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Abstract: The problem of identifying gamma ray events out of charged cosmic ray background (so 

called hadrons) in Cherenkov telescopes is one of the key problems in VHE gamma ray astronomy. In 

this contribution, we present a novel approach to this problem by implementing different classifiers 

relying on the information of each pixel of the camera of a Cherenkov telescope, rather than using 

common Hillas parameter analysis. Separation between gamma-like and hadron-like is performed us-

ing several machine learning techniques, trained using Monte Carlo data samples of both types of 

events. 

Introduction 

Since Hillas parameter analysis was developed 

back in 1985 to separate between gamma-like and 

hadron-like events as recorded by Cherenkov 

telescopes [1], many techniques have been used 

for gamma/hadron separation based on such pa-

rameters. Bock et al. [2] performed a case study 

for most of these techniques, to be later applied to 

MAGIC telescope gamma event selection. How-

ever, all these techniques might not be using the 

whole potential of a Cherenkov telescope, as they 

use Hillas parameters (second moments of image 

in telescope camera) as input. In this work we 

propose to apply usual machine learning tech-

niques (some of them, mentioned in [2]) to the 

full image recorded by a Cherenkov telescope, on 

a pixel-by-pixel base. We will demonstrate the 

method on images produced by the MAGIC tele-

scope simulation and reconstruction package [3]. 

Possible advantages of this approach are the use 

of the full information in the camera, and a more 

natural way to treat fluctuations in the image, thus 

permitting a relaxation of the image cleaning and 

a likely reduction of the telescope software 

threshold. Some inconvenients of this approach 

come from the fact that certain effects very diffi-

cult to simulate (like bright stars in the Field of 

View), can play a certain role in a pixel-by-pixel 

analysis, while only a minor effect on a Hillas 

parameter analysis. Another approach also based 

on pixel-by-pixel information was already devel-

oped by Le Bohec et al. [4] for the CAT tele-

scope. However, this approach did not use ma-

chine learning techniques, but a maximum likeli-

hood technique to compare images from simu-

lated showers against analytical expressions from 

shower development in the atmosphere.  

Data sample  

For this study, we have used gamma and proton 

events (as the latter represents the majority of 

hadronic cosmic rays) simulated with Corsika 

code [5], plus MAGIC Reflector and Camera 

reconstruction standard software. Each event con-

sists   of an image based on the calibrated photo-

electron content in each pixel of the MAGIC tele-

scope camera.  The pixels whose signal is likely 

to originate from NSB or electronic noise are 

removed from the image using the so-called im-

age cleaning procedure [6], with 10 photoelectron 

threshold for core pixels and 5 photoelectron 

threshold for boundary pixels.  

Gamma and proton samples consist of 28750 

events. Image total photoelectron spectrum of 

gamma sample resembles that of typical cosmic 

sources. Corresponding spectrum of proton sam-

ple is forced with similar slope to avoid biasing 

the selection procedure.  
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In what follows, we will briefly describe the dif-

ferent classifiers used in the experiment, com-

posed by individual or ensemble classifiers. 

To begin with, we have used three individual 

classifiers for our experiments: A brief description 

of each of them follows, with a deeper description 

in references below:  

• Decision trees: construction of decision 

or classification trees using Quinlan's 

C4.5 algorithm [7].  

• Multilayer Perceptron: a feed forward ar-

tificial neural network trained with the 

classical backpropagation algorithm [8].  

• K-NN: K Nearest Neighbour algorithm 

[9] with K=11 and euclidean distance 

metric. 

 

Regarding ensemble classifiers, which will only 

be applied to decision trees classifier, we will deal 

with multiple classifier systems generally de-

scribed as voting classification algorithms, i.e., 

techniques in which we use several individual 

classifiers that output a particular prediction or 

label for each of the examples of the test data set. 

These predictions are then combined to produce a 

single output, the output of the ensemble, by ma-

jority voting decision. 

We used two different voting algorithms: 

• Boosting – We used the Adaboost algo-

rithm [10-11] implemented in Weka [12]. 

• Bagging – Classical ensemble method 

developed by Breiman [13]. 

 

Let us make a brief description of this two en-

semble methods: both are combinations of indi-

vidual classifier (decision trees in our case) and 

they output a prediction based on majority vote. 

The main difference between these algorithms is 

the way they build the training set. Bagging con-

struct training subsets sampling from the original 

training set with replacement (i.e. some examples 

could be repeated in each subset). Then it builds a 

model for each of the subsets and combines the 

output of the different models typically by major-

ity voting. Boosting method builds up the differ-

ent subsets by sampling examples without re-

placements. The key point is that boosting 

method constructs every model paying special 

attention to those examples that previous model 

classified incorrectly. 

Results 

All these machine learning methods have been 

fed with above described gamma and proton 

samples, using a typical holdout validation 

method (two thirds of them for training and the 

rest for testing purposes).   

Results from the different methods, presented in 

terms of ROCc (Receiver Operating Characteris-

tic curves) for different classification methods, 

are shown in figures bellow: vertical axis shows 

gamma acceptance while horizontal one repre-

sents hadron acceptance 

All the methods have been applied both to the 

whole gamma and proton sample and to subsam-

ples, depending of incident energies. Figure 1 and 

2 show the results for samples with energies 

lower and higher than 200 GeV respectively. 

Figure 1: ROCc for energies lower than 200 GeV  

One has to emphasize that all methods are applied 

on a pixel by-pixel basis, even classification trees 
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ones. Ensemble methods (also known as multiple 

classifier systems) show superior behaviour as 

compared to its individual classifier (decision 

trees), and similar to K-NN method. Only within 

highest energies decision trees (the weak learner 

we have combined in ensembles) perform well. 

On the other hand, artificial neural network shows 

the worst performance of the whole set of classi-

fiers. 

Figure 2: ROCc for energies higher than 200 GeV 

Figure 3 shows the results when classifying the 

whole data set. Boosting trees show results com-

parable with those in Bock et al [2], graphically 

displayed using point style.                  . 

Figure 3: ROCc for total events 

Discussion of results 

Let us first examine the results of Nearest 

Neighbours algorithm. Our first intuition, based 

on domain knowledge when we began this work, 

was that Nearest Neighbours could be a good 

choice. This intuition was based on the fact that 

K-NN has a strong geometrical character.  

Nearness is calculated using a similarity measure 

between the different instances, typically the 

euclidean distance. Therefore it has a strong geo-

metrical dependence, as our domain representa-

tion, and therefore we can include a priori infor-

mation on the camera geometry. We believe this 

is the reason why Nearest Neighbours technique 

could stand out from the other single predictors, 

and results have confirmed our early prediction.  

Regarding the ensemble methods, we have com-

bined decision trees, and we have obtained com-

parable results to those from Hillas parameter 

analysis in previous works [2]. Decision trees is a 

good model to be combined in ensembles because 

of its large variance (different training sets lead to 

completely different models). These combinations 

normally result in an enhancing of the accuracy of 

any single decision tree, though it depends on the 

domain characteristics. 

Next we will discuss the results regarding the 

multiple classifier systems. The performance has 

been evaluated in terms of the accuracy, com-

puted using a 95% confidence interval. As shown 

in Table 1, both Boosting and Bagging outper-

form C4.5 trees when we used them as base clas-

sifiers of these schemes and the whole training 

set. On the other hand, K-NN outperforms the rest 

of the individual classifiers. 

 

 KNN C4.5 Boosting Bagging 

Accuracy (%) 81 78 86 83 

Table 1. Accuracy of the classifiers K-Nearest 

Neighbours, C4.5 and the multiple classifier sys-

tems 
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Conclusions and outlook 

Separation between simulated gamma-like and 

hadron-like events (as reconstructed by the 

MAGIC Cherenkov Telescope) is performed us-

ing several machine learning techniques applied 

to pixel-by-pixel defined images. Both ensembles 

of classification trees and K Nearest Neighbours 

show similar performance as for Hillas parame-

ters defined images [2] (without any restriction on 

the energy of the primaries). 

Among all individual classifiers, the algorithm 

that shows the best accuracy is K Nearest 

Neighbours. This is a very interesting algorithm 

(regarding our domain representation) that shows 

a similar result than multiples classification sys-

tems at lower energies and outperform them when 

higher energies are also considered. This is a con-

sequence of the strong geometrical dependence of 

this domain as we are solving the problem of 

identify gamma ray events relying on the infor-

mation of each pixel of the camera of a Cher-

enkov telescope. These classifiers were also dis-

cussed in terms of event energies, showing prom-

ising results for events with energies below 200 

GeV. We have demonstrated that this approach 

could be comparable to common Hillas parameter 

analysis but without the requirement of any addi-

tional data transformation.  
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