Characterization and calibration of SSNTD for studying rare events in cosmic rays

S.DEY², B.BASU^{1,2,}, A.MAULIK², A.MAZUMDER³, S.RAHA¹, S.K.SAHA^{1,2}, S.SAHA^{4,}, D. SYAM⁵

¹ Department of Physics, Bose Institute, Kolkata, India

²Centre for Astroparticle Physics and Space Science, Bose Institute, Kolkata, India

⁴ Saha Institute of Nuclear Physics, Kolkata, India

⁵ Presidency College, Kolkata, India

swapan@bosemain.boseinst.ac.in

Abstract; Solid state nuclear track detectors (SSNTD) are useful for studying heavy ion abundance in cosmic rays. In our work we are using a particular brand over head projector transparencies, which have a very high z/β ($z/\beta \ge 150$) detection threshold and so particularly suitable for rare cosmic ray events viz strangelet detection. The detector material is identified to be polyethylene terephthalate (PET). Asensitive charge response characteristic is a prerequisite for any detector. Previously we have studied the charge response of the PET detector with the exposure of light (16 O) and heavy (238 U) ions. In this paper we have added more data points on the charge response graph for 16 O ion, and 252 Cf fission source. We have constructed a calibration curve V_t/ V_g (charge response) vs dE/dx(specific energy loss).

CRC 2007 Proceedings - Pre-Conference Edition

Introduction:

Solid State Nuclear Track Detectors (SSNTD) are useful for studying heavy ion abundances in cosmic rays at high altitudes because of their lightweight and certain detection threshold values of z/B. Cr39 is a well-known and extensively used solid state detector having $z/\beta \ge 6$. We have identified a Polyethylene Terephthelate (PET) detector, which have high z/β ($z/\beta \ge 150$) detection threshold [1]. A sensitive charge response characteristic is a pre-requisite for any cosmic ray detector. We have reported earlier the charge response of that polymer detector to both light (¹⁶O) and heavy (²³⁸U) energetic ions from accelerator [2,3]. In this paper we have added more data points on the charge response graph for ¹⁶O ion, and ²⁵²Cf fission source. We have constructed a calibration curve Vt/ Vg (charge response) vs dE/dx. To improve the graph, we need more points and have proposal for S and Ni ion as exposure.

Experiment:

Pet detectors were exposed with ²³⁸U-ion of energies 397 MeV, 672.7 MeV and 964.8 meV using 11.3 MeV/n ion beam at GSI, Darmstadt, Germany, ²⁵²Cf fission source also used as exposure on several sheets of detector. Eight sets, each containing 22 pieces of polymers each of area 3.5x3.5 cm² were exposed to ¹⁶O ions with eight different energies.

Detectors exposed to ions with above energies were etched in 6.25N NaOH solution at 55 \pm 0.1° C for three hours in a constant temperature bath.

Etched plates were kept inside desiccators for a day or more to remove moisture. A reasonable area of each plate was scanned under the dry objective of magnification x100 of a Leica 500 DMR microscope for a good statistics of data. Track length (L_{obs}) and etch pit diameters, minor axis (D_b) and major axis (D_a) were measured. Bulk etch rate V_g is determined by thickness loss method after long time etching.

³ GSI, Darmstadt, Germany

Results and Discussion:

Charge response parameter which is known as reduced track etch rate (V_t/ V_g) were determined using the following formula

$$V_t / V_q = 1 + (L_{obs} / V_q t)$$

Where V_t = the track etch rate and, t = time of etching.

Fig.1. Calibration curve

References

- 1. B. Basu et al, Indian J. Phys.79, 279(2005)
- B.Basu B.Fischer, A.Mazumdar, S.Raha, S.Saha, S.K.Saha and D. Syam. 29th ICRC Pune 279-282 (2005).
- B.Basu, B.Fischer, S.Dey, A.Maulik, A.Mazumdar, S.Raha, S.Saha, S.K.Saha, and D.Syam Book of abstracts, 23rd International Conf. on Nucl. Tracks in Solids, (Beijing, China) (p 87) (2006).