Experience with the AMS Silicon Tracker

Maurice Bourquin

University of Geneva On behalf of the AMS Tracker Collaboration

Hiroshima Symposium June 2004

AMS-02 Tracker Collaboration

- Perugia INFN and University (Italy) (INFN and ASI)
- Geneva University (Switzerland) (SNF)
- Sun Yat-Sen University, Guangzhou (China)
- National Aerospace Laboratory (NLR) (The Netherlands)
- Aachen Ist Institute (Germany) (DARA)
- Montpellier (IN2P3) (France)
- Turku University (Finland) (TEKES)
- Moscow State University (Russia)
- South East University (Nanjing) (China)
- Institute of Space Science & University of Bucharest (Rumania)
- Electronics in collaboration with CSIST (Taiwan) and MIT (USA)

The AMS-02 Detector

TRD: e/p separation
TOF: ß and |Z|, sign(Z)
Star tracker: pointing
Magnet: 0.8 T, sign(Z)
Si tracker: p, |Z|, sign(Z)
ACC: anticoincidence system
RICH: ß and |Z|, sign(Z)
ECAL: e/p separation

The AMS-02 Tracker

- Localization of charged particle by double sided silicon sensors
- Eight layers (L1 ... L8) of ~ 1m² each on five ultra-light support planes (P1 ..., P5)
- Total of ~2500 double-sided sensors
- Resolution $\sim\!\!-10\mu m$ in bending direction, $\sim\!\!20\mu m$ in non-bending direction
- Measures rigidity p/Z up to a few tens of TeV
- Measures specific energy loss $dE/dx \sim |Z^2|$ for identification of elements
- Measures direction and energy of converted photons

Structure of an AMS Ladder

STS-91 shuttle experimental flight

- > 2-11 June, 1998 10 days flight on Shuttle Discovery
- about 100 hours of data taking 100 million events
- very interesting physics results
 - measurement of primary fluxes
 p, He, e[±] ...
 - detection of secondary fluxes geomagnetic field effect
 - antimatter sensitivity extended $\overline{He}/He \sim 10^{-6}$

Space environnement constraint

IMPACT ON SILICON TRACKER

Limited weight Sensors on thin and rigid Al+C honeycomb support planes Planes supported by C-fiber shells and conical flanges Cables: small dimensions and weight

Limit d powerLimit number of readout channels: Daisy chain(200 W)signals in bending plane and multiplexing in non-bending one

Vibrations and accelerations

All eigenfrequencies required to be above 50 HZ

- Perform simulations
- Tests modules under vibrations

Impact on Silicon Tracker (cont.)

Pressure changes	Atmospheric pressure to vacuum in 10 seconds Long term outgasing: all materials checked with NASA
<u>Limited data transfer</u>	In situ calibration and compression of data Local buffering for extensive periods
<u>Temperature</u> changes	Heat removal by conduction to radiating surfaces (the permanent magnet in AMS-01) by active cooling system (two-phase pumped cooling loops to external radiators in AMS-02)
	Simulations
	Vacuum-thermal tests
	Permanent control by thermal sensors in orbit
<u>Operation</u>	Without human intervention (3 years for AMS)

The AMS-01 flight was a success

The tracker behaved perfectly well

AMS temperature and tracker noise during STS-91

Operating temperature 20 C+-5 C, surviving temperature 20 C+-20 C

Tracker Thermal Control System

Collaboration with Dutch Aerospace Laboratory NLR and ZSU.

Tracker Performance: 1) spatial resolution

2) Charge determination

In AMS-01

- high noise level of n-side strips
- inefficient charge collection across the 208-micrometer readout gap

--> identification of nuclei up to Z=6 only (up to Z=26 for AMS-02)

Improvements

- 1. Passivation of the silicon sensors to protects the sensors from surface damage during contacts with assembly tools.
- 2. Redesign of sensors to increase ohmic side signals
 - ➡ more uniform charge collection

Reduction of number of n-side strips to increase charge collection

~	5AMS 61	A3/S 82
Dimensione	$72.045 \times 11.360 \ { m mm}^2$	
1hickness	$\sim 300~\mu$ m	
Active wid h, p side	70 595 u m	
Ship pitch, p s.de	27.5 oto	
us, of psycigs	2564	
no, of metal strips, p-side	1284	
no, of peide readon, edips	640	
Roulous oitch, pasier	$1.0 \ \mu m$	
Active width, a side	39 832 mm	
St ^{or} p pitch, n <i>s</i> °de	52 pri	103 //0
(i.e., $d = \pi w d \mu \star$	507	284
no, of used singles, node	767	384
no, of $-side$ readout s $-i\mathbf{x}_{-}$	162	
Readout pitch, n side	208 gm	

- 3. New fabrication technology (by CSEM, now Colibrys) to diminish noise.
- 4. More careful assembly procedures to minimize mechanical, chemical and electrical impacts

Improved Assembly Procedures (Ph. Azzarello thesis)

Upilex cable on p-side and electronics

AMS-02 Ladders: charge determination

- Beam tests at CERN and GSI
- Combined results of 6 ladders

AMS-02 Ladders: charge determination

 Correlation of p-side and n-side measurements with a prototype RICH detector

AMS-02 Tracker Plane

Conclusions

No major problems encounted with the silicon tracker during AMS-01:

Electrically and mechanicaly the tracker was unaffected by launch, landing and in orbit operations.

- For AMS-02, the number of independant measurement points and the issue of temperature control needed to be reconsidered.
- The tracker performance on the n-side of the silicon sensors had to be improved.
- In 2005, the new tracker for AMS-02 will be ready for system tests.