AMS

A magnetic spectrometer on the International Space Station

Catherine Lechanoine-Leluc

On behalf of the AMS collaboration

ICRC2005, August 3-10, 2005
AMS on the International Space Station (ISS)

AMS is a magnetic spectrometer to be installed on the ISS in 2008 for at least 3 years. It is designed to study charged and neutral radiation in space.

Physics issues

- *Cosmic Antimatter search*
 antimatter sensibility of the order 10^{-9}
- *Dark Matter search*
 through different signatures ($e^+, \bar{p}, \gamma,...$)
- *Relative abundance of different nuclei and isotopes of primary cosmics rays with charge identification up to Iron nuclei*
- *\(\gamma \) ray astrophysics*
-

J.Pochon, he-23
M.Sapinski, og-11 and og-22
AMS Collaboration

AMS is an International Collaboration

~ 500 collaborators from 56 institutes in Asia, Europe and America.
AMS-01 Pilot Experiment: STS91, June 2-12, 1998

- Main goal: resupply MIR and crew exchange
- Qualification and test mission for AMS-01
- 10 days of data taking
 \(10^8\) events registered
- Detector functioned without faults
- Very interesting physics results
 - Measurement of primary fluxes \(p, \text{He}, e^{\pm}\)...
 - Detection of secondary fluxes geomagnetic field effects
 - Antimatter sensitivity extended \(\overline{\text{He}}/\text{He} \sim 10^{-6}\)

Lessons learned: more performant particle identification, more redundancy, more open trigger
AMS-02 on International Space Station

- **Improved capabilities**
 - Larger acceptance ($\sim 0.5 \text{ m}^2\cdot\text{sr}$)
 - Superconduction magnet
 a magnetic field ~ 6 times larger
 - Larger silicon Tracker
 8 layers $\sim 6.7 \text{ m}^2$ of double-sided silicon
 - a momentum resolution improved by a factor ~ 10

- **New Detector systems**
 - Transition Radiation Detector (TRD)
 - New Cherenkov detector (RICH)
 - Electromagnetic Calorimeter (ECAL)
 - 2 camera Star Tracker and GPS system

- **A total of 227300 channels** producing 7 Gbit/s, reduced by electronics to 2 Mbit/s downlink rate (A. Lebedev, X. Cai og-15)
AMS-02: Superconducting Magnet

- 14 superconducting coils
- Geometrical configuration to ensure a null magnetic dipole moment
- Indirect cooling system based on superfluid helium
- Helium vessel: 2500 liters
- Dimensions: inner diameter 1.1m, weight: 2360 Kg
- an intense magnetic field: \(\sim 0.9 \) T
- a large bending power: \(\sim 0.8 \) T.m^2

▷ All coils are produced, tested individually at 1.8 K and assembled
▷ Vacuum vessel is completed
▷ Magnet delivered to CERN where the integration will start in 2006

R.H. MacMahon he-24
AMS-02 Spectrometer: Silicon Tracker

- Precise localisation of charged particles by double sided silicon sensors
- 8 layers of \(\sim 0.8 \text{ m}^2 \) on five ultra-light supporting planes
- Total of \(\sim 2500 \) silicon sensors
- 8 independent position measurements of a particle with \(\sim 10 \mu \text{m} \) resolution in bending direction, \(\sim 30 \mu \text{m} \) orthogonal
- Particle rigidity \(R = \frac{pc}{|Z|e} \) up to a few TV
- Electric charge (\(Z \)) from energy loss \(dE/dx \). Identification of elements up to iron possible
- Direction and energy of converted photons

- 100 \% of sensors mounted
- 4 layers completely equipped
- All 8 layers equipped by December 2005

P. Zuccon he-24
AMS-02: Transition Radiation Detector

- Modules (328) made of fleece radiator and straw tubes
 - $E_{\gamma} \sim \gamma (eV)$
 - Emission probability small (10^{-2})
 $N_{\gamma} \sim \alpha N_{\text{transitions}}$
 - TRD photons detected in proportional straw tubes Xe/CO_2
- 20 layers assembled in an octogonal shape structure
- Separation of e^-/e^+ from \bar{p}/p up to 300 GeV

▷ All modules produced
▷ 14 layers with 220 modules inserted in supporting structure
▷ Detector finished in Spring 2006

J. Olzem og-15
M. Schmanau og-15
AMS-02: Time-of-Flight Detector

- 4 scintillator planes
- A total of 34 crossed scintillator paddles, 1.6 m²/plane
- Light guides twisted/bent and photo-tubes aligned with \vec{B}
- Principle trigger detector for charged particles
- Upgoing/downgoing particle separation
- Velocity measurement with $\Delta \beta / \beta \sim 3\%$ for protons
- Absolute charge measurement (up to $Z \sim 20$)

▷ All scintillator paddles produced
▷ Ready for integration in 2006

F. Giovacchini he-21
V. Bindi he-15
L. Quadrani he-21
AMS-02: Ring Imaging Cherenkov Detector

- Proximity focusing Ring Imaging Detector
- 2 different radiators:
 - Aerogel, $n=1.05$, 2.7 cm thickness
 - Sodium fluoride, $n=1.336$, 0.5 cm thickness
- Conical reflector
- Photomultiplier matrix (680)
- velocity measurement from emission angle $\Delta \beta / \beta \sim 0.1\%$ for single charge particles
- Number of photo-electrons measures Z $\Delta Z \simeq 0.2-0.25$ up to Fe
- directional sensitivity

▷ RICH is currently being assembled
▷ will be integrated in AMS in June 2006
AMS-02: Electromagnetic Calorimeter

- Lead scintillating fiber sandwich (640 kg), 3D sampling by crossed layer
- $\sim 17X_o$ radiation lengths
- 9 superlayers piled up disposed along Y and X alternately
- Energy resolution (GeV)
 \[\Delta E/E \approx 10.1\%/\sqrt{E} \oplus 2.6\% \]
- Distinction between hadrons and e/γ by shower shape
- Protons suppressed by 10^{-4} up to 500 GeV. Together with TRD, rejection of hadrons/electrons $\geq 10^6$
- Independent γ detector, angular resolution $\sim 2^\circ$, γ independently triggered

▷ All superlayers installed in mechanical structure
▷ Final calibration in e^- test beam in 2006

J. Pochon he-24

Catherine Lechanoine-Leluc

ICRC2005
Summary

AMS-02 is a magnetic spectrometer on ISS for long operation
 → International Collaboration
 → Large acceptance, multiple performant particle identification

- All sub detectors design and performance validated with several tests
- All sub detectors ready by mid 2006
- Integration will start at CERN in 2006
- The detector will be ready for launch end of 2007, and installed on the International Space Station for more than 3 years
- A diversified physics program
- explore the unknown