The AMS Silicon Tracker for Cosmic Ray Physics

Maurice Bourquin

University of Geneva
On behalf of the AMS Tracker Collaboration

Fifth International Symposium on Developpment and Application of Semiconductor Tracking Detectors

June 2004

AMS on the International Space Station

AMS is a precision magnetic spectrometer scheduled to be installed in the International Space Station (ISS) by 2007, for three years.

physics issues

- Search for Cosmic Antimatter
- Search for Dark Matter
- Precision measurements on the relative abundance of different nuclei and isotopes of primary cosmic rays
- gamma ray astrophysics

AMS Collaboration

Antimatter Quest

- At the Big Bang equal amounts of matter and antimatter produced
- - ► low antiparticle fluxes

 essentially explained by secondary production
 - **baryon-photon ratio** $\frac{N_B}{N_\gamma} \sim 10^{-10}$ *BBN prediction* : $\frac{N_B}{N_\gamma} \sim 10^{-19}$!

Baryogenesis mechanism???

CP Violation

Baryon number violation

Cosmic Rays Fluxes

- Spectra modulated at low energy solar wind effect
- Event rates depend on the geomagnetic lattitude geomagnetic cutoff effect
- ightharpoonup AMS maximal rate expected $\sim 2~KHz$

protons	~ 1
heliums	$\sim 10^{-1}$
electrons	$\sim 10^{-2}$
positrons	$\sim 10^{-3}$
carbon	$\sim 10^{-4}$
iron	$\sim 10^{-5}$

Detector Requirements

Antimatter

antinuclei production from matter collisions is strongly suppressed

$$(p+ISM \rightarrow \bar{N}+\ldots)$$

$$\frac{\bar{N}}{\bar{p}} \propto \exp{\left(-\frac{M_N - m_p}{80\;MeV}\right)}$$

detection of antinuclei would be a clear signal of existence of antimatter

DarkMatter

signals : \bar{p} , e^+ , γ , \bar{d}

- e^+ and \bar{p} produced in p + ISM collisions
- physics background : $p/e^+ \sim 10^3$

$$e^-/\bar{p} \sim 10^2$$

a good e,p separation is needed

$$B/S \sim 1\% \Downarrow$$
 Rejection Factor $\sim 10^5$

Astrophysics

detection of a large range of nuclei (Z)

ability to identify different isotopes

detection of gamma rays

- charge identification
- rigidity measurement
- velocity measurement
- e.m energy measurement

- e/p separation
- albedo rejection
- strong system redundancy

From AMS-01 on Shuttle to AMS-02 on ISS

Improved capabilities

- ightharpoonup larger acceptance $\sim 0.5 \ m^2.sr$
- ightharpoonup Superconducting magnet a magnetic field ~ 8 times larger
- > larger silicon Tracker 8 double-sided layers $\sim 6.5 \ m^2$ silicon surface
- \triangleright a momentum resolution improved by a factor ~ 10

New Detector systems

- Electromagnetic Calorimeter (ECAL)
- → Transition Radiation Detector (TRD)

TRD: Transition Radiation Detector

TOF: (s1,s2) Time of Flight Detector

MG: Magnet TR:

Silicon Tracker

ACC: Anticoincidence Counter

AST: Amiga Star Tracker

TOF: (s1,s2) Time of Flight Detector

RICH: Ring Image Cherenkov Counter

EMC; Electromagnetic Calorimeter

AMS Alpha Magnetic Spectrometer Integration MIT

Advantages of a Silicon Tracker for AMS

Large surface to cover large acceptance of spectrometer (0.5 m² sr)

>> High statistics measurement (rare anti-nuclei if any, exponentially decreasing CR spectrum)

Excellent spatial resolution in magnetic field (10 µm/plane in 0.8 T)

- >> High rejection power against nuclei in anti-nuclei search
- >> Good identification of light isotopes
- >> Good double-track reconstruction for converted photons

Advantages of a Silicon Tracker for AMS

Large number of planes:

>> reduces background due to nuclear interactions (several indep. measurements.)

Choice of double-sided sensors increases transparency of the detector (~3 % of a radiation length)

>> Reduces large angle scattering of nuclei which could simulate the curvature of anti-nuclei.

Well adapted to space environment:

Absence of gas system and wires, light weight, limited power, can survive vibrations and accelerations, works in vacuum, limited data transfer, temperature can be controlled.

Advantage of a Silicon Tracker for AMS

Measurement of high energy converted photons

Together with Star Tracker and GPS

E.g. study of Gamma Ray Burst energy and time distributions

AMS-02 Tracker Construction

Positioning to a few μ m accuracy.

Collaboration with ETH Zurich bonding facility at CERN.

N-side bonding jig

Wire bonds

Shielding wrapping

AMS-02 Tracker Plane

Tracker Reduction Board

Tracker Rigidity Resolution

Tracker charge resolution

 Correlation of p-side and n-side measurements with a prototype RICH detector

Antimatter Search with AMS-02 antihelium

- ightharpoonup a rigidity sensitivity improved ightharpoonup 8 times

Darkmatter Search with AMS-02 positrons

Space born and ground based high energy γ ray detectors

Unidentified Sources with AMS

y01K062_2a

Conclusions

- The AMS detector will be installed on the ISS on 2007 for 3 years.
- Fundamental physics issues will be adressed
 - Antimatter sensitivity of the order 10⁻⁹
 - Dark matter searches through different signatures (e⁺, p⁻, γ, ···)
 - Astrophysics measurements
 - Charged particle tracking is done with a silicon microstrip detector, well adapted to work in the high field superconducting magnet

It meets the scientific goals with

Measurement of rigidity over large range (1 GeV to 2 TeV)

Detection of large range of nuclei (Z = 1 to 26)

Measurement of converted high energy photons

Good performance in space environnement with no human intervention

DarkMatter Quest

Evidence for the existence of a large quantity of non-baryonic darkmatter

- Rotation galactic curves indicate the presence of non-luminous galactic halos
- \triangleright Universe matter content is $\sim 5 \times$ larger than the baryonic matter BBN prediction

$$\Omega_m \sim 0.3 \quad (BBN: \Omega_b \sim 0.05)$$

- Weakly Interacting Massive Particles (WIMP's)
- ightharpoonup SUSY has a good candidate Lightest Supersimmetric Particle (LSP) neutralino (χ) $\chi\chi \to f\bar{f},~W^-W^+,~ZZ,~Z\gamma,~\gamma\gamma$
- \triangleright physics signatures anomalies on $e^+, \ \bar{p}, \ \gamma, \bar{d}$ spectra

Astrophysics motivations

Improvement of current isotopic measurements needed!

- done at relatively low energies
- based on low event statistics

