Do Be-10 and C-14 give us the information about cosmic rays in the past?

I. Nikitina, Yu. Stozhkova, V. Okhlopkovb, N. Svirzhevskya

(a) P.N. Lebedev Physical Institute, Russian Academy of Sciences, 119991, Leninsky Prospect 53, Moscow, Russia
(b) D.V. Skobeltsyn Institute of Nuclear Physics, Moscow State University, Vorobjevy Gory, Moscow, 119992, Russia

Presenter: I. Nikitin (baai_@mail.ru), rus-nikitin-I-abs1-sh34-oral

In the atmosphere cosmic rays produce Be-10, C-14 and other radionuclides. It is commonly supposed that the concentrations of these radionuclides (Be-10 in polar ice and C-14 in tree rings) are good proxies of cosmic ray fluxes impinging on the top of the atmosphere. But before the precipitation on the Earth’s surface these elements spend several years in the atmosphere. The stirring of their concentrations over globe takes place. The analysis of 3 sets of data (2 sets of Be-10 and 1 set of C-14) shows that the correlations between them are low. Also, the relationship between cosmic ray fluxes and Be-10 concentrations in the period of 1937 – 1985 when there are direct cosmic ray flux measurements is weak. It means that the atmospheric processes, which play an essential role in the radionuclide precipitation, can violate the relationship between cosmic ray fluxes and radionuclide concentrations. We suppose that much more reliable is to use the strong relationship of sunspot number with cosmic rays to get cosmic ray fluxes in the past. Cosmic ray fluxes in the past calculated from solar activity levels are given.

1. Introduction

The direct measurements of CR were started in 1937. They have been carried out continuously till now. It is interesting to know some proxies of CR fluxes in the past. The CR flux in upper layers of atmosphere produces a wide spectrum of secondary particles, including long-living Be-10 and C-14. The half-life of

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{10-year step C-14 data over the period since 859 till 1900; 1-year step Be-10 data from Greenland for the period since 1423 till 1985; 1-year step 22-year smoothed Be-10 data from Antarctica over the period since 859 till 1973.}
\end{figure}
Be-10 is about 1.5×10^6, and the half-life of C-14 is 5730 years. It is believed that long-living particles can give a good approximation of CR flux. After a several years spent in atmosphere these nuclides precipitates on the Earth’s surface. The Be-10 data are obtained from polar ice cores and C-14 data are obtained from tree rings. In our analysis the Antarctic (Russian station Vostok) Be-10 [1], Greenland Be-10 [2] and C-14 [3] data sets are used. These sets are shown in Figure 1.

Before precipitation on the Earth’s surface the stirring of their concentrations over globe takes place. It means that atmospheric conditions in Be-10 and C-14 extraction points have an influence on its concentrations. If the value of this influence is strong, then it is difficult to make correct evaluation of CR flux in the past. Below some arguments are given to prove such conclusion.

2. Discussion

There is a large difference in the mean values of Be-10 concentrations obtained from Greenland and Antarctic ice cores. The $<\text{Be-10}>$ concentrations in Greenland and Antarctica calculated over periods shown in the Figure 1 are 1.05 and 3.86 (in the units of 10^4 atoms/g) accordingly. The correlation between Be-10 data from Greenland and C-14 data were analyzed. After exclusion of the trend in C-14 dataset the maximum value of a correlation coefficient was 0.49 with a time shift of 6 years (see Figure 2). Such shift can be explained by the mechanisms of C-14 precipitation and accumulation. But the maximum value of the correlation coefficient is low.

![Figure 2. Correlation coefficient between Antarctic Be-10 data and C-14 data vs. time shift (C-14 – Be-10).](image)

The analysis of Be-10 fractional ratio was made. The values of Be-10 concentrations with different time shifts relatively to the 11-year cycles of solar activity maximums and minimums were taken. The fractional ratios were defined as

$$ A = \frac{C_{Rz_{\text{min}}}}{C_{Rz_{\text{max}}}} - \frac{C_{Rz_{\text{max}}}}{C_{Rz_{\text{max}}}} \times 100\% , $$

where $C_{Rz_{\text{min}}}$ and $C_{Rz_{\text{max}}}$ are the values of Be-10 concentrations during minimum and maximum sunspot number periods accordingly. Then the mean fractional ratio values $<A>$ vs. different time shifts were calculated. The dependence of $<A>$ from this time shift is shown in the Figure 3.
Do BE-10 and C-14 give us the ...
Figure 4. Be-10 concentration (thick curve) and temperature fluctuation (thin curve) vs. time – top; correlation between Be-10 concentration and temperature – bottom.

3. Conclusion

The amplitude of variation in Be-10 data is much lower than that of CR in the 11-year solar cycle. The atmospheric effects play a main role in the variations of Be-10 concentration.

4. Acknowledgements

This work was partly supported by Russian Foundation for Basic Research (grants No 04-02-17380 and 05-02-31022k).

References