ECAL proton rejection August 2010 TB data

Work in progress

We have analyzed TRACKER10 position protons runs (perpendicular tracks p=400 GeV)

Because of the change of AMS geometry with PM, software has changed, especially for the Tracker.

1 ParticleR Object

Why so many events with 0 ParticleR objects? <u>To</u> <u>understand</u>

At least 6 hits in TRK

Goodness of fit cuts for TRK

This is the most tricky part: we imposed the following conditions:

→ Fit alghorythm for curvature fitting must use (in order)

the inner tracker AND the two external ladders the inner tracker AND the external ladder below ECAL

→ChiSquare of the fit must be not too high (details in next slide)

→Rigidity must be compatible with beam energy (details in next slide)

ChiSquare

Rigidity

Plot improved with new tracker alignment

ECAL Showers

This sample is our normalization (~10% of total sample). Now we impose ECAL cuts

Deposited Energy in 2cm around axis

Deposited Energy in 2cm around axis (250GeV "electrons")

The "electron" beam is really mostly composed by pions, with a fraction of $\sim 5\%$ electrons

ECAL total deposited energy

Deposited energy > 1 GeV

2 last layers deposited energy fraction

2 last layers deposited energy fraction (250GeV "electrons")

ECAL+Tracker rejection @400GeV

Proton rejection: $9/182451 \sim 5*10^{-5}$ Electron efficiency still to be evaluated. Preliminary value for 250GeV electrons is ~60%. -> p/e rejection ~ 0.46 * 5 * 10^-5 / 0.6 ~ 3.8 * 10^-5

Summary and next steps

→ most powerful cut for positron-proton separation is the <u>energy/momentum matching</u>

- → preselection of events
 - possible bias (=if we select the "best" events, then E/p match more effective)
 - → how to determine "absolute" efficiency

→ ECAL variables: tuned with data using feb 2010 test beam, at energies 180, 250, 290GeV -> need MC to extend this tuning at other energies/angles of incidence

→ comparison with MC (see next slide)

 A preliminary comparison with MC shows some differences in terms of cells with hits and total energy (in ADC counts)

