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Abstract: An improved nonlinear theory for the perpendicular transport of charged particles is presented.
This approach is based on an improved nonlinear treatment of field line random walk in combination
with a generalized compound diffusion model. The generalized compound diffusion model is much
more systematic and reliable, in comparison to previous theories. Furthermore, the new theory shows
remarkably good agreement with test-particle simulations and heliosphericobservations.

Introduction

The scattering of cosmic rays in a turbulent elec-
tromagnetic field is a problem that is widely recog-
nized to be of importance in space plasma physics
and astrophysics. For a variety of reasons, perpen-
dicular transport, which is generally the weaker of
the two effects, has also been the more difficult one
to pin down at a theoretical level.

An early treatment of particle transport has relied
on a quasilinear description of cosmic ray prop-
agation (Jokipii 1966). In the quasilinear theory
(QLT) it is assumed that particles follow the mag-
netic field lines while they move unperturbed in the
direction parallel to the background field. For the
slab turbulence model, the quasilinear perpendicu-
lar mean-square deviation (MSD) of the particle in-
creases linearly with time, viz.

〈

(∆x)2
〉

= 2κxxt.
This linear time dependence is usually referred to
as a classical Markovian diffusion process. Thirty-
four years later, Ḱota & Jokipii (2000) formu-
lated a compound diffusion model that assumes
that the particle moves along the magnetic field
lines while it is scattered diffusively in the paral-
lel direction. Relying on the Taylor-Green-Kubo-
formulation, in combination with the assumption
of diffusive field line random walk (FLRW), Ḱota
& Jokipii (2000) have found a subdiffusive behav-
ior of particle transport of the form

〈

(∆x)2
〉

∼
√

t.
In the same years, particle propagation in mag-

netized plasmas was explored by making use of
test-particle simulations (e.g. Giacalone & Jokipii
1999; Qin et al. 2002a,b), where it was clearly con-
firmed that

〈

(∆x)2
〉

∼
√

t, so long as a slab model
is considered. If the slab model is replaced by a
slab/2D composite model, however, diffusion is re-
covered (though only partially, as demonstrated in
this article). This recovery of diffusion cannot been
explained by the method of Ḱota & Jokipii (2000).

A promising theory, namely the nonlinear guid-
ing center theory (NLGC-theory), has been derived
by Matthaeus et al. (2003). Although this theory
shows agreement with some test-particle simula-
tions in slab/2D geometry, the theory cannot re-
produce subdiffusion for the slab model. An ex-
tended nonlinear guiding center (ENLGC) theory
was therefore formulated by Shalchi (2006), which
agrees with simulations for slab and non-slab mod-
els. However, this theory is very close to the orig-
inal NLGC-theory and uses nearly the same crude
approximation (exponential form of the velocity
correlation function, magnetic fields and particle
velocities are uncorrelated). In this paper we pro-
pose a more reliable theoretical approach that uses
less ad-hoc assumptions andans̈atzethan previous
theories. By comparing with test-particle simula-
tions and solar wind observations we show that our
theory provides the correct result.
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Nonlinear description of FLRW

The key input into our new formulation is the MSD
of the magnetic field lines< (∆x(z))2 >FL. In a
recent article (Shalchi & Kourakis 2007), an im-
proved analytical formulation for nonlinear FLRW
in magnetostatic turbulence has been developed.
This approach is a direct generalization of the dif-
fusion theory proposed by Matthaeus et al. (1995).
However, the new theory can also be applied in
non-diffusive transport cases.

In view of modeling FLRW, the turbulence model
has to be specified in terms of the magnetic corre-
lation tensorPij(~k) =< δBi(~k)δB∗

j (~k) >. Ac-
cording to Bieber et al. (1994) the slab/2D com-
posite model is a realistic model for solar wind
turbulence. In this model the correlation tensor
has the form:Pxx(~k) = P slab

xx (~k) + P 2D
xx (~k) with

P slab
xx (~k) = gslab(k‖)δ(k⊥)/k⊥ and P 2D

xx (~k) =
g2D(k⊥)δ(k‖)k

2
y/k3

⊥ and with the two wave spec-
tra

gslab(k‖) =
C(ν)

2π
lslabδB

2
slab (1 + k2

‖l
2
slab)

−ν

g2D(k⊥) =
2C(ν)

π
l2DδB2

2D (1 + k2
⊥l22D)−ν . (1)

Here we used the normalization constantC(ν) =
Γ(ν)/(2

√
πΓ(ν − 1/2)), the slab- and 2D ben-

dover scaleslslab andl2D, the strength of the turbu-
lent fieldsδBslab andδB2D, and the inertial-range
spectral index2ν.

It can easily be demonstrated that, for pure
slab geometry, the field lines behaves diffusively
〈

(∆x(z))
2
〉

|z|→∞
≈ 2κFL | z |. In several previ-

ous papers (e. g. Matthaeus et al. 1995) it has been
explicitly assumed that FLRW is also diffusive for
two-component turbulence. However, by apply-
ing the improved formulation of FLRW, Shalchi &
Kourakis 2007 have shown that

〈

(∆x(z))
2
〉

|z|→∞
=

(

9

√

π

2
C(ν)

)2/3

×
(

δB2D

B0

)4/3

l22D

( | z |
l2D

)4/3

. (2)

The only assumptions that have been applied to de-
rive this result are Corrsin’s independence hypoth-
esis (Corrsin 1959) and the assumption of a Gaus-
sian distribution of field lines.

Compound transport of particles

FLRW is described as a function ofz. How-
ever, charged particles experience parallel scatter-
ing while moving through the turbulence. Thus,
the parameterz becomes a statistical variable in
particle transport studies. If we assume that the
particles (or, more precisely, their guiding centers)
follow the magnetic field lines (GC approxima-
tion), we have

〈

(∆x(t))
2
〉

P
=

∫ +∞

−∞

dz
〈

(∆x(z))
2
〉

FL
fP (z, t).

(3)
Here the indexP denotes the perpendicular MSD
of the charged particle, andfP (z, t) is the particle
distribution in the parallel direction. Furthermore,
we assume a Gaussian particle distribution.

fP (z, t) =
(

2π
〈(

∆z(t)
)2〉

P

)−1/2
e
− z

2

2〈(∆z(t))2〉
P .
(4)

By using Eq. (2) for the field line MSD in com-
bination with Eq. (4), we can evaluate Eq. (3) to
find

〈(

∆x
)2〉

P
= α(ν)

(δB2D

B0

)4/3

×
[

l2D

〈(

∆z(t)
)2〉

P

]2/3
. (5)

with

α(ν) =
Γ(7/6)√

π

(

18

√

π

2
C(ν)

)2/3

. (6)

In observed spectra, it was clearly found thatν =
5/6 and thusα(5/6) ≈ 0.5. A (time-dependent)
diffusion coefficient as obtained from test-particle
simulations can be defined asκxx(t) =< (∆x)

2
>

/(2t). In general, one may adopt the assump-
tion < (∆z(t))

2
>P∼ tb‖+1, implying a paral-

lel diffusion coefficientκzz ∼ tb‖ . By assuming
κxx ∼ tb⊥ , it is straightforward to find from Eq.
(5) the relation

b⊥ =
2b‖ − 1

3
. (7)

Therefore, knowledge ofb‖ (e.g., from simula-
tion data) leads to an evaluation ofb⊥, within
this model. For instance, if parallel transport be-
haves diffusively (b‖ = 0), we find b⊥ = −1/3
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Figure 1: The ratio of perpendicular and paral-
lel diffusion coefficients (κxx(t)/κzz(t)) for R =
RL/lslab = 0.001. The results from test-particle
simulations (dotted line) are compared to various
theoretical results: NLGC-theory (dashed line),
ENLGC-theory (dash-dotted line), and our GCD-
model (solid line).

(subdiffusion). We refer to this new approach,
which allows a systematic and reliable discrip-
tion of perpendicular transport, as theGeneralized
Compound Diffusion (GCD)-model.

Test particle simulations

For slab/2D composite geometry test-particle sim-
ulations can be performed easily by using proce-
dures described previously (e.g. Qin et al. 2002a,
b). We performed simulations for the following
set of parameters:l2D = 0.1 lslab, ν = 5/6, and
20%/80% slab/2D composite geometry. In Fig. 1,
we depict the ratioκxx/κzz as a function of the
dimensionless timeτ = vt/lslab for the dimen-
sionless rigidity valueR = RL/lslab = 0.001. We
have chosen a low value ofR to ensure that the
guiding center approximation is valid. The simu-
lations are compared with NLGC-theory, ENLGC-
theory, and the GCD-model. For the NLGC-results
we have assumed a parameter value ofa2 = 1,
which corresponds to the assumption that guiding
centers follow magnetic field lines. Obviously the
GCD-model provides a result much closer to the
simulations than the other theories.
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Figure 2: The parametersb‖ andb⊥ as a function of
time for different values of the dimensionless rigid-
ity: R = 10−3 (dotted line),R = 10−2 (dashed
line), andR = 10−1 (solid line). The dots denote
the values predicted by the GCD-model. Clearly
we find a weakly superdiffusive behavior of paral-
lel transport (b‖ > 0) and a weakly subdiffusive
behavior of perpendicular transport (b⊥ < 0).

By assuming the form̃κ(t) = aτ b, we can deduce
the time dependence from numerical data by us-
ing b = (ln κ̃(τ) − ln a)/ ln τ ≈ (ln κ̃(τ))/ ln τ
in the high time limit (̃κ denotes the dimensionless
diffusion coefficients obtained by the simulations).
The exponents for the parallelb‖ and perpendicu-
lar b⊥ diffusion coefficients are depicted in Fig. 2
for different values of the parameterR. As shown,
the test particle code provides a weakly superdif-
fusive behavior of parallel transport, in addition
to a weakly subdiffusive behavior of perpendicular
transport. In all cases considered, the GCD-model
agrees well with the simulations.

Comparison with observations

It is difficult to directly compare our non-diffusive
result with solar wind observations. In this section,
we attempt a rough comparison by averaging our
non-diffusive result over the characteristic scatter-
ing time tc = λ‖/v, where we have defined the
parallel mean free pathλ‖ and the velocityv of
the charged particle. First, we replace the paral-
lel mean-square deviation in Eq. (5) by a diffusive
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behavior (< (∆z(t))2 >P≈ 2tκ‖) and thus one
obtains for the perpendicular diffusion coefficient

κ⊥(t) =
α(ν)

21/3

(

δB2D

B0

)4/3
(

l2Dκ‖

)2/3

t1/3
. (8)

To proceed, we average over the scattering time
and we useλ‖ = 3κ‖/v andλ⊥ = 3κ⊥/v to find
for the perpendicular mean free path

λ⊥ =

(

3

2

)4/3

α(ν)

(

δB2D

B0

)4/3

l
2/3

2D λ
1/3

‖ . (9)

Forν = 5/6 andδB2
2D/B2

0 = 0.8, as proposed by
Bieber et al. (1994), we obtain

λ⊥ = 0.75 l
2/3

2D λ
1/3

‖ . (10)

Palmer (1982) suggested that the parallel mean free
path in the solar wind is0.08AU ≤ λ‖,Palmer ≤
0.3AU and the perpendicular mean free path is
λ⊥,Palmer ≈ 0.007AU . By taking the average
value for the parallel mean free pathλ‖,Palmer ≈
0.2 and by applying Eq. (10) we findλ⊥,GCD ≈
0.009AU (for l2D = 0.1lslab ≈ 0.003AU , as sug-
gested by e.g. Matthaeus et al. 2003), which is
very close to the measurements.

Summary and conclusion

By combining a compound diffusion model (Eq.
(3)) with a nonlinear treatment of FLRW (Eq. (2)),
a new theoretical treatment for the perpendicular
transport of cosmic rays is presented in this article.
In Table 1, the assumptions of this new theory are
compared to the NLGC-theory, as representative
of existing transport theories. Obviously the new
approach relies on less approximations and model
assumptions. Therefore the GCD-model is less re-
stricted and thus more reliable. Furthermore, the
theory is easily applicable due to its simple analyt-
ical form (see Eqs. (5) and (6)). Through compari-
son with test particle simulations, we have demon-
strated that the GCD-model behaves very well and
provides a noticeably improved description of per-
pendicular transport compared to several other the-
ories. Furthermore, by averaging over the scatter-
ing time, we have derived a simple formula (Eq.
(9)) for the perpendicular mean free path which
agrees with previous measurements in the solar
wind.

Assumption NLGC GCD

GC approximation YES YES
Gaussian statistics YES YES
Corrsin’s hypothesis YES YES
Uncorrelated velocities YES NO
and fields
Exponential velocity YES NO
correlation function
Diffusion approximation YES NO

Table 1: Comparison between the assumptions
used in our GCD-model and the assumptions used
in the NLGC-theory.
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