
1986; Burlaga, 1991a; Burlaga et al., 2003]. However, this does not allow one to accurately 
determine the spatial structure of a random magnetic field. Therefore, theoretically and 
experimentally consistent models of RIMF are used. Zelenyi and Milovanov [1997], Burlaga 
and Klein [1986], and Burlaga [1991a, 1991b] determined the characteristics of the turbulent 
IMF component, whose correlation properties are consistent with the multifractal field 
topology, and the fluctuation spectrum by using experimental data and statistical properties of 
a random magnetic field. These researchers obtained the IMF representation as a flow of 
fractal clusters on magnetic field tubes frozen in the solar wind. 
     Cosmic-ray particles propagating in IMF experience averaged interaction with random 
magnetic structures and with the regular magnetic field. Therefore, the energy and spatial 
dependences of kinetic coefficients are determined by the averaged structure of the random 
and regular magnetic fields. The kinetic coefficients taking into account specific features of 
the structure of the turbulent IMF component can be theoretically obtained by using the 
kinetic equation with a nonlinear collision integral. This allows us to take into account strong 
random scattering, which arises at a Larmor radius in a random magnetic field R1 of the order 
of or less than correlation length Lc [ Toptygin, 1985; Melnikov, 1996]. 
2. TRANSPORT PATH WITH REGARD TO STRONG RANDOM SCATTERING 
  Let us assume that random scattering is basically resonant and large-scale and broadening of 
resonant interaction takes place on small-scale irregularities of the magnetic field.  The 
nonlinear effects related to strong random scattering can be described by using the nonlinear 
collision integral quadratic with respect to the Green function [Melnikov, 2000]. In this 
integral the broadening of resonant scattering is described by small-scale isotropic random 
scattering. The averaged nonlinear  kinetic coefficient b (µ ) for  R0 << Lc, where R0  is the 
Larmor radius in a regular magnetic field, nonlinear with respect to the Green function, is 
written as [Mel’nikov, 2000]:        
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where v
r is the particle velocity; 0 0 0H H h= ⋅

rr
 is the strength of the regular magnetic field. ϑ is 

the angle between the pr  and 0h
r

, v | |  = v cosϑ, v⊥=vsinϑ, and ϕ is the azimuthal angle of the 

pr  in the plane perpendicular to 0h
r

, µ=cos ϑ,  R⊥=v⊥ /Ω, Ω = eH0/mc,  ω1= e >< 2
1H /mc,  

m is the relativistic mass of a particle, c is the velocity of light, e is the particle charge, and ϕ 
is the angle between k

r
⊥and vr ⊥ . Here B(k) is 
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Γ(n)  is the gamma function, and ν is the spectral index of a random field, ν∼1.5-2  of the 
scales 107- 1011m [Toptygin, 1985]. For protons with energy E >1 MeV, broadening produced 
by damping of the correlation of a random magnetic field is less than damping related to 
nonlinear random broadening. Therefore, we will subsequently neglect thermal and dispersion 
broadening assuming that WD(k| |) = WT(k| |)=1. After transformations and integrations, 
passing to a diffusion approximation, we obtain [Melnikov, 2000]: 
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where R1= cp /e >< 2
1H . From this formula it follows that, at weak random scattering the 

transport path is 
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For a sufficiently low particle energy in the case of strong random scattering 
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The energy interval where random resonant scattering is weak becomes narrower if damping 
is taken into account. To prove this, we introduce b1=H1/H0 ratio. This ratio is close to 1/4-
1/3 in the heliosphere [ Toptygin, 1985]. Assume that the maximum energy of particles, for 
which random resonant scattering is weak, is E1; i.e., the conditions R1(E=E1) > Lс  and 
R0(E=E1) ≤ Lс are satisfied for these particles. If the particle energy decreases to E2, random 
scattering becomes strong, R1(E=E2) = Lс ≥ R0(E=E1). From this it follows that 
                       R1(E=E2) ≥ R0(E=E1)   и  1

1 2p p−⋅ ≤ 1
1b−  .                                               (5) 

    We assume that transverse diffusion is related to the perpendicular components of a 
random large-scale magnetic field, [Toptygin, 1985; Vo&&lk and Alpers, 1975]. The perpen-
dicular transport paths with regard to strong random scattering,  [Melnikov, 2000], are 

Λ⊥= 
2
1 c

2
0

( / 2) H L
2 (( 1) / 2)H
πΓ ν < >
Γ ν −

, for 1 cR L>> ; Λ⊥=
2 1/ 2 1/ 2
1 1 c

2
0

8 H R L
5H

π < >
, for 1 cR L≈ ;   

Λ⊥= 
2
1 1

2
0

4 (( 1) / 2) H R
3 ( / 2)(1 / 2)H
Γ
Γ
ν − < >

π ν + ν
, for 1 cR L<< .                                                                  (6) 

From this formulas it follows that, for ν= 2 and  b1= 1/3, the transverse path is Λ⊥≈ 0,05 Lc at 

R1 >> Lc, Λ⊥≈0.56 1 CR L at R1 ∼ Lc, and Λ⊥≈ 0.04 R1 at R1<< Lc. Thus, the Λ⊥  resonantly 

increases at R1 ∼ Lc. The same increase in random changes in µ and an increase in transverse 
diffusion take place in a nonuniform magnetic field [Chen and Palmadesso, 1986; Buchner 
and Zelenyi, 1989]. 
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3.MAXIMUM SCALE OF A RANDOM INTERPLANETARY MAGNETIC FIELD 
    Experimental data on the momentum dependence of Λ||  of cosmic rays with energies of  
5-300 GeV indicate that Λ|| ∝p [de Koning and Mathews, 1996; Miroshnichenko et al., 1998; 
Gerasimova et al., 1999]. We now assume that the particle distribution function is almost 
isotropic and scattered particles have a pitch angle of the order of π/4. From formula (4) it 
follows that the longitudinal path has the form Λ|| =0.9 R1 at a strong broadening of resonant 
scattering, i.e., at R1 ≤ Lc and R0 < Lc., Using (4), we can theoretically describe the 
momentum dependence of the experimental transport path assuming that particles with 
energies of 5-100 GeV are strongly scattered by random irregularities with scale L4 =1012 m, 
whose extents are about the Larmor radius of particles with maximum energies (100 GeV). 
The scale L4 is about the distance covered by the solar wind during one solar rotation, 
[Burlaga et al., 2003]. 
4. RANDOM MAGNETIC FIELD SCALE CORRESPONDING TO THE ENERGY  
    AT A BEND OF THE TRANSPORT PATH MOMENTUM DEPENDENCE 
The experimental data averaged for many observations indicate that Λ|| ∝p0.3  of cosmic rays 
with energies of 0.001-3 GeV and  Λ|| ∝p  at energies of 2-5 GeV, [Palmer, 1982; Bieber et al., 
1994; de Koning and Mathews, 1996; Miroshnichenko et al., 1998,Gerasimova et al., 1999]. 
Thus, the energy dependence has a bend . The change of the momentum dependence 
at energies of 2-4 GeV is related to the third scale, L3. The Larmor radius in a random field, 
which corresponds to the bend energy, is equal to L3 =1010 m. 
    The cross sections of the sets (ropes of the solar wind magnetic filaments) caused by the 
supergranulation structure of the solar photosphere are about L3 [Zelenyi and Milovanov, 
1993, Zelenyi and Milovanov, 1997]. The supergranulation structure can reflect larger scale 
granulation structure of deep subphotospheric flows. The scale L3=1010 m  is close to the 
cross size of plasma flows near the Earth, which are formed from disappearing solar filaments 
and from composite flows caused by other solar sources: filamentary streamer, flare filament-
tary, and coronal-hole filamentary [Ivanov, 1998; Ivanov, Kharshiladze, 1998].The change of 
the energy dependence of longitudinal and transverse transport paths are not observed in 
numerical simulations of particle diffusion in a magnetic field for a power-law spectrum of a 
random field, which has a uniform isotropic structure and a single correlation length 
[Giacalone, Jokipii, 1999]. Thus, the bend in the momentum dependence of the longitudinal 
transport path can be related to the filamentary structure of a random interplanetary magnetic 
field whose correlation properties are consistent with the idea of the multifractal topology of a 
field [Burlaga, 1991a, 1991b; Zelenyi and Milovanov, 1993, 1997]. 
5. MINIMUM SCALES of A RANDOM MAGNETIC FIELD 
   Experimental data indicate that the longitudinal transport path of particles with energies 
0.001-2 GeV, i.e, in a wide energy range, slightly depends on a momentum, Λ|| ∝pn , n=0.3. 
The numerical values of the transport path vary from 0.08 to 0.3 AU. These values of the 
longitudinal path were determined as a result of a consensus during averaging of experimental 
data [Palmer, 1982, Bieber et al., 1994]. Such a behavior of the longitudinal transport path can 
be explained by a weak resonant scattering of particles with random field. In this case n=2-ν, 
ν=1.7-2 for random field scales smaller than or close to L3 [Toptygin, 1985;Droge, 2003]. In 
the case of weak random scattering, R1 >> L4. Therefore, L2 << L3 for particles with energies 
E < 2 GeV.  For particles with a boundary energy of 2 GeV (when R1 = 1010 m, R0 = 2⋅109, 
and b1 = 1/5), we choose a correlation scale of Lc ≈R0 = 2⋅109 m.  If the energy of these 
particles decreases to 200 MeV, their Larmor radius in a random field is R1 ≈ Lc, and particles 
will experience strong random scattering. That is, the path Λ||  of particles with an energy of 
200 MeV should sharply decrease. This explains a decrease in  Λ||  for particles with an energy 
of 200 MeV observed experimentally, which has not yet been convincingly explained 
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[Palmer, 1982]. Thus, a scale of L2 = 109 m will be about the Larmor radius of a particle with 
an energy of 200 MeV in a random magnetic field. We should note that a scale of L2 is close 
to the cross size of the fine structure of near-Earth plasma flows, which are formed from 
disappearing solar filaments and from flows caused by other solar sources: filamentary 
streamer, flare filamentary, and coronal-hole filamentary [Ivanov, 1996, 1998; Ivanov and 
Kharshiladze, 1998].  The following energy interval of a weak dependence of Λ||  on the 
momentum, 1-100 MeV, requires the introduction of a smaller correlation scale L1. The scale 
L1is about the radius R0 of particles with E ≈100 MeV, i.e., L1≈3⋅108 m. On this interval, E 
and R0 change by factors of 102 and 10,  b1 = 1/10 . A correlation scale of L1 ≈3⋅108 m is close 
to the minimum extent of magnetic clouds that are formed from the granulation structure of 
the solar photosphere at the expansion of the solar wind [Zelenyi and Milovanov, 1993]. 
6. CONCLUSIONS 
This paper compare the theoretical momentum dependence of the transport paths obtained 
from the nonlinear theory. As a result, we established the system of scales of a random 
interplanetary magnetic field taking into account a resonant increase in the transverse 
transport path. The structure of a random magnetic field is basically consistent with the 
concept of a multifractal topology of a random magnetic field in the heliosphere. 
   This work was supported by the Program Universities of Russia (grant UR.02.01.289). 
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