Beam Test Oct 2003: Ion Charge Analysis

- Beam test 2003
- Goal: charge discrimination algorithm with high efficiency and low contamination
- Signal characterization for charges from Beryllium to Neon
- Probability $P_{\mathbb{Z}}$ that a cluster is generated by a particle of charge \mathbb{Z}
- Implementation of a probability test for the estimation of the charge associated to a track
- Status of the work

Beam test 2003

Ions of average energy » $10 \mathrm{GeV} / \mathrm{n}$ extracted from an Indium beam of $158 \mathrm{GeV} / \mathrm{n}$ on a Beryllium target, selected by A / Z ratio:
$-A / Z=1.00,6 \%$ of tot. ev., mainly protons
$-A / Z=2.00,77 \%$ of tot. ev., He component is dominant (Be is suppressed)
$-A / Z=2.25,16 \%$ of tot. ev., ${ }^{9}$ Be component is dominant
$-\mathrm{A} / \mathrm{Z}=2.35,1 \%$ of tot. ev., ${ }^{7} \mathrm{Li}$ component is dominant (He is suppressed)

Sample selection

Calibration

- $\sigma_{\text {ped }}$ " $2.5(3)$ for $p(n)$-side

Clusterizzation

. Seed with Signal/Noise $(S N)>5$.
. Neightboring strips with $S N>2$.

Identification of an event of $\mathbf{Z > 2}$
. One and only one cluster for each ladder/side (only 12 clusters)
. Cluster charge amplitude $>$ helium total charge
-A good probability for χ^{2} of the linear fit between the 6 points of $p(n)$ side

impact point VS cluster amplitude: n-side

Cluster amplitude: total charge of a cluster, all strips ($\sum \mathbf{s}_{\mathrm{i}}$) Impact Point (IP): obtained with a 5 point fit

impact point VS cluster amplitude: p-side

Cluster amplitude: total charge of a cluster, all strips ($\sum \mathbf{s}_{\mathrm{i}}$) Impact Point (IP): obtained with a 5 point fit

n-side: η distribution

η : charge center of gravity between the two higher strips $\quad \eta=\frac{Q_{R}}{Q_{R}+Q_{L}}$

Three " $\boldsymbol{\eta}$ regions"

- Readout region: $\boldsymbol{\eta} \cdot 0.15$ or $\boldsymbol{\eta}>0.85$
. Interstrip region: $0.15<\boldsymbol{\eta} \cdot 0.35$ or $0.65<\boldsymbol{\eta} \cdot 0.85$
- Not read strip region: $0.35<\boldsymbol{\eta} \cdot 0.65$
. 3 different charge specta
- Charge peak selection on the sixth ladder

n -side: signal characterization

. Sixth ladder amplitude selection in a restricted window around the energy loss peaks (first ladder peak selection to study the sixth ladder)
. Study the charge distributions on the other ladders
. Signal characterization with a Landau = Gauss + exponential tail
. Low efficiency and great purity samples

n-side: purity of the samples

.fit the all charges spectrum of the sixth ladder: the only free parameters are the normalizations of the charge distributions
. integration of the charge contributions around the peaks
($)$ ample purity : » 98% with a Z - 1 contamination of » 1%
Oow efficiency \square improve the efficiency using a likelihood based test

cluster amplitude, $A D C$ | A lberto Oliva | contamination of B |
| :---: | :---: |
| University of P\&rugid the C sample | |

Tracker meeting 24/10/2006

n-side: shape parameters

. Shape parameters

- σ : width of the Gaussian distribution
- ε : width of the Landau distribution
- λ : slope of the exponential function
- $\mathbf{w}_{\text {exp }}:$ weight of the exponential function (Area $\mathrm{exp} / \mathrm{Area}_{\mathrm{to}}$)
. Given Z and η these parameters are similar for the different ladders (the maximum variation is of the order of $» 10 \%$)
.MPV values differ from ladder to ladder

n-side: shape parameters

| parameters | ladder 1 | ladder 2 | ladder 3 | ladder 4 | ladder 5 | ladder 6 | spread (\%) |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\epsilon(\mathrm{ADC})$ | 21,12 | 27,6 | 30,01 | 22,37 | 29,3 | 25,51 | 14,0611 |
| $\sigma(\mathrm{ADC})$ | 111,48 | 101,04 | 96,01 | 110,11 | 95,08 | 97,55 | 7,0787 |
| $\lambda(1 / \mathrm{ADC})$ | 94,73 | 91,71 | 91,24 | 88,07 | 82,6 | 92,04 | 4,6943 |
| $W_{\text {exp }}$ | 0,1012 | 0,0747 | 0,0587 | 0,0566 | 0,0647 | 0,0492 | 27,5204 |

Nitrogen (readout region)

The shape is not so different

n -side: relative gain

. Ladder to ladder differences are parametrized by a traslation coefficient:

$$
G_{l}(Z, \eta)=\frac{M P V_{l}}{M P V_{3}}(Z, \eta)=G_{l}
$$

. The parameter $\mathrm{G}_{\boldsymbol{l}}$ is independent from Z and $\eta \rightarrow$ relative gain
.A unique charge parametrization can be used for all the ladders

n-side: probability and likelihood

Probability distribution on the single ladder

. The probability P_{Z} that a cluster corresponds to a Z ion is defined as:

$$
P_{Z}(x ; l, \eta)=\frac{f\left(G_{l} \cdot x ; Z, \eta\right)}{\int_{-\infty}^{+\infty} f\left(G_{l} \cdot x ; Z, \eta\right)}
$$

Likelihood on \mathbf{n} ladders

$$
L(Z)=-\sum_{i}^{n} \log P_{Z}(x ; l, \eta)
$$

.we want $0 \cdot L \cdot 1$, then:

- if $L(Z)<10^{-50} \rightarrow L(Z)=10^{-50}$
$-L(Z)=1+L(Z) /(50 \phi n)$

n-side: likelihood ratio test (6 ladders)

-which test for the charge estimation?

- Maximum likelihood: has the maximum efficiency
- Recursive likelihood ratio: a parametrized contamination

$$
L R(Z)=\frac{L(Z)}{L(Z)+L(Z-1)}>c
$$

Separation between Z and Z - 1

n-side: inefficiency and contamination (6 ladders)

.tests have been applied to clean samples (» 98\%) tuning c_{1} and c_{2}

- inefficiency: percentage of not recognized Z events
.contamination: percentage of not-Z events recognized as Z

. c_{1} and c_{2} are nearly charge independent
. for $c_{1}=0.53$ e $c_{2}=0.40 \rightarrow$ efficiency $» 98 \%$ and contamination »1\%

n-side: inefficiency and contamination (6 ladders)

$\%$	Inefficiency	Contamination by $Z-1$	Contamination by $Z+1$
Be^{*}	2.2 ± 0.1	-	0.76 ± 0.03
$\mathrm{~B}^{*}$	1.39 ± 0.05	1.24 ± 0.05	1.02 ± 0.03
C^{*}	1.70 ± 0.06	0.23 ± 0.02	1.52 ± 0.06
$\mathrm{~N}^{*}$	2.3 ± 0.1	0.13 ± 0.01	0.88 ± 0.04
O^{*}	1.81 ± 0.08	0.10 ± 0.02	1.7 ± 0.1
$\mathrm{~F}^{*}$	3.2 ± 0.2	0.07 ± 0.01	1.27 ± 0.08
Ne^{*}	1.67 ± 0.09	0.14 ± 0.03	-

Table 3: Inefficiency and contamination in \% for the LR test with a choise of $c_{1}=0.53$ and $c_{2}=0.40$ for the different samples selected with the sixth ladder amplitude neighbors peak criterion.
. Inefficiency and contamination can be an overestimated because the sample are not clean (there is » 1% of $Z-1$ events in each Z sample)

n-side: charge with only one ladder

Charge reconstructed with the sixth ladder

10						0.006	0.993
9					0.013	0.945	0.041
8				0.014	0.953	0.029	0.001
7			0.011	0.958	0.027	0.001	
6		0.01	0.961	0.026			
5	0.009	0.962	0.026	0.001			
4	0.945	0.042	0.003				
Z	4	5	6	7	8	9	10
Charge reconstructed with the likelihood ratio of 5 ladder							

. "real charge" estimated with 5 ladders .the charge on the last ladder is reconstructed with the maximum likelihood method
.the right charge is reconstructed at » 95% while at » 3% is reconstructed as Z - 1

p-side: problems

. superposition of the total charge profile function of I.P. for the different ions
. not linear relation between amplitude and energy deposited [B. Alpat et al., NIM A 540 (2005) 121-130]
. a deformed η distribution (the spatial resolution has a strong systematic component)

p-side: problems

. superposition of the total charge profile function of I.P. for the different ions
. not linear relation between amplitude and energy deposited [B. Alpat et al., NIM A 540 (2005) 121-130]
. a deformed η distribution (the spatial resolution has a strong systematic component)

p-side: problems

. superposition of the total charge profile function of I.P. for the different ions
. not linear relation between amplitude and energy deposited [B. Alpat et al., NIM A 540 (2005) 121-130]
. a deformed η distribution (the spatial resolution has a strong systematic component)

p-side: strip correction

Hypothesis

. The η deformation could arise from a not linear behaviour in the single strip signal

Proof

-A n-cluster is associated to each p-cluster . On p-side only the seed strip is considered
. Interstrip region: $0.45<\eta_{p}<0.55$
. On n -side the cluster amplitude is considered
. Combine the information of all the ladder using the relative gain

Proposed correction

. a polynomial fit of the seed VS n-side amplitude
. Linearization (hard, soft)
. Correction applied to all the p-cluster strips (the same for all the ladders)

$$
A D C_{c o r r, l}=G_{l} \cdot A D C_{c o r r}^{*}=f_{S C}\left(A D C^{*}\right)=f_{S C}\left(\frac{A D C_{l}}{G_{l}}\right)
$$

p-side: η distribution

. Implantation structure

p-side: spatial resolution

. ladders allignement .fit of a 5 point track .analisys of the residual Δx distribution .evaluation of the spatial resolution (» $\sigma_{\Delta x}-\sigma_{\mathrm{ft}}$)

p-side: charge characterization

. Charge samples are obtained with the n-side likelihood test
. Clean separation in η region is now possible also on p-side
-The ladders differences can be parametrized with a single parameter (relative gain)
-A set of p.d.f. have been calculated for the different ions

- Costruction of a p-side likelihood test

p-side: test efficiency

.the p-side charge is reconstructed with the maximum likelihood method .the right charge is recognized in » 90% of the events

Status of the work

\rightarrow Implementation of a charge discrimination algorithm with high efficiency and low contamination. An AMS-note is in preparation:
Heavy Ions $(Z>2)$ Charge Analysis for the
October 2003 Beam Test of the AMS-02 Tracker
Ladders
\Rightarrow Use the algorithm to find fragmentation events and to study their topology
\rightarrow Compare these result with a FLUKA Monte Carlo simulation

