

Tracker Software Status

P.Zuccon – INFN Perugia AMS Analysis/Software Meeting October IIth, KSC

Overview

- Many improvement since the end of the test beam
 - Alignment second pass almost available
 - Easier access to the track info
 - Offline (re)fit of the tracks
 - Improved efficiency of matching with other subdedectors
 - Many (!) bugfixes
 - review and speed up of the facilities to handle the events (AMSChain & C.)
 - Implementation of the tracker part for the "MC raw data

P. Zuccon - INFN Perugia

• Tuning of the Si signal simulation (A. Oliva)

P.S.: Thanks to Vitaly, for pointing out problems, suggesting solutions and pushing for fixes ...

Easier Access to the Fit info

- The most relevant information for the track is the fit result
- The info about a TrTrackR fit are kept in a TrTrackPar Object
- Track Fitting can be done in multiple ways depending on: the fitting algorithm or the subset of hits involved
- To uniquely identify a fit we use the 32 bits of an integer(fit_code) as flag for the attributes
- A new method has been developed to generate this fit_code using a human readable syntax
- Currently there are:
 - 3 algorithms: kChoutko, kAlcaraz, kChikanian
 - 5 types: all hits, Internal, upper Half, lower Half, External only
 - Multiple scattering switch
- The new implemented TrTrack method is called iTrTrack(...)

iTrTrack method

int pattern = o, int refit = o

It gives you the integer number (fit code) to be used to access the fit results (TrTrackPar obj) Advanced TrTrackPar accessor.

Parameters:

algo Fitting algorithm= 0 The default algorithm choosen at recon stage 1 Choutko; 2 Alcaraz; 3 Chikanian; +10 mscattering off; *pattern* Hit Pattern= 0 all hits; 1 upper half; 2 lower half; 3 drop 2 external hits; 4 only 2 + 2 external hits;

OR

mmmmmmmm where m=0 or 1 for TrRecHit layer GetLayer() from right to the left such as 100110010 corresponds to layers 2,5,6,9

Parameters:

refit 0 do not refit 1 refit if does not exist 2 refit

Returns:

the code to access the TrTrackPar object corresponding to the selected fit or -1 if not found

Example of TrTrack Methods that use fit_code

	Returns Chiz on X.	
double	GetChisqY (int id=0) Returns Chi2 on Y.	
double	GetChisq (int id=0) Returns Global Chi2.	
int	GetNdofX (int id=0) returns Ndof on X	
int	GetNdofY (int id=0) returns Ndof on Y	
double	GetRigidity (int id=0) Returnt the fitted Rigidity.	
double	GetErrRinv (int id=0) Returns the error on 1/R.	
AMSPoint	GetPentry (int id=0) Get track entry point (first layer of the fitting).	
AMSPoint	GetP0 (int id=0) Returns the point of passage on the Z=0 XY pla	ne.
AMSDir	GetPdir (int id=0) Get track entry point direction (first layer of the	e fitting).
AMSDir	GetDir (int id=0) Returns the direction at the point of passage of	n the Z=0 XY plane.
AMSPoint	GetResidual (int ilay, int id=0) Return the 3D residual at layer ilay (0-7).	
char *	GetFitNameFromID (int fitnum) Get back the string corresponding to a fit ID.	
int	GetFitID (int pos) Get the fit ID of the pos-th fit method or zero if pos is invalid.	
void	PrintFitNames () Print the string IDs of all the performed fits.	
AMSPoint	GetPlayer (int ilay, int id=0) Get track position at layer ilay (0-7).	P. Zuccon - INFN Perug

TrTrackPar Object

Public Attributes

bool	Fit done flag.	
short int	HitBits Bits of hits used for the fitting e.g. 0x7f: Layer	1 missing.
Double32_t	ChisqX Chisquare in X (Not normalized).	
Double32_t	ChisqY Chisquare in Y (Not normalized).	
short int	NdofX Ndof in X.	
short int	NdofY Ndof in Y.	
Double32_t	Chisq Normalized chisquare, Chisq(x+y)/Ndof(x+y).	
Double32_t	Rigidity Rigidity in GV.	
Double_t	ErrRinv Fitting error on 1/rigidity in 1/GV.	
AMSPoint	PO Track positon (normally defined at Z=0 plane).	
AMSDir	Dir Track direction at PO.	
AMSPoint	Residual [trconst ::maxlay] Fitting residual at each layer.	P.Zussen

Offline refit

- Via the iTrTrack method it is possible to refit the track from the root files.
- The Magnetic Field map file is needed and the program automatically search for the file \$AMSDataDir/v5.00/MagneticFieldMapPM_NEW.bin
- (temporarily) An initialization is need at the begin of the program:

Refit Code example

#include "root_RVSP.h"
#include "amschain.h"
#include "MagField.h"
#include "tkdcards.h"

```
int main() {
  AMSChain* ams = new AMSChain();
  ams->Add("/r0fc00/Data/AMS02/2009B/
            bt.aug2010.v5/pr400/1281546656.00000001.root");
  TRFITFFKEY.init();
  AMSEventR* ev= ams->GetEvent();
  TrTrackR* nn=0;
  while(1) {
    ev= ams->GetEvent();
    if(ev->nTrTrack()>0 ) {
      nn=ev->pTrTrack(0);
      if(nn->getnhits()==9) break;
  printf("\nChoutko MS Refit\n");
  typ=nn->iTrTrackPar(1,0,2);
  pp=nn->gTrTrackPar(typ);
  pp.Print(1);
```


Solution

- A. Use TRD track
 - if a trd track has a good match on Y coo and on direction
 - extrapolate the TRD track to the tracker region
 - for each XY TrRecHit check if a multiplicity is close to the trd track within ERR_TRD
 - if all the XY hit of the track satisfy the previous requirement fix the X coo of the Y only hits and refit the track
- B. Use a TOF "track"
 - if the TrTrack has a good Y match on TOF planes I and 4 repeat the same procedure of TRD but with ERR_TOF
- C. The procedure is further improved by increasing ERR_xxx as a function of the Tracker Layer number

Test of Tracking efficiency

Generate events that are likely to be reconstructed:

- No Hadronic interaction in GEANT3
- 10 GeV protons
- fire form a 10×10 cm area pointing downward

	No_Tk	Tk & NoTkP	Tk & TkP
No Match	25%	38%	36%
TRD only	25%	13%	61%
TRD + Tof	25%	2%	73%

Summary

- Many improvement since the end of the test beam
 - Alignment second pass almost available
 - Easier access to the track info
 - Offline (re)fit of the tracks
 - Improved efficiency of matching with other subdedectors
 - Many (!) bugfixes
 - review and speed up of the facilities to handle the events (AMSChain & C.)
 - Implementation of the tracker part for the "MC raw data
 - Tuning of the Si signal simulation (A. Oliva)
- To be done soon
 - Optimize the track fitting considering the materials
 - Implement the reconstruction for track pointing to ACC
 - Review code that implements the matching among detectors to avoid duplications
 - Implement the charge reconstruction for the tracker
 - Test, test and test