

AMS-02 Tracker Performance

E. Cortina (U. Genève)

ICRC03, Tsukuba, Japan

- Introduction
- Test Beam setups
- Spatial Resolution
- Identification Capabilities
- Summary & Conclusions

Introduction

- AMS-02 is a magnetic spectrometer \rightarrow See talk from S. Gentile (OG 1.5-10)
- The core of the spectrometer is composed by:
 - Superconducting magnet (0.87 T) \rightarrow See talk from B. Blau (OG 1.5-12)
 - Silicon tracker \rightarrow This talk and poster 2-P-297

- 8 layers arranged in 5 planes.
 - 2 external layers (2 planes) on top and botton the magnet
 - 6 internal layers (3 planes) inside the magnet
- 192 elements called ladders

What's a ladder?

- 7-15 double sided silicon sensors (300 μm width)
 - S-side = p-side
 - K-side = n-side
- 8200-16500 microbonds per ladder
- Sensor relative position known better than $4\mu m$

Pitch	p-side	n-side
Implantation	27.5 µm	104 μm
Readout	110 μm	208 μm

Plane structure

- Carbon fiber and aluminum honeycomb sandwich
- Same planes used for AMS-01
 - Inner planes modified to attach ladders on both sides
 - Bags for laser diodes on external planes.
- Layers 2 and 3 ready to be installed on Plane 2

P1	P	2	P	3	P	4	P5
L1	L2	L3	L4	L5	L6	L7	L8
30	24	22	20	22	22	24	30

Measurements

- Together with the magnet will allow 3D reconstruction of particle trajectories.
 - Two position measurements per hit.
 - Measurement of the momentum
 - Measurement of the sign of the charge
- Each hit in a sensor will provide two measurements of the energy deposition.
 - Determination of particle charge.

- Possibility to measure converted photons (MC studies)
 - 1 GeV-400 GeV. Limited by double track resolution
 - Energy resolution modest (bremsstrahlung)
 - 0.6° @ 1 GeV 0.12 mrad @ 300 GeV
- Method tested in AMS-01. Limited by rate and geometry.

20 GeV/u Pb+Be SPS (CERN)

Spatial Resolution

- Precise alignment performed prior to compute residuals
- S/N ratios \sim 10 for both sides

Particle	p-side	n-side
μ 120 GeV	$8.5 \mu m$	$29.5 \mu m$
p 20 GeV	$11.6 \mu m$	$29.2 \mu m$
He 20 GeV/A	$7.1 \mu m$	$22.1 \mu m$

- Each plane provides two measurements of energy deposition
- 6 planes in test beam (8 planes in AMS-02)
- Up to Z=10 if only one side used
- Up to Z=13 combining informations from both sides.

Conclusions

- A Silicon Tracker composed by 192 ladders with 6.4 m^2 is being constructed.
- The detector has been tested in two test beams at the CERN SPS with MIPS and heavy ions
- Spatial resolution of 8.5 μm on p-side and 30 μm on n-side have been obtained
- Allow to identify up to Z=13 (Z=10 using only one side)
- New tests foreseen during 2003 and 2004.
 - 10 GeV *p* @ PS (CERN). June 2003
 - 20 GeV/u In @ SPS (CERN). October 2003
 - 800 MeV/u C @ FRS (GSI). November 2003
 - Electron or photon beam. 2004.