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Abstract: The propagation of relativistic strangelets in terrestrial atmosphere is investigated. A model
is proposed taking into account strangelets fragmentation when colliding with air nuclei together with
the successive energy losses during penetration. New constraints on initial mass and energy are yielded
for arrival at various depths and the detection capabilities of high altitude cosmic ray experiments are

discussed.

I ntroduction

It was conjectured by E. Witten [23] about two
decades ago that Strange Quark Matter (SQM),
consisting of roughly equal number of up, down
and strange quarks have energy per baryon lower
than that of nuclear matter and then might be
the true ground state of Quantum Chromodynam-
ics (QCD). Many works were devoted to the in-
vestigation of the properties of such strange mat-
ter [9, 7, 8, 11] and it was shown that it can
be absolutely stable for baryon numbers ranging
from a few hundreds to as large as 10°7 (SQM
stars). If nuggets of Strange Quark Matter could
have been produced in the early Universe [23],
they would probably have evaporated a long time
ago [1, 3, 17, 18]. However, Strange Quark Mat-
ter, if stable, can still be produced in dense stellar
objects (neutron stars and quark stars) [23, 10, 2].
High energetic processes involved in the collision
of binary systems containing such objects could
therefore produce small lumps of SQM (A < 109),
called “Strangelets” which ones would contribute
to the cosmic radiation permeating the Galaxy.

Among the properties of strangelets, the unusual
small charge to mass ratio (Z/A) is considered to
be a unique and crucial signature for their exper-
imental identification. Anomalous massive parti-

cles were recorded so-far in different cosmic ray
experiments [19, 21, 12] and seem to be consistent
with a Strangelet interpretation. Other candidates
are the Centauro events [13] characterized by a
deep penetration into atmosphere (~ 500g/cm?),
a large hadron content and almost no neutral com-
ponent.

Strangelets interaction and propagation in terres-
trial atmosphere is poorly known. Some phe-
nomenological models were proposed in literature
among them Wilk et al. [20, 22] suggest that a
lump of strange quark matter of high mass num-
ber A when penetrating into atmosphere decreases
rapidly due to collisions with atmospheric nuclei.
The cascade ends up when the strangelet reaches a
critical size of stability bellow which it evaporates
by the emission of neutrons. A quite different sce-
nario was developed by Banerjee et al. [4, 5, 6], in
which strangelets with low mass numbers (A <
100) arrive on top of the atmosphere and attach
neutrons increasing in mass during their successive
interactions with air nuclei.

In the present work, we re-investigated strangelets
interactions with atmospheric nuclei computing
the interaction cross sections as from Wilk’s model
with the introduction of the collision dynamics and
the energetic losses from nuclear and atomic colli-
sions. It is shown that new constraints on initial
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mass and energy can be retrieved for strangelets
detection on high altitude experiments but also at
see level. (implications for the forthcoming exper-
iments are discussed)

Strangelets Propagation

As from Wilk et al. model [20, 22],we consider
that nuggets of Strange Quark Matter penetrating
into atmosphere will undergo multiple collisions
with air nuclei leading to the loss of 3 A ;- quarks
in every consecutive interaction, where A, is
the mean mass number of an atmospheric nuclei
(Aqir = 14.5 for 20% oxygen and 80% nitrogen).
The mean interaction free path of a strangelet of
mass number A in atmosphere is given by:

Am’,r mn
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Where rqg, the re-scaled radius was determined
by the number density of the strange matter
in the scope of the Fermi gas model with the
values commonly accepted [9, 7, 8] for the mean
chemical potential 4+ = 300 MeV and the strange
quark mass m = 150 MeV, respectively. my is
the mean nucleon mass.

air

Thus, the mean atmospheric depth penetrated by
the strangelet before reaching its critical stability
mass A..;; is given by the sum of the consecutive
interaction mean free paths A\(k):

N
A=) "N )
k=0
Ag — Aeri
Where N = % the total number of

interactions, Ay is the baryon number of the initial
strangelet on top of the atmosphere and A,
(~ 300 — 400) is the critical size below which
strangelets are no more stable against neutron
emission. It is estimated comparing the so-called
separation energy dE'/d A to neutron mass.

The interaction between the SQM and air nuclei
is treated as a two-body reaction considering the

products to be the new strangelet and an “effec-
tive nucleus” composed of the remainder of quarks
and eventually nucleons that were involved in the
reaction. As for the moment we are only inter-
ested on the strangelet being able to reach detec-
tor level and not on the whole shower dynamics
we are not drawing attention to the details of the
effective nucleus. In each collision, in order for
3 Aqir quarks to be pulled out from the SQM lump
the available energy in the center of mass system
must be larger than “A,;. times the binding en-
ergy per baryon” in the SQM i.e A,;» X 56 MeV.
56 MeV per baryon is the binding energy of bulk
strange quark matter, as demonstrated by Madsen
in ref. [14, 16]. The deflection angles in each colli-
sion are neglected, strangelets being much heavier
than normal nuclei and energy losses between two
consecutive interactions are computed from Bethe-
Block formula or by an extension of Ziegler ta-
bles [24]. Strangelets charge is considered as from
Madsen [15] Z ~ 0.3 A%/3.

We also consider the gravitational effect although
it is not significant.

Finally, strangelets velocity and mass are com-
puted at different depths along the path and the
propagation is stopped in any of these cases:

i) The final strangelet reaches its critical size
(taken to be A..;+ ~ 320) and is evaporated.

ii) The velocity decreases to an order of 108 ¢
for which the strangelet is considered to be
lost.

iii) The strangelet reaches detector level.

In the first and second case the height above
detector level is recorded whereas in the third case
it is the final velocity that is registered.

Results and Discussion

Our model is applied for a number of incident
Strangelets reaching the top of the Earths atmo-
sphere with different masses and incident veloc-
ities. We investigated the particular case of de-
tectors operated at high altitude, here Mount Cha-
caltaya (5200 m a.s.l) and also at sea level. As
can be seen from Fig. 1, a first step was to find
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out what type of strangelets if any are able to
reach detectors operated at Chacalataya and Sea
level. The minimum strangelet mass number al-
lowing this penetration is A,,;, = 2470 amu and
Apin = 2470 amu for Chacalataya and Sea level,
respectively.

In Figs. 2 and 3 are given the minimun ini-
tial velocities of strangelets to reach detector
level. The behavior of such a velocity with ini-
tial mass number seems to follow a simple low
dependent on the critical evaporation mass and
the minimum initial mass: Bo_min = P1 %
cap(retest—s), with parameters (P1, P2)
equal (0.36,12.47), (0.37,34.04) for chacaltaya and
sea level, respectively.
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Figure 1: The final Mass number of strangelets reach-
ing Chacaltaya and sea level as a function of the initial
baryon number.

Conclusion

A model for the propagation of strange quark mat-
ter in earths atmosphere was developed. It was
found that under certain circumstances of initial
mass and velocity the Strangelets may reach depths
near sea level. Our model gives lower limits on
initial baryon number and velocity of Strangelets
to reach Mountain Altitudes and sea. So, in con-
clusion it seems reasonable to say that Strangelets
with sufficiently large mass and energy have the
chance to be detected by present and next gener-
ation dedicated instruments operated at any atmo-
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Figure 2: The minimum initial velocity for strangelets
to reach Chacaltaya level as a function of the initial
baryon number.

spheric depth between mountain altitudes and sea
level. The detection efficiency and relevant flux of
Strangelets is unclear yet and have to be studied in
details.
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